Proceedings of the Korea Concrete Institute Conference (한국콘크리트학회:학술대회논문집)
- Semi Annual
Domain
- Materials > Ceramic Materials
2005.05a
-
The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.
-
The increasing amount of structures presenting distress due to reinforcement corrosion is urging the establishment of more accurate calculation methods for the service life of concrete structures. In the present paper, a summary of the different approaches is presented that are able to calculate the expected life of new structures, in certain aggressive environments or the residual life of already corroding structures. The methods for the initiation period are based on the proper calculation of the carbonation front or chloride penetration and on the steel corrosion rate. The methods for the residual load-bearing capacity calculations are based in the use of ' indicators ' or in the evaluation of the reduced section and a structural recalculation.
-
An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section
$300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement. -
Carbon fiber sheets are widely used for strengthening the deteriorated RC structures. However most studies on the strengthening method of RC structures with carbon fiber sheets are concerning static problems. The purpose of this experimental study is to present the basic data on fatigue behaviors of. RC beams strengthened with carbon fiber sheets. The experimental parameters of this study are ; 1) the existence of U-shaped carbon fiber sheets at the ends for anchoring, 2) the number of carbon fiber sheet layers in strengthening the RC beams, 3) the load levels of
$60\%\~90\%$ of the static bending moment strength, which is obtained form the static tests. Experimental results are estimated from the relationships of load level, displacement, number of repeated load and released energy. It is concluded that U-shaped carbon fiber sheets for end anchoring is very effective and the beams strengthened with one layer of carbon fiber sheet have longer fatigue life than that with three layers. -
This test program is to investigate the benefits of using headed bars to replace conventional stirrups and using steel fibers to reinforce in the disturbed regions in the dapped ended beam, This distribution of reinforcement was selected for aspects associated with the portion of beam section in bridge structures. The beams containing T-headed bars have a superior performance such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, and crack.
-
Precast prestressed concrete hollow slab bridge is one of segmented bridge which can be long span, so that the structural behavior of joints of adjacent segment should be evaluated by the analysis as well as experiment. In this study, small scaled beam tests were carried out to determine joint shear key shape and restraint stress by prestressing. From the tests and the analysis, it was found that the joint key shape and the restraint stress affect the behavior of segments and the segments which has the height to the width of shear key as 1/3 possess maximum shear resistance.
-
Fiber Bragg Grating (FBG) Sensors as advanced measuring system are introduced and actively being applied to establish a smart monitoring system for bridge maintenance. This study develops FBG sensors and suggests a smart monitoring system. As for its first step, to verify the reliability of FBG sensors that developed, a specimen is made FBG sensors and electric sensor are attached. Then, Static test is conducted on the specimen on the specimens to check reliability. In addition, this study estimates the optimum deflection curve that converts strain curve data measured by FBG sensors into deflection.
-
Reinforced Concrete structures have been commonly regarded as fire-resisting constructions. In the case of high-strength concrete, however, the behavior of a concrete member under fire and after fire has characteristics in different way with normal strength concrete members because of spalling. The resonable evaluation about the residual strength and stiffness of members as well as material properties has to be conducted before reusing the fire-damaged structures or retrofitting or strengthening them. Therefore, the guideline is needed for evaluation the residual strength and stiffness. In this study, the fire test is conducted with parameters like concrete strength, fire time and cover thickness, etc. The loads-deflection curves are used for comparison and analysis with the parameters.
-
From the development of residential flat plate system, continuously bended shear reinforcements were applied in the joint performance test. The testing parameters are shear reinforcement types, which are no reinforcement, studrail reinforcement, and rebar type reinforcement. To verify the lateral resisting capacity, cyclic load is applied in the constant vertical load condition. From the test results, the resisting capacity of developed shear reinforcement system has a good performance behavior in the story drift ratio.
-
Seven columns laterally reinforced with either mechanically anchored crossties or conventional crossties under cyclic loading are tested. 4 columns are specimens for flexural strength and 3 columns are for shear strength. Main variable is anchorage types of crossties. Conventional hooks, 180
$^{\circ}$ standard hook-mechanical anchorage and all mechanical anchorage type are used. The specimens are tested under 10$\%$ axial load of nominal axial capacity of the columns combined with increasing lateral load. From the flexure test, it is found that columns with mechanical anchorages exhibit superior performance in terms of ductility and energy dissipation. The crossties with mechanical anchorages reduce buckling length of longitudinal rebar. From the shear test, it is found that. 3 specimens exhibit almost the same strength, displacement, and shear failure mode at ductility factor =2. -
Six RC pier were tested under a constant axial load and a cyclically reversed horizontal load to investigate the performance of RC piers used in the high strength concrete and the high strength rebar. It is designed with a hollow section according to the Korean Bridge Design Standard. The variables of the test were concrete strength, rebar strength, a ratio of lap splice and a ratio of transvere rebar. The test results show that the performance of a RC Pier; failure mode, crack pattern, maximum load and ductility.
-
In this study, an experimental investigation of the strength of R/C columns with 300mm square sections confined by head anchorage bar is presented. This initial phase of research considers only axial loading and consists of a total of 7 column tests. The main variables are distance and anchorage type of transverse reinforcement such as standard hooks and headed bar. The purpose of this study is to investigate the confinement effect and strength increment by head and to propose the confinement model for column using the head at end of lateral tie. Also, the test results for ultimate strength and strength gain factor of columns in this study and previous study is compared with the existing analytical models. Based on the test results, the Saatcioglu's model estimates confinement effects was closed to experimental value and the developed analytical approach considered the head was capable of predicting the strength gain factor results with a resonable accuracy.
-
The increasement in the floor hight may be one of the most significant problem in the use of precast concrete double slab in the multi-story buildings. The modified double-tees including duct space at the ends of slab were considered in this study. The length and thickness of nib of modified double tee was increased to receive the uniform reaction from rectangular beam, while the original PCI dapped one to receive the point load from inverted tee beam to the leg of double tee. Shear tests were performed on the ends of the modified double tees which were designed by strut-tie model. The modified double tees generally show more ductile flexural failure in the long thickened nib. It is concluded that they show superior failure patterns than that of original dapped one with shear failure.
-
This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete. Compression tests were performed on two slab-column and four isolated column specimens. During the column load tests were performing on the slab-column specimens, the slab loads were also applied to consider actual confinement condition at the slab-column joint. The main parameter investigated was the ' puddling ' of ultra-high-strength-fiber-reinforced concrete. This paper also investigates the effects of some parameters on slab-column specimens and isolated column specimens without the surrounding slab for their ability to transmit axial loads from the ultra-high-strength concrete columns through slab-column connections. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling on the transmission of column loads through slab-column connections are demonstrated.
-
This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete from new and retrospective data. The parameters investigated were the ' puddling ' of ultra-high-strength-fiber-reinforced concrete and the use of high-strength concrete in the slab. The effects of these parameters on the punching shear capacity, negative moment cracking, and stiffness of the two-way slab specimens are investigated. Furthermore, the ACI Code (2002), the CSA Standard (1994), the BS Standard (1985) and the CEB-FIP Code (1990) predictions are compared to the experimental results obtained from some slab-column connections tested in this experiment and those tested by other investigators. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling and of the use of high-strength concrete are demonstrated. It is also concluded that the punching shear strength of slab-column connections is a function of the flexural reinforcement ratio.
-
The object of this experimental study is to understand the bond performance and the shear behavior of concrete mixed with hwang-toh and blast-furnace slag. Main variables were the compressive strength according to replacement level of hwang-toh and blast-furnace slag. The results revealed that up to 20
$\%$ of Hwang-toh the bond and the shear strength were improved. -
An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SC) and Polyethylene (PE), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.
-
Experimental research was conducted to investigate the behavior of RC circular columns confined by high-strength ties. Large scale columns with concrete strength 34.1 and 65.3 MPa were tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio, tie arrangement, tie yield strength, and concrete compressive strength. The results indicate that high-strength concrete columns can be confined to achieve inelastic deformations usually predicted for normal-strength concrete columns. This can be done by providing increasing volumetric ratio and tie yield strength.
-
The objective of this experimental study was to understand the structural behavior of reinforced concrete continuous deep beams with welded deformed wire fabric(WWF) as shear reinforcement. The structural behavior of deep beams reinforced with WWF was compared with that of deep beams reinforced with orthogonal shear reinforcement which had standard anchorage corresponding to ACI 318-02. Test results showed that the load transferring capacity and the control of splitting cracks in the strut of WWF were almost as effective as those of orthogonal shear reinforcement with standard anchorage.
-
This paper presents test results on strengthening details of reinforced concrete beams strengthened with near-surface mounted(NSM) CFRP rod and strip. A total of 8 specimens have been tested. The specimens can be classified into the same strengthening area group and the different spacing group. For the same strengthening area group, experimental results revealed that specimens strengthened with NSM CFRP strips improved the flexural capacity of RC beams. For the different spacing group, the flexural capacity of RC beams was almost the same, but it was different in case of NSM CFRP rods.
-
Bridge deck is the element presenting the largest damage potentiality among the major bridge structural members. In the previous study, a new-type of FRP-concrete composite bridge deck system was proposed and its static performance was experimentally verified, This study aim at investigation of fatigue behavior such as failure mechanism through rolling fatigue test.
-
In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.
-
While the existing reinforced concrete flat plate(RC flat plate) has a lot of advantages including reduced building height, it has some weak points such as many steel bars and the brittle rupture by punching shear. Compared with the RC flat plate, the post-tensioned flat plate (PT flat plate) has not only the same merits, but it also makes longer span possible and induces slab-column connections to be failed with the ductile behavior rather than with the brittle behavior by means of post-tensioning. However, it is difficult to define the joint behavior of PT flat plate under vertical and lateral loads since there are limit experimental results. For this reason, the experimental study is undertaken to investigate the comparison of behavior of PT flat plate and RC flat plate, and how flat plate(Gravity Load Resisting System) is displaced as lateral loads, like the wind and the earthquake, are occur. The result of this experiment shows that PT flat plate is generally superior to RC flat plate in terms of controlling crack, postponing stiffness deterioration, energy dissipation, etc.
-
In this study, small scale model test was performed to verify the ultimate load capacity of spillway pier structure under static load. The 1/20 scale test specimen was made of specially designed micro-concrete and wire mesh. From the test result, the cracking load of specimen was 10 tonf and the ultimate was 19tonf. From the similarity rule, cracking and ultimate load of prototype pier structure were predicted 4000 tonf, 7600 ton, respectively.
-
The purpose of this study is to evaluate a effect of girder-column width ratio to PC wide girder-column joint. Three half scale subassemblies were representing a portion of a protype structure were design, constructed, and tested to failure. From the test result, girder-column width ratio play an important role in the improvement of strength and ductility.
-
The purpose of this study is to evaluate a effect of core reinforcement ratio to PC wide girder-column joint. Three half scale subassemblies were representing a portion of a protype structure were design, constructed, and tested to failure. From the test result, girder-column width ratio play an important role in the improvement of strength and ductility.
-
The purpose of this study is to investigate the flexural behavior of reinforced concrete beam members exposed to high temperature. In order to study the flexural behaviors, the 17 specimens have been tested with variables of reinforcement ratios(
$0.5\rho_{max},\rho_{min}$ ), heating conditions(nonheating, 400$^{circ}C$ , 600$^{circ}C$ , 800$^{circ}C$ heating and 1 hour preservation) and loading state(stressed and residual state). The results show that the stiffness and strength of specimens are lower when they are exposed to higher temperature and the pattern of crack and color of specimens exposed to fire are different from ordinary concrete members. -
Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.
-
Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. It includes that the evaluation of the degree of coupling between the shear walls and the coupling beams. It is demonstrated through a review of experimental investigations of coupling beam behavior that often the coupling beam ductility demand exceeds the expected available ductility. As a result, it is possible that coupled shear wall system will not behave as desired in the course of a significant seismic event. Limits to the allowable degree of coupling are proposed as a remedy to this apparent deficiency.
-
This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.
-
최근 들어 90도 표준갈고리의 대안으로 정착판을 지니는 헤드 철근(headed bar)에 대한 관심이 높아지고 있다. 헤드 철근의 정착내력은, 정착판의 지압력과 위험단면에서 헤드까지 정착길이의 부착력으로 발현된다. 실제 구조물에서는 정착되는 부재의 재료 및 기하학적 물성에 의해 다양한 파괴가 발생된다. 따라서 헤드 철근의 정착내력은 단순히 지압력과 부착력의 합으로 산정될 수 없으며, 발생 가능한 모든 파괴양상을 고려한 최소 내력으로 결정되어야 한다. 헤드 철근의 정착내력을 산정하기 위한 기본적인 해석모델로, CCT 절점에 정착된 헤드 철근의 트러스 모델을 제안하였다. 제안된 트러스 모델의 파괴는 부착파괴와 콘크리트의 압축파괴로 구분되며, 재료 및 기하학적 물성에 의해 파괴 양상이 결정된다. 이러한 트러스 모델은 외부 보-기둥 접합부와 같이 보다 복잡한 부위에 정착된 헤드철근의 정착 기구를 설명하는데 활용될 수 있다.
-
This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. From the results, determine the reliability index for the failure base from the Euro Code. Then, calculated additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods
-
One of the most important characteristics of Engineered Cementitious Composite (ECC) is its strain hardening behavior up to
$5\∼6\%$ of stain under a tensile loading. So, the ductile behavior of ECC should be utilized in applications to maximize the performance of structures. Thus, in this study, the ductile behavior of ECC as a repair material applied to the tensile region under flexural loads is numerically examined using a developed numerical model. Several strain capacities of ECC are examined to predict the behavior of ECC strengthened flexural structures. The results show that a certain optimal level of ductility in ECCs for repair applications exists and it is an important factor to consider when using ECC as a repairing material. -
Damage and fracture of concrete is characterized as the degradation of strength and stiffness. There can be modeled as the so-called homogenized crack model which can overcome the mesh sensitivity. But the plasticity and damage modeling for damage behavior before the fracture of concrete should be combined with the crack model. In this study, a damage function and an unified hardening-softening function are applied to the homogenized crack model to develope a 3-dimensional FEM program for nonlinear damage and fracture analysis of concrete. The comparison of numerical results and experimental data show that the combined modeling in this study can simulate the damage and fracture of concrete without the mesh-sensitivity. It is also shown that the behavior of the so-called Engineering Cementitious Composite(ECC) characterized by strain-hardening and multiple cracks can be well simulated using the modeling.
-
To overcome the drawbacks of conventional load-control method and displacement-control method, the so-called volume-control method was developed by utilizing a pressure node added into a layered shell element. The pressure node has an increment of pressure as an additional degree of freedom of the shell element. In this study, the hollow RC columns are discretized with multi-layered shell elements and a modeling technique utilizing the volume-control analysis for various hollow RC column structures is introduced. The results of the nonlinear analysis using the modeling for hollow RC columns subjected to lateral reversed cyclic loading as well as lateral loading under compression are shown. Validity of the modeling technique is also verified by comparing the analysis results with experimental results and other analysis data.
-
In this study, an unified algorithm for the degradation analysis which considers the cracks in concrete and steel corrosion is developed and implemented into finite element analysis program. Using the program, degradation analysis on reinforced concrete structures subjected to chloride attacks was carried out with time by considering the cracks and the steel corrosion and cracking due to expansion of corroded reinforcing bars. The analytical procedure proposal in this study can be used quantitative evaluation of degradation and service life prediction.
-
This paper summarizes the results of a series of numerical evaluations (Lee et al., 2004, 2005) on the performance of pre-cracked reinforced concrete (RC) beams coated with polymeric composites. It was intended to numerically show the superior characteristics of the polymeric composites for enhancing the strength and ductility of existing concrete structures. Further, the predicted load-carrying and energy absorbing capacities of the beams were compared with previous experiments to verify the predictive capability of implemented computational model.
-
In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.
-
The major object of this paper is to propose a nonlinear finite element analysis(FEA) technique of steel coupling beams-wall connections governed panel shear failure using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed steel coupling beams-wall connections. The developed models account for the effect of material inelasticity, concrete cracking, panel shear failure and geometric nonlinearity. In order to verify the proposed FEA model, this study attended experiment considered parameters to the steel beam : face bearing plates, and horizontal ties. And the analytical result attended by the proposed FEA model validated through comparisons with the experimental results. Finally, the study estimated the analytical values compared with ASCE Design Guidelines. At this time, the analysis showed good agreement between the theoretical and experimental results.
-
Recently, many design codes including ACI 318-02 recommend the use of a strut-tie model approach for design of structural concrete with D-region(s). However, there are several unclear problems and shortcomings in the codes' strut-tie model approach. A grid strut-tie model approach was proposed to resolve these problems. In this study, the ultimate strengths of 17 deep beams, the most familiar type of D-regions, were evaluated for the validity check of the grid strut-tie model approach. The analytical results obtained by the approach are compared with those by the strut-tie model approach presented by CEB-FIP, AASHTO LRFD, and ACI 318-02.
-
The Current design procedures of ACI 318-02 and CEB-FIP for the exterior beam-column joints do not provide engineers with a clear understanding of the physical behavior of the beam-column joints. In this paper, the failure strengths of the exterior beam-column joint specimens tested to failure were evaluated using the approach implementing 3-dimensional strut-tie models, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie models were compared with those obtained from the other approaches, and the validity of the approach implementing 3-dimensional strut-tie models were examined.
-
Strengthening by bonded CFRP sheet/plate onto the surface has been generally used for the R.C. beams. The strengthening efficiency of this system depends on the performance of the adhesive interlace between the beam and the CFRP, and the interlace often causes unexpected failure. In this paper, an unbonding system is proposed with prestressed CFRP. Finite element analysis has been conducted using DIANA for the R.C. beams strengthened by prestressing the unbonded CFRP plate. The results of analysis were compared with those of experiment.
-
Recently the heavy weight impact noise transmitted slab vibration has been recognized as an important issue. The aim of this study is to find the path of vibration transmission, comparing the numerical analysis with the field test results. Additionally the effect of stiffening beam element under slab, as a method to increase the stiffness of slab, will be shown concerning natural frequencies.
-
To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique analytically, a structural model for the finite element method (FEM) able to simulate accurately the experimental results was determined. Applying the finite element model, parametric analysis was performed considering the groove depth and spacing of CFRP laminates. Analytical study on the groove depth revealed the existence of a critical depth beyond which the increase of the ultimate load becomes imperceptible. Analytical results regard to the spacing of the CFRP laminates showed that comparatively smooth fluctuations of the ultimate load were produced by the variation of the spacing and the presence of an optimal spacing range for which relatively better strengthening efficiency can be obtained. Particularly, a spacing preventing the interference between adjacent CFRP laminates and the influence of the concrete cover at the edges as well as allowing the CFRP laminatesto behave independently was derived.
-
KCI 2003 provides minimum thickness of slab that satisfies serviceability to static displacement. Previous study (Han, et al. 2003) showed the several slabs that designed according to minimum thickness criteria had floor vibration problem. In this study, evaluate the floor vibration serviceability of KCI 2003 minimum thickness requirements for 2-way flat plate and propose the minimum thicknesses of 2-way slabs that satisfy floor vibration criteria according to several boundary condition. For this purpose, one degree of freedom model is used and Monte Carlo simulation is performed.
-
Reinforced concrete(RC) column-bent piers represent one of the popular piers used in highway bridges of Korea. Seismic performance of RC column-bent piers under bi-directional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. Test parameters are different transverse reinforcement ratio and loading pattern. Three specimens were loaded with bi-directional lateral forces which were main cyclic loads in the longitudinal direction and sub-cyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.
-
The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predict of nonlinear hysteric behavior. For the purpose, analytical trilinear hysteretic model has been used to simulate the force displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve vary confinement steel ratio. In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens.
-
The analytical model capable of predicting stress vs. strain relations for circular FRP-confined concrete in a rational manner is proposed. The underlying idea is that the volumetric expansion due to progressive microcracking is an important measure of the extent of damage in the material microstructure. Various existing analytical models including the proposed were also investigated, and compared each other and with test results.
-
Three series of 36 short square columns confined by wraps, full shells and partial shells were tested by varying the thickness of GFRP laminates. An assessment of the effectiveness of the existing model on confinement of concrete columns with FRP was made. Test results indicated moderate increases in strength, but significantly enhanced deformability compared with those in unconfined concrete, particularly the warp and full shell confinement.
-
Many RC building structures of multiple uses constructed in Korea have the irregularities of torsion and soft story at bottom stories. A typical irregular building was selected as prototype and shaking table tests were performed to investigate the seismic performance of this building. The objective of this study is to evaluate the correlation between the experimental and analytical responses of this irregular building structure subjected to the earthquake excitation by using OpenSees(Open System for Earthquake Engineering Simulation). The results of analyses simulate well the behavior of the building having torsional irregularity and weak stories.
-
The purpose of this study is to discuss how strength and ductility of each system in low-rise R/C buildings combined with extremely brittle, shear and flexural failure systems have influence on seismic capacities of the overall system, which is based on seismic response analysis of SDOF structural systems. To simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to two ground motion components. By analyzing these systems, interaction curves of required strengths of the triple systems for various levels of ductility factors are finally derived for practical purposes.
-
This paper provides a method to predict the ductile capacity of reinforced concrete beam-column joints that fail in shear after the plastic hinges occur at both ends of the adjacent beams. The proposed method takes into account shear strength deterioration in the beam-column joints. The shear strength and the corresponding ductility of the proposed method was verified by comparing with the four RC beam-column assembles under reversed cyclic loading corrected from the technical literature. Comparisons between the observed and calculated shear strengths and their corresponding ductilities of the tested assembles, showed reasonable agreement
-
Steel braced frames retrofit method has been broadly used due to their effectiveness in both light weight and construction periods. However, steel braced frames retrofit method has difficulties in application on the inner frames of buildings to be retrofitted consequently, there have been demands for the braced frames retrofit method that can be broadly and easily applicable to both inner and outer frames of the buildings. The objective of this study is to develop and evaluate the seismic retrofit method applicable to the inner frame also by dividing the reinforcing frames into three unit. From the cyclic test of specimens, the test results dearly showed that steel brace using HPFRCCs and steel bars ensure the better cyclic compressive performance than the normal braced members.
-
The seismic fragility analyses of reinforced concrete propelled beam are performed to evaluate safety margin. The models were simulated by Latin Hyper-Cube (LHC) method considering various aging-related deterioration of RC beam. Fragility curves under various condition subjected to static load are compared. It is found that the 20
$\%$ loss of top and bottom steel 15$\%$ lower than the undegraded beam in the ultimate strength. Seismic fragility analyses were performed to find out the effect of aging-related deterioration on the dynamic behaviour of RC beam. -
The purpose of this research was focused on substantiating an effects of tendon-layouts and compressed stress(
$=f_{pc}$ ) induced by post-tensioning on seismic performance of post-tensioned flat plate slab-column connection designed as non-participating system. To accomplish this purpose, an experimental research of flat plate exterior slab-column connections subjected to gravity load and reversed lateral displacement history are presented. As a result, tendon-layout is a main variable to influence failure mechanism, dissipated energy and lateral deformation capacity. Furthermore, compressed stress ($=f_{pc}$ ) induced by post-tensioning enhanced the seismic performance of flat plate slab. -
This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.
-
The aim of Cast-In-Place(CIP) method is to upgrade the strength, ductility and stiffness of the structure to the required level. The main objective of this research is to investigate the shear and the flexural strength of reinforced concrete frames infilled with CIP reinforced concrete wall. For this three 1/3 scale, one-bay, one story reinforced concrete infill wall were tested under reversed cyclic loading simulating the seismic effect. Results of tests of CIP shear wall were reviewed to evaluate the current design provisions and to establish the feasible retrofitting method.
-
A number of studies have been conducted on FRP shear strengthening of RC beams during the past decade. The test results indicated. that the strengthened specimens failed predominantly by debonding of the FRP sheets before reaching the rupture strength of FRP sheets. For this reason, limits on the effective strain in FRP have been incorporated in ACI 440.2R recommendation considering debonding failure. This paper presents the test results of 7 small scale RC beams shear-strengthened with glass fiber sheets. Three types of FRP configurations, such as two sides bonded, U wrap and fiber shear-key embedded, were considered. GFRP sheet were bonded vertically to member axis along the shear span. From the test results, it was found that debonding strain of GFRP sheets at failure decreased with the number of layers. In addition, effective strain of FRP proposed by ACI 440.2R recommendation has been verified in this study.
-
Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded prestressed CFRP (Carbon Fiber Reinforced Polymer) strips. A total of 7 specimens have been manufactured of which specimens strengthened with bonded CFRP strips considering the level of prestress as experimental variable, and a specimen with simply bonded CFRP strips. The following phenomena have been observed through the experimental results. The specimen with simply bonded CFRP strips failed below 50
$\%$ of its tensile strength due to premature debonding. On the other hand, all the specimens strengthened with prestressed CFRP strips showed sufficient strengthening performance up to the ultimate rupture load of the CFRP strips. Also, it was observed that the cracking loads and yield loads of the strengthened beams were increased proportionally to the prestress level, but the maximum loads were nearly equal regardless of the prestress level. -
Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.
-
Many RC structures built without seismic provisions have exhibited brittle shear failures in the beam-column joint area, and resulted in large permanent deformations and structural collapse. This paper presents the results of an experimental investigation pertaining to the use of carbon fiber-reinforced polymer(FRP) for strengthening of RC beam-column connections. The selective upgrade is obtained by choosing different combinations and locations of carbon FRP sheets to determine the effective way to improve the structural performance of joints. Experimental results demonstrate significant improvement of flexural capacity and ductility of beam-column connections originally built without seismic details.
-
Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.
-
In this research, 13 RC slabs connected by hinged joints were tested. the new slab was connected to the existing slab by hinge joint injecting dowel bars between two slabs. Main parameters of the slabs were the spacing of the dowel bars (150mm, 300mm, and 450mm) and the locations of the longitudinal reinforcement of the old slab. The test results indicated that the joint strength of the RC test slabs having various types of dowel bars was about twice that calculated by the ACI 318-02 code. The locations of the longitudinal reinforcement of the old slab slightly increased the strength of the slabs connected by hinged joints.
-
High performance fiber reinforced cement composites(HPFRCCs) is a class of high ductile fiber reinforced cementitious composites developed for applications in the sensitive construction industry. HPFRCCs has undergone major evolution in both materials development and the range of emerging applications. This paper is to evaluate structural strengthening performance of LRCF(Lightly reinforced concrete frame) using the HPFRCCs. The experimental results, as expected, show that the crack load, yield load, and limited load are superior for specimen with HPFRCCs infill wall due to crosslink effect of fibers in concrete.
-
This study investigates the flexural behavior and strengthening performance of RC beams strengthened by prestressed CFRP laminates through static bending tests. Tests on RC beams strengthened with prestressed CFRP laminates were carried out for both cases where the CFRP laminates were bonded or not and the corresponding effects on the strengthening performances of RC beams were examined. Experimental results revealed that RC beams strengthened with prestressed CFRP laminates presented increased crack load and yield load according to the level of prestress. Premature debonding occurred before the RC beam strengthened with bonded prestressed CFRP laminates reaches the maximum load, and the specimen presented similar behavior to the one exhibited by the specimen with unbonded laminates.
-
The effectiveness of shear strengthening with glass fiber sheets on normal or low strength RC beams have been investigated experimentally. A design compressive strength of concrete of 13.5MPa has been planned considering the degradation state of the existing structure to be strengthened in this study. Also, concrete surface reinforcing agent was applied to increase bond capacity between concrete and GFRP sheets in case of low strength RC beams. Comparing the test results of low and normal strength beams strengthened with GFRP sheets indicated that total shear capacity of beams was decreased with concrete strength decreased, but the shear strengthening capacity of GFRP sheets are hardly affected by concrete strength. In addition, shear strengthening effects of RC beams strengthened with GFRP sheets can be estimated by
$\rho_w{\cdot}f_w$ based on the maximum effective strain of FRP sheet proposed by ACI 440.2R recommendation. -
CFRP strips manufactured in factory are produced normally with smaller width and larger thickness than CFRP sheets. By this reason, bonding force between CFRP strips and concrete substrate is not sufficient to sustain tensile force in CFRP strips. Therefore premature debonding failure cannot be avoided when strengthening is done by simply bonding the CFRP strips. The flexural strength of RC beam strengthened with CFRP strips must be calculated based on the effective strain considering debonding failure. This paper presents test results of an experimental study conducted to evaluate the flexural strength on RC beams strengthened with CFRP strips. 7 specimens were tested with respect to bond length and amount of CFRP strips. From the test results, it was indicated that the strain of the CFRP strips achieved at debonding failure can be decreased less than 6,000
$\mu$ depending on the amount of CFRP strips. -
In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of column section shape on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, the column section shape has a serious effect on the behavior of the connections. As the length of the cross section of column in the direction of lateral load increases, the effective area and the shear strength at the sides providing the torsional resistance decrease considerably. Therefore the strength model for the flat plate-column connections should be modified by considering the effect of column section shape on the behavior of the connections.
-
Coupled shear wall(CSW) has been adopted as a lateral force resisting system in building frame structures. New Zealand code recommends the capacity design in designing the CSW. Capacity design based on using moment redistribution of member force may provide the economical benefit to designer. In this study, CSW's are designed by both capacity design and strength -based design. The design results and the seismic performance are compared by using nonlinear static analyses. The amount of reinforcement of shear wall and the section area of steel coupling beams by capacity design appear to be reduced by 19
$\%$ and 17$\%$ , respectively. Also CSW designed by capacity design shows good seismic performance at the ultimate state. -
Generally, steel-concrete composite structures are considered very useful and powerful to resist external axial and flexural load due to its elevated capacity originated from composite action. This usefulness of composite structures can be applied to the drilled shafts of marine bridges that require large-scale such as entire pile-column system. As the basic study of this application, several design codes are analyzed and compared in this research.
-
The cracking behavior of prestressed concrete members is important for the rational design of prestressed concrete structures. However, the test data on the cracking behavior of prestressed concrete structures are very limited. The purpose of the present study is to investigate the crack spacing and crack width in transversely post-tensioned decks of concrete box girder bridges under applied loading. For this purpose, large scale test members of concrete box girder segments were fabricated and tested. The crack widths, crack spacings and crack patterns were investigated for various load levels. The crack widths and steel strains were continuously monitored during the loading process. To derive a rational predicton equation for crack width, the bond characteristics of post-tensioned steel and nonprestressed rebar in the PSC members were explored first. This was done by measuring the strains of prestressing steel and nonprestressed rebar in the test members under loading. A simple equation for the prediction of maximum crack width in transversely post-tensioned concrete one-way slabs is proposed by considering bond characteristic of prestressing steel and nonprestressed reinforcement. The comparison of proposed equation with experimental data shows good correlation. The present study indicates that ACI and CEB-FIP code equations exhibit rather large deviation from test data on prestressed concrete members.
-
The effects of deformation properties on the bond of steel reinforcing bars to concrete are experimentally studies to expect the lap splice strength. Based on the previous research about relative rib area, lap splice strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. This paper describes the testing and analysis of 15 beam-spliced specimens containing D25, D22, D19 with relative rib areas ranging from 0.066 to 0.162. The tests are analyzed to determine the effect of relative rib area(Rr) on the increase in bond strength. The tests also provide a preliminary indication of the effect of high relative rib area on the splice strength of uncoated bars.
-
Bond between reinforcing bar and surrounding concrete is supposed to transfer load safely in the process of design of reinforced concrete structures. Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. In this study, to evaluate bond strength of high relative rib area bars, beam-end bond and splice beam specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher bond strength than lower rib height bars.
-
The objective of this study is to find out discrepancy in ability of bond behavior between Carbon fiber-reinforced polymer(CFRP Plate) and concrete by method of experiment. For the objective, single and double face shear test were tested. From the experimental results, it was analyzed bond strength of FRP to concrete, distribution of stress and strain of FRP. The bond strength and the effective bond length was evaluated by the theory of existing studies. Effective bond length of single face test was smaller than it of double face test.
-
Experimental results on splice strength of concrete and hybrid fiber reinforced cementitious composite are reported. Two series of tests, with six specimens each, were carried out. The research parameters were: bar diameter(D16, D22), lap splice length(50, 75, 100
$\%$ ). The current experimental results demonstrated clearly that the use of hybrid fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars, delayed the growth of the splitting cracks, and consequently, improved the ductility of bond failure. -
Uniaxial tension test of Glass Fiber Reinforced Polymer (GFRP) bar reinforced concrete prisms was performed. The objective was to investigate the adequate cover thickness of the GFRP rebars. The tension stiffening effect of GFRP bar reinforced concrete was also studied. The test variables included rebar types (conventional steel rebar and two different GFRP rebars) and cover thicknesses (five different cover thicknesses ranging between 1-3db). Normal strength concrete was used. Cracking patterns on concrete surface and cracking loads were careful1y observed during the direct tensile test. The test results indicated that the adequate cover thickness of the GFRP rebars may even be larger than that of the steel rebars and that the cover thickness of 2db commonly specified for the GFRP rebars may not be large enough. The tension stiffening effect of the GFRP rebars was also quantified and documented from the test results.
-
Bond failure of reinforcing bar generally take place by splitting of the concrete cover as bond force between concrete and reinforcing bars exceeds the confinement of the concrete cover and reinforcement. However, the confinement force in practice has a limitation. Thus, the only variable is the bearing area corresponding to the change of bond force. In this study, to the evaluate anchorage strength of high relative rib area bars, hook bond test specimens are tested and the results are discussed. Higher rib height bars when bars are confined showed higher anchorage strength than lower rib higher bars.
-
The nature of bond of untensioned prestressed strand in concrete differs from that of plain or deformed reinforcing bar as well as tensioned prestressed strand. There is a very limited amount of published research information regarding bonding of this type reinforcing. In order to use and design untensioned strand as reinforcing, relationships defining the load transfer characteristics of the strand are necessary. A program based upon pullout tests was designed to develop data relating the critical parameters for determining load transfer behavior of the untensioned strand. The purpose of this study is to investigate the characteristics of bond and development length between untensioned strand and concrete. The test variables include diameter of strands (9.3mm, 12.7mm) and development lengths. The maximum bond stress at the 9.3mm and 12.7mm strands decreases with the increase of the rate of development length. The untensioned prestressed strands displayed bond performance when secure development length more than 80
$\%$ according to the development of deformed bars equation. -
This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.
-
This paper presents the development of a method for determining the response modification factor, using traffic load. The proposed method is based on the results of computer simulations of traffic action effects. The simulation program generates random traffic actions for defined traffic conditions and determines the frequency distribution of maximum traffic action effects. Therefore, this study is adopted to long-span bridge for the verification of the proposed method. A comparison between the proposed method and present method shows good agreement in estimating the modified load carrying capacity of bridges.
-
Earthquake resistance design has been developed many countries like Japan, USA, Mexico, New Zealand etc., which countries have experienced many earthquakes. Nowadays, earthquake resistance design has come into worldwide use. In Korea, the seismic design regulations have been established since 1988 in order to minimize the economic losses. Recently performance based design method has been adopted as a new Earthquake resistance design method. These regulations, however, are targeted for newly constructed buildings, In Korea, there are no regulations for existing buildings that built before 1988. So, we need to prepare the regulations that evaluate the seismic performance, furthermore proper retrofitting design guideline needs to be proposed when remodeling old buildings. This study was performed that many existing apartments is being a Remodeling object when considering the present condition of existing apartment and the problems of cost and environment in the future plan. When Remodeling construction is reviewed by former the Seismic Performance Evaluation Method, generating problems is evaluation by using Push-over. According to this, it provides the appropriate method of calculating the Seismic Ship Performance Index.
-
A ship collision analysis by finite element method is performed considering the effects of mass and speed of ship and material and shape of structures to analyze the dynamic characteristics by ship collision. From this analysis, collision load-time history and inelastic deformation of ship and structures are obtained. Dynamic characteristics are different from each other according to interaction. between ship and structures. It seems that there are lots of factor to have effects on the ship-structures interaction. But because little information is available on the behavior of the inelastic deformation of materials and structures during the type of dynamic impacts associated with vessel impact, assumptions based on experience and sound engineering practice should be substituted. Therefore more researches on the interaction between ship and structures are required.
-
In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the maritime bridge. Method II which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because this AF allocation takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified.
-
In this paper, an actual behavior of the pylon of Seohae Grand Bridge which is a cable stayed bridge and has been constructed 4 years ago was analyzed by using data acquisition system. As a result, the pylon of cable stayed bridge behaved normally with respect to the change of temperature. The annual displacement of the top of pylon(PY1) ranged from -71.4mm to +181.7mm in the longitudinal direction of the bridge. In the case of the longitudinal displacement, the displacement of PY1 was bigger than that of PY2 because PY1 is movable and PY2 is fixed in terms of the constraint condition of super structure. For the long term, PY1 will be sloped gently to the direction of Dangjin and PY2 will be also sloped gently to the direction of Pyongtaek by the effect of creep and shrinkage in the case of the longitudinal direction. The result of structural analysis showed good agreement with the result mentioned above.
-
Self diagnosis monitoring system is defined as concrete structural carbon and glass hybrid fiber materials, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.
-
An Experimental Study for Void Lengths and Locations under Concrete Tunnel Lining using Radar MethodThe radar method based non-destruction inspection stands in the spotlight of concrete tunnel lining due to the advantages of less restrictions of applicability, simpleness and quickness. However, in the case of utilizing at constructions, the decomposition ability is decreased because the effect of damping and dispersion is potent and the utilization of high frequency is difficult. In particular, it is very difficult to investigate the size and thickness of tunnel using the low frequency radar with low decomposition ability In this work, to resolve the above problems, the effect of arrangement between adjacent tunnels is investigated utilizing the low frequency radar and results are reported
-
This study is to propose a truss model which is able to reasonably predict the shear strength of reinforced concrete (RC) members with high-strength materials. The shear strengths of 107 RC test beams with high-strength steel bars reported in the technical literatures were compared to those obtained from proposed model, TATM, and existing truss models. The shear strength of reinforced concrete beams obtained from test was better predicted by TATM than other truss models. Also, the theoretical results by TATM were almost constant regardless of yield strengths and steel ratios of tension and shear reinforcements.
-
The research reported in this paper provides the test results of eleven reinforced concrete beams strengthened with FRP composites. Three parameters were considered in this investigation: the amount of FRP composites, the types of bonding schemes(continuous sheets or strips), and the material types of FRP composites (Carbon or Glass). The experimental results indicated that because the rupture strain of FRP composites was relatively higher that the yield strain of steel bars, the RC beams strengthened with FRP composites failed due to concrete crushing before the FRP composites arrived at its rupture strain. The compatibility-aided truss model showed reasonable agreement between the predicted and experimental shear stress-strain curves of the beams throughout the entire loading history.
-
In the mechanism of beam shear failure, beam action and arch action always exist simultaneously. According to a/d ratio, the proportion and contribution between these two actions to shear capacity are merely changed. Moreover, the current codes recommendations are founded on the experimental results with normal strength concrete, the applicable range of
$f'_{c}$ must be extended. Based on this mechanism and new requirement, an analytical equation is proposed for shear capacity prediction of reinforced concrete beams without stirrups. To reflect contribution change of two actions, stress variation in longitudinal reinforcement along the span is considered with Jenq and Shah Model. Dowel action and shear friction are also taken into account. Size effect is included to derive more precise equation. It is shown that the proposed equation is more accurate than other empirical equations and codes. So, it can be possible that wide range of a/d ratio is considered by one equation. -
Composite behavior between FRP-concrete composite deck and girder is investigated by numerical analysis and parametric experiments. Compared to reinforced concrete deck, the weight of FRP-concrete composite deck is about 64
$\%$ but the performance of composition is 90$\%$ . Therefore the FRP-concrete composite deck has the advantage of longitudinal section stiffness increase in case of composition to the girder. The experiment, according to the variation of stud diameter, stud length and bedding thickness, is carried out. As a result, the static failure strength increases as stud diameter and length increase and bedding thickness decreases. -
철근콘크리트 부재가 하중을 받을 때, 응력교란구역에서의 힘의 흐름은 스트럿-타이 모델을 이용하여 효과적으로 표현할 수 있다. 그러나 스트럿-타이 모델을 이용하여 철근콘크리트 부재의 해석과 설계를 하기 위해서는 큰크리트 압축스트럿이 가지는 유효강도를 정확히 산정하여야 한다. 본 연구는 철근콘크리트 부재에 휨과 전단력이 동시에 작용할 때 발생하는 대각선 균열이 콘크리트 압축스트럿에 미치는 영향에 대해 설명하고 있다. 대각선 균열의 발생 메커니즘과 이로 인한 콘크리트 압축스트럿의 강도 저하를 이론적으로 설명하였으며, 그 결과를 철근콘크리트 보의 강도 산정에 적용하였다. 최종적으로 철근콘크리트 보의 강도 예측값을 기존 연구자들의 실험결과와 비교하여 제안된 이론의 합리성을 검증하였다.
-
Reinforcement corrosion is the principal cause of deterioration of reinforced concrete. It is to be expected that loss of bond between concrete and tension reinforcement would lead to a reduction in shear strength of RC beams designed to fail in shear. This paper presents results of a FE analysis study to evaluate the shear strength of RC beams with exposed reinforcement represented the limiting condition of bond loss.
-
A theoretical model was developed to predict the shear strength of slender reinforced concrete beams. The shear force applied to a cross-section of the beam was assumed to be resisted primarily by the compressive zone of intact concrete rather than by the tensile zone. The shear capacity of the cross section was defined based on the material failure criteria of concrete: failure controlled by compression and failure controlled by tension. In the evaluation of the shear capacity, interaction with the normal stresses developed by the flexural moment in the cross section was considered. In the proposed strength model, the shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed strength model was verified by the comparisons to prior experimental results.
-
To understand an influence of rectangular openings on the structural behavior in reinforced concrete deep beams, results of 52 specimens were analyzed. The structural behavior such as load-deflection relationship, load-maximum crack width relationship, and maximum strength was significantly affected by inclination of concrete strut beneath opening.
-
This paper presents shear strength of concrete beam using FRP bars for flexure and shear reinforcements. Generally, the material properties of FRP bar are different from steel reinforcement. So, the shear strength correction factor is proposed through the experimental results.
-
This paper deals with the propriety of the shear test data with stirrup reported in ACI and ASCE structural journal and the shear resistance characteristics affected by compressive strength of concrere(
$f_{ck}$ ), shear span-to-depth ratio (a/d), tensile reinforcement ratio($\rho$ ), and shear reinforcement ratio($rho_{v}$ ). The analysis was accomplished by the 242 shear test data. The test data include the flexural failure data around 40$\%$ . -
This paper describes an evaluation of reinforcement tension in RC beams using the variable truss models. The models were examined with the beam test results by Kim, Kim and White. Consequently, a fixed inclination
$\theta$ at the support un-explains global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. Accordingly, we must introduce the arch factor for development of consistent model in reinforced concrete beams subjected to shear and bending -
This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.
-
Prestressed composite girder bridges with PS tendon at positive flexural moment region offer elastic behavior to higher loads, increased ultimate capacity and reduced structural steel weight. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to positive flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.
-
Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages provided due to the interactive reaction in the steel tube and concrete interface layer, enhancing local buckling resistance and the concrete strength provided by the lateral confining effect of concrete. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to negative flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.
-
Steel reinforced concrete (SRC) columns, which are widely employed in high-rise buildings, exhibit particular time-dependent behavior due to creep and shrinkage of the concrete, and this behavior may cause problems related to serviceability and structural stability. SRC columns also exhibit a time-dependent, cross-sectional relative humidity distribution that differs from reinforced concrete (RC) columns, due to the presence of an inner steel plate, which interferes with the moisture diffusion of concrete. This differential moisture distribution of SRC columns may reduce the drying shrinkage and the drying creep as contrasted with RC columns. Therefore, we propose that the differential moisture distribution be taken into account to accurately predict SRC column shortening.
-
The study for seismic characteristics of square concrete-filled steel tubular (CFT) columns is analytically conducted. For predicting the strength and ductility of CFT columns, fiber analysis technique is used. The analytical results show reasonable agreement with experiment results. The influence of the steel tube on the lateral response of CFT columns is studied for the evaluation of seismic performance.
-
In the past decade, various experimental programmes were undertaken to address the lack of information on the interaction between steel coupling beams and reinforced concrete shear wall in a hybrid coupled shear wall system. In this paper, the seismic performance of steel coupling beam-wall connections in a hybrid coupled shear wall system is examined through results of an experimental research programme where three 2/3-scale specimens were tested under cyclic loading. The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. Panel shear strength reflects enhancement achieved through mobilization of the reinforced concrete panel using face bearing plates and/or horizontal ties in the panel region of steel coupling beam-wall connections.
-
The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.
-
Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, these columns were usually utilized for building structures and had higher steel ratio for small sections. For bridge pier applications, it is necessary to design the SRC columns having low steel ratio, which is nearly the same steel ratio as the normal RC columns. In this study, the evaluation of the composite columns with a core steel in term of the stiffness and the strength was investigated using experimental results. The effects of the steel ratio was also estimated using design provisions. The calculation of steel encased composite columns with multiple steel sections were performed and compared with RC columns.
-
The shear strength equations of the joint with RC column and steel beam are used the proposed equations of ASCE, Kanno and AIJ but there are not applied variable joint details. Until now the variable experimental studies are practiced but the studies of predicted shear strength equation are not integrated and only the applicable equations to each case are proposed. The purpose of this study is statistical analysis for the proposed equations applied existing experiments. The proposed equations are ASCE, Kanno, M-Kanno, AIJ and M-AIJ. The 47 of shear failure experiments are used in this study The consequence is that the Kanno's equation is very analogized with the experimental result but ASCE equation underestimates about 42
$\%$ . AIJ and M-AIJ are not proper equations for estimating the shear strength of RCS joint. -
A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.
-
The ㄱ type perfobond rib shear connector is a ㄱ type flat steel plate with a number of holes punched through. This connector can be effectively used in girder with high shear. The ㄱ type perfobond rib shear connector exhibit very stiff behaviour under service load conditions and also had the characteristic of retaining a significant amount of load after the attainment of ultimate capacity. A regression analysis, which is based on a model that takes into account the contributions of concrete dowels formed by the rib holes, the transverse reinforcement, the strength of concrete in front of the rib, and the ㄱ type plate as well as a nonlinear finite element analysis, is used in the derivation. An empirical equation for the design of ㄱ type perfobond rib shear connector is proposed.
-
The Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which maximizes structural advantages of components (concrete, steel plate and tendon) and can be used to construct the middle or long span bridge with low-height girder. And recently, a continuous beam type of SCP Girder has been being developed to decrease size and self weight of girder in comparison with a simply-supported type. In this study, as part of developing the continuous beam type of SCP Girder, a new type of anchorage zone is proposed in order to address tendons effectively and decrease section size of SCP Girder efficiently. And also, the experimental test was carried out using a real scale specimen to examine the behavior of proposed anchorage zone.
-
In finite element analysis of the PSC structures, the prestressing effect can be introduced by two ways, i.e, equivalent loads or initial stress. This study investigates the reason why the two schemes that adopt the different approaches produce the similar results. The discussion is applicable to the general finite elements that correspond to the concrete and tendons. Some of the detailed derivations of each scheme are presented. Numerical examples show the identical results for the two methods.
-
The purpose of this study is to develop of unbonded tendon model considering time-dependent behavior. In this paper, a numerical model for unbanded tendon is proposed based on the finite element method, which can represent straight or curved unbonded tendon behavior. This model and time-dependent material model are used to investigate the time-dependent behaviors of unbonded prestressed concrete structures. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressing steel. The proposed unbonded tendon model and numerical method for time-dependent behavior of unbonded prestressed concrete structures is verified by comparison with reliable experimental results.
-
This study was performed to evaluate the static strength of long-span PSC deck slabs. In the previous study, the minimum thickness of PSC deck slabs in the composite two-girder bridge was proposed. To examine the structural behavior and safety of the PSC deck slabs designed in accordance with the proposed minimum thickness, 1/3 scaled PSC deck slabs in the composite two-girder bridge were tested under the static loading. The test results were compared with the predicted values proposed by the code and Matsui. Test results showed ultimate static strength of the PSC deck slabs designed in accordance with the proposed minimum thickness have enough margin of safety. The static failure mode of each test specimen was punching shear mode.
-
This thesis presents the results of a study on improvement in flexure capacities of reinforced concrete beams strengthened with prestressed CFRP plates. Test variables included the type of strengthening, steel ratio and prestressing level. The experimental results show that proposed methods can increase the flexure capacity such as strength, stiffness of the beam remarkably.
-
This study was performed to evaluate about load bearing capacity of continuos IPC Girder Bridge under and after Construction. This is Ichi-1 Bridge that is 2-40m span continuous bridge on a extension road through the Ichun and the Naesa. The result of static loading test to use a 25ton truck after construction, deflection ratio is 0.64 that is
$35\%$ and average of response ratio is 0.48$\~$ 0.89 that is less than theoretical value. The result of dynamic loading test, the number of proper vibrations is 3.06Hz that is like theoretical value 3.61Hz, the modulus of impact is 0.235 that is bigger than specification 0.19. the load bearing capacity is minimum DB-40 that is so big value. In the result, continuos IPC Girder Bridge is safe in short period. we will evaluate long period behavior of continuos IPC Girder Bridge. -
The concrete box girder members are extensively used as a superstructure in bridge construction. The load carrying capacity of concrete box girders in lateral direction is generally influenced by the sizes of haunch and web. The internal upper decks are restrained by the webs and exhibit strength enhancement due to the development of aching action. The current codes do not have generally consider the arching action of deck slab in the design because of complexity of the behavior. However, there are significant benefits in utilizing the effects of arching action in the design of concrete members. The main objective of this paper is to propose a rational method to predict the ultimate load of deck slab by considering various haunch sizes and web restraint effect of concrete box girder bridges. To this end, a comprehensive experimental program has been set up and seven large-scale concrete box girders have been tested. A transverse analysis model of concrete box girders with haunches is proposed and compared with test data. The results of present study indicate that the ultimate strength is significantly affected by haunch dimension. The increase of strength due to concrete arcing action is reduced with an increase of prestressing steel ratio in laterally prestressed concrete box girders and increases with a larger haunch dimension. The proposed theory allows more realistic prediction of lateral ultimate strength for rational design of actual concrete box girder bridges.
-
폴리머 콘그리트는 시멘트 콘크리트에 비해 강도와 내구성에 탁월한 성능을 가지고 있기 때문에 건설현장에서도 다양한 용도로 개발되어 널리 사용되고 있다. 그러나 폴리머 콘그리트는 그 결합재로 쓰이고 있는 수지의 비용이 높아 PET를 재활용하여 콘크리트를 제조하면 제조 단가를 감소 시킬 수 있고, 환경파괴 및 환경오염의 방지에도 대처 할 수 있는 장점이 있다. 따라서, 본 연구에서는 폐 PET를 합성한 불포화 폴리에스터 수지를 폴리머 콘크리트의 결합재로 이용하여 폴리머 콘크리트보를 제조하였으며 기본 구조적 거동을 파악하기 위하여 정적 휨 시험 및 피로 시험을 실시하였다. 그 결과 정적 실험시 압축응력 분포는 거의 삼각형의 선형적 분포를 나타내었으며, 연성 능력도 우수하게 나타났다. 그리고 피로실험결과 극한 하중값 및 처짐값 등이 정적실험만 실시한 경우와 유사하게 나타난 것으로 보아 PET 재활용 폴리머 콘크리트 보는 우수한 휨 거동 특성을 그대로 유지하는 것으로 나타났다.
-
This study was performed to investigate the effect of ternary blended cement concrete mixed with slag cement and fly ash on the compressive strength, the resistance to chloride ion penetration and reduction of hydration heat. Each performance of ternary blended cement concrete compared with binary blended cement concrete and ordinary portland cement concrete. As a result, it was concluded that ternary blended cement concrete is suitable to mass concrete under marine environment.
-
This study was carried out to examine application of surface adiabatic curing method in slightly cold weathering period. So, early aged freezing damage and compressive strength of concrete were examined through temperature analysis of construction concrete. Temperature analysis was carried out according to the average temperature, concrete placement completion time and surface adiabatic curing method. Analysis results show that additional curing plans are demanded in concrete construction below 0
$^{circ}C$ , surface adiabatic curing method is could apply in the average temperature more than -2$^{circ}C$ and curing method as heating are needed under -2$^{circ}C$ . -
Since Ganter Bridge in switzerland was constructed in 1980, many extradosed bridge, especially not covered by concrete, have constructed in Japan. From the end of 1990's, Korea, the demands for the new-stylied and symbolized bridge had raised and extradosed bridge is applied in midspan bridges. The purpose of this paper is to introduce the constructional technique of the Extradosed Bridge, named Nok San Bridge in Pusan, Korea. Nok San Bridge is the first one of the several bridge used by the patterns of external tendons in Korea.
-
Nowadays, the stripping work of form has generated some problems such as increasing total constructing cost result from delayed work schedule by the stripping work of form and environmental issues by wasting the debonded form. According to recent research for form work, it has studied about permanent form to solve economic and environmental problem which is commented above. In this study, high performance permanent form method was developed and tested by adopting COM and TEN specimens adopted on the Compression and Tensile section then the structural behaviour was investigated. In the test result, the specimen adopted the form showed better structural performance than control specimen in the point of ductility, failure mode and ultimate load.
-
The purpose of this study was the Development of Retrofit Method for Beam Using Steel Plate Reinforced by Fiber Sheet.1. Additional reinforcements are not needed in the joining area of slab and beam web.2. Beam using carbon fiber reinforced plastic displays low effects in shearing effect.3. Beams reinforced steel plate by epoxy effect the capacities of strength. But the capacities of strength are rapidly reduced when adhesive surface be omitted. Thus details are needed in this case.4.Retrofit method for beam using steel plate reinforced by fiber sheet with epoxy rosin improves the capacities of strength and the initial stiffness, shows a large transformation since the maximum load likewise may be excellent to the shearing reinforcement.
-
Euro form which constructs the present RC structures is used widely by the form method of construction of a wall type structure had much consumption of the human power and equipments by the assembly and the demolition, and the complement was required according to demerit with much leakage of cement paste by the form joint, so it developed the new pillar type form system. On the study, in order to consider the modification characteristic by lateral pressure which does the influence most important for the new developed pillar type form system performance, research of a paper manufactured a miniature wall form model, and advanced performance evaluation focusing on lateral pressure. Moreover, lateral pressure evaluation of a new style system was actually gone on through the on-site experiment about a part of wall type srutcture spot for a model experiment and its result on the foundation which is the purpose in evaluating on-site application possibility propriety at the foundation time of wall type concrete structure construction of a pillar type form system.
-
Recently, to obtain the reliable data on the state of the structure, various non-destructive techniques are available. The infrared thermography technique is used in detection of cracks, flaws of concrete structures and buildings. In this paper the infrared thermography technique using the difference of surface temperature was studied. Also this paper is case study that the inspection of building's tile using infrared thermal video.
-
A concrete is easy to happen crack. So it requires crack-repair work to solve quality deteriorations of a building because of cracks. When crack is filled with crack-repair materials, it is difficult to find out how depth it was injected. So in this study we evaluated the injection depth with using indirect and oblique methods, ultrasonic pulse measurement method of NDT. The results of this study showed that both methods are possible to evalute penetration depth of crack-repair materials and indirect methods is thought to be more useful one than obliqure one.
-
Ka-Hwa highway bridge, located in a corrosive marine environment, had been examined the current condition of reinforcement corrosion in concrete throughout half-cell potentials, electrical resistivity, chloride contamination of concrete, and visual observation. According to the test, the chloride corrosion reinforced concrete structure is not only the protecting film around the reinforcement is deteriorated but also corrosion activity develops, for example, delamination areas of concrete. The purpose of this paper is to report the effects of Ka-Hwa highway bridge damaged by chlodide attack and to present the results of repair of Ka-Hwa highway concrete bridge in domestic marine environment.