Proceedings of the SAREK Conference (대한설비공학회:학술대회논문집)
The Society of Air-Conditioning and Refrigerating Engineers of Korea
- Semi Annual
Domain
- Construction/Transportation > Construction Engineering/Materials/Management
- Construction/Transportation > Construction Environment/Equipment
2009.06a
-
Since 2001, the Building Energy Efficiency Rating and Certification System have been implemented in Korea. For rating the energy efficiency performance, the evaluation tool for Building Energy Efficiency Rating System has been used. In this study, the evaluation tool was compared with detailed analysis programs(Trnsys 16, ESP-r) through simulations of heating energy needs for apartment, and we checked the character of the evaluation tool.
-
A variety of Certification systems are initiated, as increased demands for housing quality of building & house owner. New building and apartment built in Seoul metropolitan should acquire Building Energy Rating System and Housing Performance Grade indication System, Green Building Certification System. Building Energy Rating System could be acquired through the certification from energy performance index of environment grade in Housing Performance Grade Indication. Between Housing Performance Grade Indication and Green Building Certification System, There are troublesome to acquire certification because a lot of assessment items are overlapped. At a result, the rational and efficient certification system should be initiated not only to avoid overlap among those certification systems and promote Green Building market share but also efficient certification system operation. We will discuss on assessment items between Housing Performance Grade Indication System and Green Building Certification System and release the improvement method those Certification Systems to avoid overlapping to assessment items.
-
Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy can be expected to reduce energy demand more than other section. To do this, the Building Energy Rating System is applied and implemented in Apartment houses on Jeju, South and Central region. This system calculates into energy saving rate, and certifies the building energy rating. This study evaluates the energy saving rate and rating and compares the difference in energy savings considering to each region and the thermal performance of the window. In result, the standard of the assessment house which is applied to the build energy rating system is demanded to distinguish the thermal performance of window according to regional variation.
-
TRNSYS 16 had just a wall area and azimuth as an input value about a building shape. So, a geometrical shape of a building was not considered in simulation using TRNSYS 16. In this study, we suggested the more appropriate modeling method for simulation considering of building geometry in TRNSYS 16. To suggest this method, we simulated energy needs affected by shading effect that caused by a geometrical shape of a building, and compared the result to the simulation result of non-shading environment.
-
The measuring apparatus such as heat meter is legally obliged to be installed and used for heat rating with heat or flow rate in residential buildings in Korea. There are two kinds of apparatus to measure heat consumed at each households, i.e., heat meter and hot water flowmeter. Contrast to the most of buildings with hot water flowmeter well being used for rating, heat meters have been used only 42.6% in the buildings with central heating system. But there is a critical problem in the course of using hot water flowmeter for heat rating, yielding distorted and unfair result which is different from the real value of heat supplied. Experiments with several parameters were carried out in this study to analyze this phenomenon quantively and alternative methods were proposed for rational heat rating.
-
Energy loss from windows accounts for large scores of heating and cooling loads also in energy saving apartments that is reduced over 30% of total energy consumption. Movable reflective insulations, insulation shutters, blinds, insulated shades are used to reduce energy loads from windows. In this study, energy saving performance of insulated shades was simulated by control methods. According to installation of insulated shades, heating loads were decreased about
$10.5{\sim}11.3%$ , and cooling loads are decreased about$11.0{\sim}15.5%$ on an energy saving apartment. The heating peak load was reduced about 9.5% by insulated shades, but the cooling peak load is hardly ever decreased. Because in the condition of cooling peak load, latent cooling loads accounts for large score of cooling loads. Difference of the energy loads by a schedule control method and an outdoor detection control was no more than 5% for a base model. In the case of insulated shades with automatic control system, simple time schedule control system would be more efficient than outdoor detection control system that should use several sensors. -
Geothermal energy is the heat contained in the earth and its internal fluids. Geothermal energy is stored as sensible or latent heat. Supplied by both internal and external sources, it represents a vast supply which is only started to be tapped for generation of electric power. In general, this is natural dry or wet medium to high enthalpy steam at temperatures above
$150^{\circ}C$ . For some time, binary systems employing substances with a lower boiling point than water in a secondary circuit have been used to generate vapor for driving turbines at a lower temperature level. The utilization of binary plants and the possibility of production from enhanced geothermal systems can expand its availability on a worldwide basis. The geothermal electricity installed capacity is approaching the 10,000GW threshold. Geothermal energy is not present everywhere, but its baseload capability is a very important factor for its success. -
A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.
-
Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee 52
This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated at heating season. The average COP of the systems with single U-tube and double tube type GLHXs were 4.8 and 5.0, respectively. It is needed to investigate the long term performance of double tube type GLHX, because the reduction of inlet temperature of OD HX for this GLHX was larger than it for U-tube GLHX. -
A ground-loop heat exchanger for the ground source heat pump system is the core equipment determining the thermal performance and initial cost of the system. The size and performance of the heat exchanger is highly dependent on the ground thermal properties - the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. Nowadays, precast concrete piles using steel reinforced precast concrete piles - energy piles - are used to reduce the installing cost of the ground-loop heat exchanger. We were carried out some tests to investigate the effects of some parameters such as borehole length, grouting materials and U-tube configuration of the energy piles. 4 concrete piles, each measuring
$250mm{\sim}400mm$ in diameter and approx. 10m in length, and rigged with single spiral and 3 U-tube loop of$16mm{\times}2.3mm$ PB piping. The thermal response tests were conducted using a testing device for 4-different ground-loop heat exchangers. During the heating period, the energy piles absorb the heat of 0.89kW to 1.37kW. -
Assessing the Economic and
$CO_2$ Emission Reductions Viability of Domestic Ground-Source Heat PumpsBecause of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total greenhouse gas emissions than the alternative HVAC systems considered in this work. -
If we can supply accurate minute flow rate to the households, we can solve many problems that are occurring in consequences of uncontrolled flow rate for the households. Therefore, this paper presents an innovative solution to the source of the problems by illustrating how we can control the flow rate to the household. This paper proves such problems even can be solved in a case when there is a room turned off the heating.
-
Ha, Byeong-Yong;Im, Hong-Seok;Kim, Dong-Gyu;Kum, Jong-Soo;Jeong, Seok-Kwon;Chung, Yong-Hyun;Kim, Geun-Oh;Myeong, Jin-Pil 83
The field of the large volume heat exchanger for wasted heat recovery ventilation system is being expanded enormously seeing as the fact that the quantity of reducing energies are huge due to the large volume heat exchanger for wasted heat recovery system at large buildings and factories, which consume large amount of energies while it has been arising huge amount of losses in Korea because of the lack of technology. -
This study practically investigated the effects of the newly developed isolation-heat paints applied into the buildings and the roads in Japan. After 1970 since the gravitation of population toward the cities has got more deeply involved due to the development of industries, the increased paved roads and the heats come out from the industrial chimneys cause the heat island effect. The dark colored paints on the roads and the stagnations of air blocked by large buildings turned out to be also the main reasons for the heat island effect. Therefore, in order to cool down the heats accumulated in buildings and roads, the developed isolation-heat paints applied into several different regions and the decreased temperatures and heats were accurately measured and reported.
-
Photo-catalyst technology to the decomposition of formaldehyde, and many are capable of VOC. In this research, effects of screw type photo-catalyst device will announce the experimental results.
-
Window system is an essential component for lighting, ventilation and thermal environment in buildings. Moreover, as balcony extension in apartment houses become legalized, the performance requirements of window systems in balcony space are getting complicated. However, at this moment, five properties of the windows are used to represent the performance aspects of the system, including wind resistance, air tightness, water tightness, sound insulation, thermal resistance. And such single properties are not capable to express the performance of a space with the window systems in terms of performance concept. A performance analysis with wholistic approach is required to see the effect of the window system in built environment. Thus, performance-based approach should be established, which will be able to evaluate the goal/function and comfort of occupants/owners. As the first step to develop the performance indicator for the window systme for balcony space, this study conducts a survey to find the required performance aspects. A complete set of performance-based indicators will be developed with verification methods in the later stage of research.
-
Yook, In-Soo;Kim, Min-Hwan;Nam, Hyeon-Jin;Kim, Dong-Ho;Seol, Dong-Mun;Lee, Geon-Tae;Kim, Jin-Ho S.;Kim, Jae-Min 108
Buildings with multi-complex spaces designed for architectural values and functional requirements give rise to technical challenges in terms of energy efficiency and thermal comfort. Since spaces in such buildings are connected with openings with geometrical complexity, it is hard to define zoning plan and to control heating/cooling loads effectively. This paper presents a case study on the evaluation of operation strategy for a building with multi-complex spaces using computer simulation. The modelling methodology and the results of the simulations are also described. -
This study has been conducted to describe the establishment of national measures to reduce world energy consumption and
$CO_2$ Emission. Particularly, Reductions in energy consumption from building operation is the most important part to achieve these national objectives. Element to evaluate the quantitative effects of these systems by having rationalized regulation and operation is essential, when planning for building energy reduction design. USGBC(US Green Building Council) have operated sustainable assessment method called LEED, which introduces baseline performance and evaluation direction for building simulation techniques. This research analyzed Quantitative assessments of the building energy consumption and analyzed baseline figures to provide comparative analysis with standard building settings. -
건물에서 에너지손실이 큰 창호에 대해 최저소비효율기준 및 에너지소비효율 등급기준(안) 도입을 통해 지속가능한 고효율 창호의 보급 활성화 촉진과 관련 산업의 기술 및 산업력 향상을 적극적으로 유도할 필요가 있다. 이에 본 연구에서는 창호의 에너지 효율화를 위하여 고효율기자재(고기밀성 단열창호)로 인증받은 약 100여개 제품과 기타 제품에 대하여 창호 유형별 기밀 및 단열성능의 조사 분석을 통하여 창호 관련 제도 개정에 기초자료로 활용 에너지절약과 기후변화협약 관련 건물부문의 구체적 실천 대응방안으로 활용하고자 한다.
-
-
A Study on the Pressure Difference of Smoke Control Influence Factor in the Super High-rise BuildingThese days, the super high-rise buildings construction plans are increased in Korea. But the stack effect in the super high-rise building interrupts the smoke control system's operation because of pressure difference, so it is more dangerous than the general building when firing. Therefore it needs to study about the pressure difference in the super high-rise buildings. We research the smoke control influence factor in the super high-rise building. Reflecting the influence factor, the simulation is practiced the case by case.
-
The platform screen door(PSD) is installed in the station of the Seoul Metro 9th line for passengers' safety and comfortable environment of the station. The track way exhaust system(TES) is also operated with PSD to exhaust heat released from train. TES can also be used for the purpose of the heat and smoke control in an emergency case of the carriage fire. When the fire is occurred, operation of TES is switched to the smoke exhaust mode form its normal ventilation mode. In the present study, a subway station of Seoul Metro 9th line is modeled, and a 3-D CFD simulation is performed to investigate effectiveness of designed TES in case of fire. A scenario that a train under fire is arriving the station is simulated for several possible operation modes of the TES using moving mesh technique. As a result, temperature and CO concentration distribution in the station is obtained for each operation modes of TES. The effectiveness of TES operation in case of fire is also discussed.
-
In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.
-
This paper considers the age of air in a ventilated space with multiple supply inlets. The local mean age of air at a point from one supply inlet is different from those from the other supply inlets. It is the purpose of the present paper to investigate theoretically the relations between the LMA's from each supply and overall combined LMA whether or not to trace the origins of supply air. Transient concentration distributions are calculated with a step-up injection of tracer gas at each supply inlet, and at both inlets simultaneously. The steady state concentration with a continuous tracer injection at a supply inlet works as a weighting factor for the corresponding LMA in calculating the average overall LMA from multiple inlets.
-
The vortex ventilation system (VV) which uses a rotating finned swirler installed coaxially with the exhaust duct is a very effective local ventilator. VV can enhance the capture depth by a factor of 3-5 compared to the conventional exhaust hood, in the absence of any solid walls nearby. In real situations there may exist ceiling, side wall and floor, all of which can affect the flow field and suction performance by way of the no-slip condition on the walls. 3D CFD simulation was performed in order to see the effect of the floor on the capture performance of the VV. The presence of floor reduced suction flow velocity, and increased the critical rotational speed which is the rotational speed required for stable vortex formation. Flow velocity profile along the axis could be well approximated by a universal functional form when the distance from the exhaust inlet is non-dimensionalized by the distance to the floor. Capture depth, define by the distance from the exhaust inlet to a point of velocity decreased to 10% of that at the inlet, is reduced by about 10% when the floor distance is 6 times the exhaust hood diameter.
-
Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a boiler unit, the effective operation is necessary. In this study, the supply water temperature algorithm of a condensing gas boiler was developed. This includes the setpoint algorithm and the control algorithm of the supply water temperature. The setpoint algorithm was developed by the fuzzy logic and the control algorithm was developed by the proportional integral algorithm. In order to analyse the performance of the supply water temperature algorithm, the dynamic model of a condensing gas boiler system was used. Simulation results showed that the supply water temperature algorithm developed for this study may be practically applied for the control of the condensing gas boiler.
-
We conducted performance test of a 350 kW class wood pellet boiler installed at a dormitory whose total area is
$1,354\;m^2$ . The maximum heating capacity of the boiler is 350 kW(300,000 kcal/kg). The wood pellet boiler consists of 3 parts; boiler, hot water storage tank and wood pellet storage tank. In testing the boiler, we shut off hot water utility supply and open up floor heating water system in order to measure exact value of the heating output of the wood pellet boiler. To determine the efficiency and heating output of the wood pellet boiler, we measured mass flow rate of wood pellet, the lower heating value(LHV) of the wood pellet, mass flow rate and temperature of water for floor heating and so on. We measured the mass flow rate of fuel, wood pellet with respect to rotational speed of auger, wood pellet feeding screw. We also measured the flue gas concentration of the wood pellet boiler by using a gas analyser. The result shows that the efficiency of the wood pellet boiler is 80.6% based on lower heating value at 124 kW of heating output. At this condition, O2 concentration of the flue gas is 6.0%, CO and NOx concentrations are 85 and 102 ppm. -
We developed a program, "CogenSim-
$\mu$ ," to simulate the operation of micro-combined heat and power (${\mu}CHP$ ) system. The CogenSim-$\mu$ can reflect the variation of energy efficiency by handling the real-time loads (heat and power) fluctuation. The result obtained using this program was compared with the real operation of 30 kWe gas engine driven${\mu}CHP$ . It was found that the CogenSim-$\mu$ could predict the amount of generated-power, recovered-heat and consumed-fuel with the error less than 3%, and heat and power efficiency with the error less than 4%. The CogenSim-$\mu$ reconstructed the profile of on-off cycle, which represented the operation of a facility, with more than 93% accuracy. The CogenSim-$\mu$ can reflect the effects of various factors such as size of thermal storage tank, desired temperature of reservoir water, natural frequency of generator, etc. As a result, the CogenSim-$\mu$ can be used to optimize the${\mu}CHP$ operation. -
The purpose of this study is to investigate planning of urban energy supply systems configuration and operating conditions for the district heating and cooling system using combined heat and power system. Generally the district heating and cooling system has been known to one of the effective way for energy saving, cost reduction and demand side management of energy. Economical analyses were carried out and operating characteristics for some systems were examined in terms of GER factor which represents to the ratio of gas and electricity costs. Rates of the energy consumption and the
$CO_2$ emission were compared from the system configuration of the energy supply system with new district cooling system with the conventional one. -
RFID method is a non-contact automatic identification technology, which attaches microchips and antennas to an object in a tag form, to send and process information sent to the network using wireless frequency. Drying and curing process is extremely important which minimizes the resistivity of RFID antennas. This research is about the drying characteristic of conductivity ink, and analyzes and compares the hot-air drying process and infrared drying process. Also, the research was done for the improvement in drying performance by using combined process of hot-air and infrared mechanism. The experiment result shows that the hot-air or infrared drying system used alone cannot meet the required performance in drying printing method using conductivity ink. The combined drying system of hot-air and infrared ray showed resistance low enough in short drying and curing time, and this mechanism makes drying and curing process for mass and continuous production possible on-line.
-
In a gas engine based cogeneration system, heat is recovered from two parts, which are jacket water and exhaust gas. The heat from the jacket water is often recovered by a plate type heat exchanger and used for the room heating and/or hot water supply. Depending on the operating conditions of engine and heat recovery system, there should be imbalance in the flow rate and supply pressure between engine and heat recovery side of the heat exchanger. The imbalance cause the deformation of the plate, which affects the pressure drop characteristics. In the present study, the pressure drop inside the heat exchanger has been investigated in a 1/5 scaled test rig and compare with the experimental correlations, which are used for the design.
-
The objectives of this study are to analyze of energy consumption and operation conditions of each cooling system for gas and electric driven systems, and to compare operating cost for five different cooling systems; ice storage system, system air-condition, turbo chiller as the electric driven cooling systems, and absorption chiller and Gas driven Heat Pump (GHP) as the gas driven cooling systems. The sample designs are carried out based on the types of business, capacity, installation region and year.
-
In this study, the domestic and abroad policies and regulations on the gas cooling systems have been analyzed. First, the current policies were investigated in Korea and other countries to stimulate the distribution of the gas cooling systems. The advantage and disadvantage for each policy were evaluated. Finally, several policies were proposed for the effective distribution of the gas cooling systems.
-
To reduce the peak demand the promotion of gas cooling(absorption chillers and GHPs) is required. In this study the effect of electric power peak-cut has been analyzed using two methods. One is based on monthly LNG consumption data and the other is using the gas cooling capacity installed. Both methods agreed well with each other within the uncertainty of 20%. It was found that the gas cooling had the peak cut effect of 1,500-2,000 MW for recent 5 years (2003 - 2007). The ratio of gas cooling to the whole cooling demand was 12-15%, which is needed to be increased.
-
냉방기기별 하절기 가동률 및 동시사용률 실태를 조사하여 건물의 용도 및 면적 별냉방기기의 시간별 부하률 과 동시사용률, 연간 사용일수 가동시간을 조사하여 냉방기기별 에너지 소비현황 하절기 에너지수급 영향분석을 하고자 하였다. 그리고 국내에 설치된 냉방기기를 대상으로 현장조사 진단을 통해 냉방기기 사용 실태 및 냉방성능을 측정하고, 현장 조사를 통한 만족도와 불만사항을 조사하여 냉방기기 보급 및 운전의 효율을 상승시키고 모든 냉방기기 국산화를 위한 기초자료와 이를 위한 정책적 지원방안 및 향후 냉방기기 기술개발 방향을 제시하고자 한다. 또한 냉방기기별로 문제점을 도출하여 향후 정책제도 개선에 반영할 수 있도록 하였다.
-
Cost related to building equipment accounts for about 85% of the life cycle cost of buildings. Therefore proper selection of air-conditioning system is important for reducing the overall cost of buildings. In this study, large capacity ice thermal storage and absorption chiller-heater for air-conditioning a building with a floor area of
$9,900\;m^2$ are compared economically. For easy input and analysis, an Ms Excel VBA program has been developed. To consider all the factors of initial and operation costs effectively, an annual equal payment method is proposed. Under the assumptions made in this study, overall cost of an absorption chiller-heater is less than that of an ice thermal storage, but this is not absolute and different outcome may result if different assumptions are made. This study is useful for those who are interested in choosing an economical air-conditioning system for large-size buildings with simple calculations. -
Performance curve of the desiccant rotor is an important information when developing and selecting the desiccant dehumidifier. The effective utilization of the energy is major capacity for the system and the desiccant performance curve is a design ability for a designer. By the rotor supply contract with DRI, ECO-DRY programs would be offered. Moreover, it could make remarkable progress in the desiccant system and energy saving. It is good to introduce the programs with the amicable help of DRI.
-
The Desiccant air conditioning system has been designed as the industrial dehumidifier under the leadership of developed countries, considering CFC problems in 1990, indoor air quality(IAQ) and outdoor air intake rates. This could make the technical differences between them and us. Nowadays, domestic technology has been developed in some parts but there still remain many challenges to be managed. In this study, these tasks would be handled according to the desiccant air conditioning system market and prospects.
-
After analyzing the characteristics of the cooling dryer, the mixed cooling dryer was developed by adding the desiccant dryer which supplement the cooling dryer's demerits. Also, the hybrid desiccant cooling dryer was developed to use effectively the exhaust heat energy of the cooling dryer. It could make a more that 20 percent reduction in energy compared with the mixed desiccant cooling dryer. It has become essential to supply this equipment and search the suitable drying product.
-
The present study has been conducted to reduce the cold air drying rate. According to the cold air drying method, the quality-excellent product could be made and there would be little change of color, taste and smell. As compared with the hot air drying, the cold air drying equipment has the superior dehumidification in a constant drying zone. However, in a falling drying zone that equipment is not energy-efficient because the drying period could be longer by the dehumidificated.
-
For the energy's effective utilization, the mixed humidifier has been developed and popularized by combining the cooling dehumidifier with the desiccant humidifier properly. This has contributed in many ways to the industry. Hybrid Desiccant Dehumidifier that would be shown in this study could be indispensible in site due to the reduced equipment, with more than 50% reduction in energy.
-
The mixed cooling dryer has been developed significantly by adopting both advantages of cooling dryers and desiccant dryers. In this study, it is introduced that the desired effect, such as drying rate period reduction and energy-saving, could be achieved only by adding the desiccant dryer if an existing cooling dryer is used. The experiment should be conducted for quite long time due to the material selection, so it is regrettable that there are not enough data.
-
-
The present study numerically investigated the effect of the geometry of the flattened tube on the thermal performance of a high temperature generator (HTG) of a double effect LiBr-water absorption system. The heat transfer tubes of the HTG were arranged behind a metal fiber burner. The heat transfer of the tubes of HTG were consisted with a set of circular and flattened tubes in series. FLUENT, as a commercial code, was applied for estimating the thermal performance of the HTG. Key parameters were the tube arrangement in the HTG. Temperature and velocity profiles in the HTG were calculated to estimate the thermal performance of the HTG. The heat transfer rate of a HTG tube was increased, and the gas temperature around the flattened tube was decreased as the pitch ratio was increased. The heat transfer rate for the circular tube bundle with the pitch ratio of 2.48 were larger by 10% respectively than that of 2.10 and the heat transfer rate for the flattened tube bundle with the pitch ratio of 1.88 were larger by 36% respectively than that of 1.63.
-
Performance analysis for the Characteristics of Double/ Single Effect Hybrid type Absorption ChillerYou, Da-Young;Song, Tae-Min;Lee, Jung-Byoung;Kim, Hyung-Jin;Im, Ick-Tae;Moon, Sang-Done;Park, Chan-Woo 272
The characteristics of hybrid type absorption chiller are studied numerically to use a waste hot water effectively. In the case of the full load, the concentration and temperature of LiBr solution are increase about$11^{\circ}C$ , 1.3% respectively at the single effect generator by hot water. As a result, the heat of the high temperature generator are decrease, so the energy can be saved. As the partial load decreased the consumption ratio of fuels are decreased and the reduction ratio of fuels are increased. The variation of COP with the inlet temperature of hot water is higher than that of the flow rate of hot water. The effect of mean temperature difference with solution and hot water of the generator are higher that of flow rate of hot water, it can effect on COP which is sensitive to heat of generator. -
Lee, Hyun-Jik;Kong, Sang-Woon;Ha, Soo-Jung;Hwang, Jong-Ho;Jang, Jeong-Wan;Son, Kil-Jae;Kim, Jong-Soo 279
Bubble jet loop heat pipe is what heat pipe operate in the horizontality. It is consist of one heating part creating bubble and one rounded U tube type radiator. This study shows whether the heat pipe operates well in the horizontality or not, and what optimized refrigerant charging rate is in the tube. But flow visualization of bubble jet heat pipe was not known. The purpose of this study is to visualize bubble jet loop heat pipe. The experiment was performed by changes of charging rate. Working fluid was R-141b. And heater of 220 V & 100 W was used. we take a photograph of flow visualization of bubble jet loop heat pipe in slow motion. -
The stack-effect in high-rise buildings in winter causes many problems such as difficulties in opening or closing doors, infiltration, energy loss, noise and fire protection. Stack effect is influenced by temperature difference between the interior and exterior of building and the height of building. As an attenuation method for stack effect, the architectural methods are generally used. However, as though architectural methods were fully adopted, the problems are reported as ever in tall building. In this study, a new method to reduce stack effect will be suggested. As an active control method against the stack effect, E/V shaft natural cooling method is suggested. In this paper, the concept of E/V shaft natural cooling system and its reduction performance of stack effect by simulation and field measurement will be reported.
-
Many kinds of problems by stack effect occur in the high-rise buildings that have the simple plan on the first floor designed only by an external wall and an E/V shaft wall. Therefore, some buildings in the foreign countries has made the additional inside walls between lobby and E/V hall as a countermeasure on stack effect. An additional wall in the lobby is very useful countermeasure on stack problems because lobby is a main airflow path in the building. Decreasing effect on stack problems by an additional wall of lobby is reported in this study. An ordinary office building that has a simple lobby plan is simulated and measured in this study. The results show that characteristics on stack effect are changed by methods of applying additional walls and that alternations of countermeasures which building conditions like the kinds of problems and the problem's velocity etc. are considered are very important.
-
High-rise buildings have some problems by stack effect. And, the solutions on the problems should be determined by considering an overall building. But, ordinarily, the countermeasures on the problems are applied to local part of the building. Local countermeasures often can be possible to arouse the secondary problems accompanied by the stack-effect. In this study, the usefulness of local countermeasures are evaluated in terms of both the reduction effect on problems and the possible secondary problems with simulations. The simulation results show that the application of countermeasures on an overall building is very important and that local countermeasures can be used optionally according to building's conditions.
-
The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and the Stirling engine cogeneration system has been concerned and investigated due to the preferable characteristics - low toxic emission, low noise and vibration level, and the various form of fuel. A tiny, 1kW of electrical output, gas fueled Stirling engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. The experiment was executed at an independent Stirling engine mode, independent secondary burner mode, and the combined mode. Part load characteristics of the Stirling engine cogeneration system were investigated also. With the efficiency characteristics, the
$O_2$ and NOx emission characteristics were measured. -
Thermoeconomics or exergoeconomics can be classified into the three fields of cost estimating, cost optimization, and internal cost analysis. The objective of cost estimating is to estimate each unit cost of product and allocate each cost flow of product such as electricity or hot water. The objective of optimization is to minimize the input costs of capital and energy resource or maximize the output costs of products under the given constraints. The objective of internal cost analysis is to find out the cost formation process and calculate the amount of cost flow at each state, each component, and overall system. In this study, a new thermoeconomic methodology was proposed in the three fields. The proposed methodology is very simple and obvious. That is, the equation is only each one, and there are no auxiliary equations. Any energy including enthalpy and exergy can be applied and evaluated by this equation. As a new field, the cost allocation methodology on cool air or hot air produced from an air-condition system was proposed. Extending this concept, the proposed methodology can be applied to any complex system.
-
The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and recently, the household cogeneration system has been the center object of attention because of the loss of power transmission and the reasonable energy consumption relative to the household (condensing) boiler producing heat only. A tiny, 1kW of electrical output, gas fueled internal combustion engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. With the emission characteristics, the cogeneration system was analyzed. It was showed the gas engine cogeneration system produced the lowest NOx level compared any other cogeneration system due to the three-way catalyst.
-
In this paper, a simulation approach for the optimum design of cogeneration system is described. For the purpose of the systematic analysis, a simulation tool is developed with which the prediction of the energy load, calculation of operation data according to prime mover or capacity of it, and estimation of economic gains can be carried out. As for the criterion of the optimum design, the economic gains by adopting cogeneration system is taken. Based on the capital, operation, and maintenance costs etc, LCC analysis is to be carried out for the scenarios respectively. In this study, the simulation for the apartment complex is performed and the analysis of the results are described in detail. The effects of the operation parameters such as capital cost, fuel cost, and unit cost for the purchase or sale of heat and electricity on overall economy are also be considered by sensitivity study.
-
The importance of the evaluation and verification of small-size cogeneration system has been emphasized because there is no KS-code related to the small-size cogeneration system. The evaluation method of small-size engine cogeneration system, regarding Japanese standard JIS B-8122 and international standard organization, ISO-8528, was applied to the system. The evaluation methods, start-test, rapid-load-up and rapid-load-down, etc. were executed at the system, and reasonable results were acquired. The electrical and thermal efficiencies were executed and analyzed at various load conditions. The NOx emission at various load condition was also measured. Finally, the gas engine cogeneration system was installed to a site for actual usage and it was continually operated during more than 6 months as the site condition.
-
Promoting policy to involve plant EPC companies for package deal has been studied to acquisite overseas energy resources. The effectiveness of the package deal with the plant EPC companies has not been successful because participation of the plant EPC companies is very low. It is difficult for the plant EPC companies to join the packaged deal due to the lack of the whole responsibility organization to support that plant EPC companies participate in package deal. The followings are suggested as the ways to promote the participation of the plant EPC companies for package deal in this study. 1) financial and policy support of governmen 2) specialization of the advanced countries.
-
Air-conditioning system by ocean thermal energy has been developed in the areas of Europe, North America and Japan because there are abundant amount of thermal energy potential in the ocean and permanent free use for the thermal energy using the air-conditioning system. In the case of domestic ocean thermal energy resource, ocean thermal energy potential exists about 27,155Tcal/year and totally 20,285Tcal/year of possible thermal energy use by heat pump, which are reported from the survey of the 7 domestic near shore cities. Present study is aimed to survey the current development status of domestic and overseas air-conditioning system by ocean thermal energy, especially, for the air-conditioning facility technologies using sea water.
-
As a unutilized energy, treated sewage water locates widespread near urban areas. From the previous survey, the sewage water is reported to hold energy potential up to 36,000 Tcal/year, which was 2.1% of the total domestic energy consumption and 9.7% of the energy usage in the household and business sector in 2006. Temperature of the sewage water differs locally, but its range is observed in a range of
$20{\sim}25^{\circ}C$ in summer and$8{\sim}13^{\circ}C$ in winter. Since the temperature range of the sewage water has a better seasonal distribution about$5{\sim}10^{\circ}C$ compared to ambient air, it is a promising heat sink for summer or heat source for winter. The sewage water is also a high quality heat source from its abundant quantity and uniform temperature. Considering the ambient temperature of Korea is very low in winter, a heat pump system using the sewage water can be an alternative to prevent problems of capacity deficiency and frost formation. -
-
미분탄 순산소 연소는 기존의 연소 방법과는 달리 산화제로 O2/CO2를 사용함으로써 NOx의 발생을 감소시킬 수 있으며, 고농도의 CO2를 쉽게 회수 할 수 있어 큰 주목을 받고 있다. NOx의 배출저감을 위한 기술로는 로 내에서의 재연소(reburning), 단계(staging) 연소등이 있으며, 후처리 NOx 저감기술로는 SCR, SNCR등이 있다. 그러나 이러한 기술들은 비용이 비싸다는 단점이 있으며, 미분탄 순산소 연소조건에서는 화염 안정성이 감소하는 문제점이 있다. 따라서 본 연구에서는 화염의 안정성과 밀접한 관련을 가지는 화염전파속도에 대해 미분탄 순산소 연소에서 석탄 입자의 물성치와 주위 기체의 특성이 화염전파속도에 미치는 영향을 수치적 방법을 통하여 해석하였으며, NO 저감의 한 방법인 연소가스 재순환(Flue Gas Recirculation)에 따른 연소특성 및 NO 생성 메커니즘의 영향과 석탄을 가스화 시키는 방법에 따른 연료의 연소특성에 대해 해석하였다.
-
-
-
The distribution control of refrigerant flow is one of the basic technique to enhance system efficiency. However, if engineers forget to control the refrigerant flow speed in all operation range, refrigerant flow mal distribution becomes a noise source. The refrigerant flow noise should be checked and controlled at the lowest air flow mode which is the most silent mode and frequently used in night time.
-
The transmission noise characteristics through the ventilating duct was conducted numerically using SYSNOISE. A ventilating system is usually composed of mufflers for preventing noise transmission from the ventilator into indoors through the ducts and distributors for transferring air to or from each room. The transmitted noise characteristics of distributors which have different branch angles and of mufflers having different shapes were analyzed numerically. New duct element combining a muffler and a T-shaped distributor was developed for better noise reduction in this paper. New element's performance was shown numerically.
-
This paper describes performance characteristics of a centrifugal fan having a different volute casing. The centrifugal fan has a backward blade type, and is used in a refuse collecting system. The flow characteristics inside the components are analyzed by three-dimensional Navier-Stokes analysis, and also compared to the results by experiments. Distributions of pressure and efficiency obtained by numerical simulation has a good agreement with the experimental results. Throughout the numerical simulation of the centrifugal fan, a fan efficiency is increased by decreasing local losses in the blade passage. It is found that the fan efficiency is enhanced by decreasing the distance between the shroud of a impeller and casing. Detailed flow analysis is also analyzed and discussed using the results obtained by numerical simulation.
-
In this study, the numerical study has carried out to analyze the factors of the efficiency decrease at backward flow situation in an axial fan with adjustable blades. The analysis is carried out the pitch angle
$36^{\circ}$ on the forward flow and the pitch angle$-26^{\circ}$ on the backward flow. The numerical results show that the air flow rates of the pitch angle$36^{\circ}$ and$-26^{\circ}$ are respectively calculated to 285 CMM and 212 CMM. The results are similar to the experimental results carried out by Chang, and have made the maximum error of 10.6% when compared with the experimental results. The important reason of the fan efficiency decrease is that axial fan used for this study was designed to use for the forward flow. As the results, the pitch angle$-26^{\circ}$ has occurred the recirculation around the impeller blade, impeller cover and stator. -
Gravity pressure vessels find their use in the wet oxidation of sewage sludge, which can be defined as the oxidation of organic and inorganic substances in an aqueous solution or suspension by means of oxygen or air at elevated pressures and temperatures. Numerical analyses were carried out for investigating the flow characteristics and wet air oxidation in the reaction vessel with various conditions such as supply oxidation and the supply positions of oxidation, etc. Wet air oxidation is promoted in the vicinity of bottom in the reactor with increase of oxygen supply. Also, it is the best condition to the oxidation supply position of 150 m and oxidation flow of 0.06 kg/s in the GPV reactor as the remnant of sludge and creation of organic acids.
-
The theoretical bases on characteristics of heat release rate in compartment of building for scenario of smoke management are introduced and the numerical applications to simple compartment model are carried out. The growth stage which is important for smoke management design is modelled as t-squared fire curve including fire growth coefficient with related to growth rate. The conditions for the happening of flashover is presented such as
$600^{\circ}C$ of temperature or$20kW/m^2$ of radiation heat flux. After the flashover happen, the fire in compartment changes to fully developed fire having the characteristics of ventilation-controlled fire. As the result of numerical analysis to simple compartment model, the time to reach 900K under ceiling for condition of medium growth is twice for condition of fast growth. -
Gas pipelines in bridges, roads and subway construction sections can undergo abrupt stress and vibration changes. To protect human life from any gas leakage accidents induced by the abrupt stress and vibration, the gas pipeline system needs to be continuously monitored. The estimation method of pipeline stress using MEMS wireless tilt sensor has been developed and its validity has been evaluated using a lab test bench.
-
The SK Chemical R&D center is an eco-friendly building designed as top score in the GBCC(GREEN BUILDING CERTIFICATE CRITERIA). This building has applied various eco-friendly technologies such as energy /water resource cutdown, improvement of indoor quality and improvement of user convenience, etc through eco-friendly concept from the design phase. In this thesis, an economic efficiency evaluation has been performed on building energy cwater resource cutdown technologies among them and the results are as follows. The building energy has cut down about 40% compared to ordinary buildings and the investment recovery period was shown as about 5 years. The water resource has cut down about 63% compared to ordinary buildings and the investment recovery period was shown as about 10 years.
-
Selective Catalytic Reduction(SCR) has been used for the reduction of
$NO_x$ in a steam supply boiler. Recently, the reduction of$NO_x$ becomes an important research field because of its negative effect on an environment. Shape optimization of circular poles installed in the chamber, which is located in upstream of a SCR, has been performed using response surface method and three-dimensional Navier-Stokes analysis to enhance gas flow uniformity. Three design parameters, diameter, arranging angle and stretching ratio of circular poles, are considered in the present study. Throughout the shape optimization of a circular pole, gas flow uniformity is successfully increased by decreasing local recirculation flow in a square duct chamber. Recirculation flow observed in the corner of the square duct can be reduced by proper installation of a guide vane or a blunt body. Detailed flow characteristics are also analyzed and discussed. -
This paper describes on energy loss in a pipe of refuse collecting system. Analysis energy loss in a pipe is the decisive factor in a design for refuse collecting system. From the analysis energy loss, we can determine the capacity of turbo blower. The flow characteristics in the pipe with the refuse bag are analyzed by three-dimensional Navier-Stokes analysis. The refuse bag is modeled using the actual measurement. We obtain friction factor by changing refuse bag's size and mixing ratio and Reynolds number. And From the result we calculate energy loss by using compressible flow analysis.
-
This article deal with an overview of food waste treatment methods in Korea. Garbage trucks are operated manually by garbage workers who pick up the food wastes after food waste is placed in plastic bags by the road sides. However, there are a lot of problems such as, the smell from the split bags and the leachate, the loss of much energy and the complaints regarding the establishment new rubbish tips from the residents in the surrounding area. It also highlights our society's waste of resources. Although the new pneumatic waste transfer system or the dry method seem to have improved some of the environmental conditions, it still bears some problems, for example, the lack of reuse and recycling of resources and the economic problems. We have been analysed the advantages and disadvantages between the existing food waste system and the pneumatic waste transfer system. And the dry method and disposer were discussed. The results will indicate how the disposer can improve more than the existing systems and will provide the evidence to support.
-
For the effective control of a
$CO_2$ air-conditioning system, the system high-side pressure algorithm, the indoor temperature algorithm, and the outdoor fan algorithm were developed. The system high-side pressure algorithm was composed of the setpoint algorithm, the reset algorithm, and the electronic expansion valve control algorithm. The indoor temperature algorithm was composed of the compressor control algorithm and the indoor fan control algorithm. These algorithms were tested by using mathematical models developed from the previous study. Results from the setpoint step change test and the disturbance test showed good control performances. Therefore, algorithms developed in this study may practically used for the control of a$CO_2$ air-conditioning system. -
A modern industrial society is presently considering not only cultural life but also health promotion to enhance the quality of life. There are many ways to enjoy the wellbeing life. Especially, ice-skating has been focused on as leisure sports with many remarkable advantages. Even though ice-skating was recognized as winter sport, nowadays people enjoyed skating are increased more and more because of indoor ice link. So, construction of indoor ice link has been boomed up. However, The techniques of ice link freezing system are insufficient because the ice link freezing system on the local construction was designed by advanced country techniques. So, this study has been conducted to analyze the air conditioning and refrigeration system in existing local ice link to suggest the design method of ice link.
-
The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A. This study carried out experimental and numerical analysis for indoor heat exchangers. In the experimental study, capacity of the indoor unit was estimated 8.3 kWh with the valve opening rate of 95% for the 50% partial operation condition. The air temperatures were measured using 80 thermocouples. This study also compared experimental data with the calculated data for the outlet temperature and the tube length. It is found that the relative errors between the experiment data and the calculated result are 4.2% and 0.5% for the outlet temperature and the tube length, respectively.
-
This paper presents a numerical evaluation of the flow rate of air conditioner outdoor unit as function of shroud design parameters. To determine the optimal design parameters, we investigated the flow rate by changing bell mouth height, fan height, fan guide height, fan width. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. The flow rate of the optimum model, compared to that of the base model, was increased by about 6.25%.
-
This study has been conducted on how to determine the multi-evaporator vapor compression cycle system is charged correctly by using sensor readings which are used to control system. In this paper, the characteristics of the multi-evaporator were presented and sensor values were classified using fuzzy clustering. finally classification logic and it's performance were discussed by applying commercial VRF system.
-
This study investigated the water saving technology for the toilet stool system in a water closet. Since in 21st century water would be the prospected factor to measure the wealth of a country instead of the oil, water saving technologies in the toilet stool in a closet system is getting more important than the cleaning stool and the reducing noise performances. According to the statistics in Korea the percentage of using water in toilet is about 27% to the total amount of water used. Therefore, this study theoretically approached the possible amount of water saving and suggested the new variable position straight trap device in the toilet stool system.
-
This study investigated automatic malodor exhaust ventilating methods in a water closet system. Even though these days advanced equipment has been applied into the toilet in a building or house, the odor due to the evacuating the bowels should be carefully removed to maintain clean and pleasant toilet. Therefore, this study thoroughly considered the main causes of the malodor problems and suggested the best applicable methods to the closet system.
-
Currently, the interests of shortage of water supply is on the rise. Even developed countries are also suffering from a drought and insufficient water supply. Likewise other countries, we do have same problem, but unfortunately we do not have any proper solution either. One of the ways suggested to settle the problem is using rain water that gets people's eyes. Rain water is evaluated such as a good way to blow the problem of water shortage out and unlimited resource. So, this study focused on the prospect of rain harvest system and possible economic effects if this system adopt in Main Stadium of Busan Asiad.
-
The present study has been conducted to accomplish the investment and analysis, to make the construction manuals, to draw the standards, and to build quality and standards informations of the plumbing/drainage facilities materials. The application plan and the anticipation effect of this results include as follows. (1) The investment and analysis of the plumbing/drainage facilities materials is able to suggest the technology trends and the trends analysis in the construction materials. (2) The quality and standards informations of the plumbing/drainage facilities materials are possible to be the construction faculty and the cost/energy reduction in the construction materials. (3) The standards methods of the plumbing/drainage facilities materials are useful for the reliability guarantee and quality escalation in the construction materials. (4) The standard manuals of the plumbing/drainage facilities materials are applied to the specifications in the construction materials.
-
Recently, the high-rise building has been constructed competitively because it is symbol of the national competitive power including the technical power. The higher buildings are getting, the more important building mechanical systems are. So, the building mechanical systems are getting developed. Among the building mechanical systems, the sanitary system is basically necessary in order to maintain the building hygienically along with convenience and safety. This study has been investigated for various cases of high-rise building plumbing system. As a result, a variety of zoning method has been applied to most skyscrapers depending on the building height in the building mechanical system. And a variety of joint have been applied to minimize the Shortening and Sway. Also, the drainage in same uses has been discharged outside of a build through the one vertical pipe line. And airing system has been used like Individual Vent Pipe Yoke Vent Pipe Stack Vent Pipe Loop Vent Pipe Relief Vent Pipe method. It is sure that this study could be used as the high-rise building design.
-
Effect of angle of supply air on cooling and heating performances of office space is studied by numerical simulation. For a constant air volume(CAV) air-conditioning system, air is supplied vertically(
$90^{\circ}$ ) and horizontally($10^{\circ}$ ). Due to buoyancy, the supply angle affects the performance of cooling and heating. In cooling, since the cold supply air tends to move downward due to its high density, horizontal supply angle is better for uniform temperature distribution. In heating, however, vertical supply angle is preferred for better mean and uniform temperature distribution. -
Trend of mechanical ventilation system applied to apartment house is introduced and feasibility study on installation of the individual room control ventilation as energy-saving method is carried out through field experiment. While initial cost of installation for the individual room control ventilation increases, the running cost is lower than the individual household control ventilation due to automatic flow rate control and reduction of fan power, and the management cost also decreases due to extension of use life of components. As the results of field experiment on
$115m^2$ -type apartment house, the individual room control ventilation could save the amount of 1,459.5Wh/day when compared with the individual room control ventilation -
Significant air temperature increases in urban areas are known as the heat island phenomenon in a global scale. Therefore, we use numerical model in order to analyze quantitative effects by using new & renewable energy on the heat island phenomenon in urban area. The present study quantitatively analyzes the Urban Heat Island Effects, Energy-Saving Effects, and Environmental Load Decrease Effect along New and Renewable Energy Application which is 10% of the Building Energy Consumption.
-
The purpose of this study is to show the method of applying snow thermal storage system through the analysis of the cases in Japan. The results were as follows. (1) The systems in Japan were installed at the location whose annual mean air temperature was
$14.6^{\circ}C$ or below and annual snowfall was 59 cm or above. (2) By analyzing the characteristics of the systems, meltwater circulation system with a backup chiller was confirmed to be most suitable for Korea. (3) For the first time in Korea, the system with the snow storage of 500 ton was designed at Muju after analyzing regional climate characteristics. -
This study proposed the optimum design values for the biological clean room system observing the regulations of Hazard Analysis Critical Control Point (HACCP). Even though the standard for industrial clean room system has been well established, the basis for biological food clean room system is the first stage. In order to prevent the contaminations in advance for food storages, processes, and distributions, the criterion of Hazard Analysis Critical Control Point is positively required. This study also suggested the possible ways of how to avoid the hazardous contaminations.
-
Recently, the size of Large Space has been gradually enlarged, according to the development of technology, and because they're used not only for indoor events, but also for various outdoor sports, for example, baseball or soccer. Therefore, there are more demands for developing indoor environment control technology to establish indoor thermal-environment which is proper for different events held in Large Space. This study aims at offering some basic data which can be referred to as the construction guide for the full-scaled construction of Large Space in Korea by arranging the matters to be attended to in designing, and controlling technologies for efficient Large Space design.
-
The present study has been conducted to an analysis of two stage refrigeration cycle with alternative refrigerant R410A. In the analysis, single stage cycle (R22 and R410A) compared to COP changing with supercooling degree. Secondly, two stage refrigeration cycle is investigated to the existence of intercooler or supercooler. At results, supercooler contributes to the increase of cooling capacity and the decrease of COP.
-
When the suction pressure of compressor decreases under its limit, the compression ratio is increased causing the malfunctions of compressor. As the method to decrease the compression ratio, hot gas bypass system is usually adopted in heat pump system. In the hot gas bypass system, the discharged gas from the compressor is bypassed into the compressor suction, which causes the increase of suction pressure and the decrease of compression ratio. In this study, the characteristics and performances of the hot gas bypass system in heat pump was investigated experimentally with a variation of the bypass flow rate ratio. With the increase of the bypass rate ratio, the compressor suction pressure was increased, even though the total capacity and COP was decreased. From the analysis of the experimental results, the optimum pressure control algorithm was suggested in this study.
-
The purpose of this study is to investigate the field Operation Characteristics of a sea water heat source cascade heat pump system and system applicable to Building. Cascade heat pump system is composed R410A compressor, R134a compressor, EEV, cascade heat exchanger, Plate heat exchanger etc. Building area is
$890m^2$ and has five floors above ground. R410A is used for a low-stage working fluid while R134a is for a high-stage. The system could runs at dual mode. One is mode of general R410A refrigeration cycle in summer and the other is cascade cycle. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. The filed test results show that the sea water heat source heat pump system exhibits a COP of about 5.5 in cooling mode along with a heating COP of about 4.0 in 1-stage heating mode. Cascade 2-stage heat pump system is enough to supply$60^{\circ}C$ water and heating COP is about 3.0 -
The present simulation focuses on the effect of the shape of capillary tube-suction line heat exchangers(SLHX), The results in the three cases of the SLHX types show that both of the location and length of heat exchange section influence the coefficient of performance(COP) and cooling capacity. Simulation shows the COP may be improved by 4.6% and the cooling capacity may be improved by 13.6% in the Lateral type.
-
In this paper, two different types of natural gas liquefaction process are simulated and designed for secure a competitiveness in the industry of natural gas liquefaction plant. These processes are based on basic cascade process, and one of these is improved with two staged intercooler and the other is modified two staged intercooler. These processes are compared characteristics of performance with basic process. COP of cascade process with two staged intercooler and modified two staged intercooler showed about 13.74% and 21.64% higher than basic process, and yield efficiency of modified process improved comparing with the basic process by 25.93% lower specific power, respectively.
-
This study is to examine the possibility of pre-cooling at platform. Through measurement of the thermal environment of Bujeon Subway platforms, review the potential use of ground-water and night purge. The results of this research can improve the thermal environment pre-cooling of the design.
-
Deterioration of the outdoor thermal environment in urban areas such as heat island has become worse due to urbanization and overpopulation, etc. In this study, a new method which is coupled simulation of convection and radiation to evaluate outdoor thermal environment in urban area will be proposed. Because the solar radiation affects on outdoor thermal environment massively, therefore the radiation calculation is very important in outdoor thermal environment prediction. The coupled simulation proposed in this study can assess the outdoor thermal environment with accurate.
-
Improvement of Hospital Sickroom Thermal Environment through Reestablishment of Fiducial TemperatureSurvey shows that temperature accounts for 90.6% of dissatisfaction in general hospital environment. In order to improve this situation, operation and thermal data of S hospital collected in 2006 are analyzed. The objective of this study is to find optimum fiducial temperature that minimizes occupants' complaints using 6 sigma method.
-
Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below
$31^{\circ}C$ in cooling and was over$5^{\circ}C$ in heating. -
This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.
-
PMV and ADPI were numerically investigated in a large space of various ceiling height with air-conditioning systems of two type. The numerical results showed that it is small that the growth of cooling load according to ceiling height rise in a large space without windows. In case of system air-conditioner of duct type embedded in the ceiling, the air mixing effect in indoor is superior to a case installed 4way cassette type in it. For controling thermal comfort at indoor, a system air-conditioner of duct type embedded in the ceiling is little influenced according to ceiling height rise in a large space considered.
-
Recently, some major environmental problems are the increase of fossil fuel price and
$CO_2$ emission. To solve these problems, it is imperative to develop eco-friendly techniques and to reduce energy consumption in apartment complexes. Therefore, an effective system for insulation needs to be developed to reduce energy consumption. This study compares thermal characteristics between general insulation and super insulation Vacuum Panel, which is thinner and has more insulation efficiency. -
About a Structure is performance external insulation is fundamantal performance for enrgy-saving. these day, most of residential structures have constructed by internal insulation method structure. The method structure internal insulation have construction and economical efficiency, but on the other hand, be generated heat loss by heat bridge especially, be generated loss heat-energy logical consequence in structure ondol. The external insulation structure method has a mert able to minimum to loss heat about heat-bridge. But the external insulation technique is unsatisfactory statues within the know-how and method of construction and materials compared with developed countries. The recently, the requirement of market related to the external insulation technique is resulted by the energy efficiency system, but it can lead to the lack of alternative technique In study on the korea type passive house building design for insulation block method of wall system has to experimental characteristic heat-energy of practice building. In result field-experimental, the heat-bridge appeared to characteristic spent heat-energy of blow 2L class and have a suffience performance it.
-
According to the building regulation U-value limitation of window is
$3.3W/m^2{\cdot}K$ in southern regions, while U-value limitation of wall is$0.35{\sim}0.58W/m^2{\cdot}K$ . It means that the energy loss through windows is five times more than it through wall. Therefore, this study analyze how much it has affected building energy rating when the insulation performance of windows and walls is changed by building regulation. In conclusion, in order to obtain 2 rating thermal performance of windows is improved more than 10 percent of U-value limitation and it of wall is improved more than 20 percent. The thermal performance of windows is improved more than 20 percent of U-value limitation and it of wall is improved more than 30 percent to receive 1 rating. -
Jeon, Hyun-Seok;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Lee, Seung-Eon;Jeong, Gwang-Seop 614
Elastomeric Flexible Cellular Insulation is widely used in construction fields to prevent condensation and frozen pipes, reduce energy, and improve insulation. However, when Elastomeric Flexible Cellular Insulation has been installed in buildings in Korea, there was no standardization, which resulted in heat loss Therefore, insulation design standards need to be developed and from these standards, pipe insulation should be improved to increase its efficiency. This study estimates temperature and surface-emissivity according to the thickness of insulation to evaluate thermal performance. -
About a Structure is performance insulation include air-tight is fundamental performance for energy-saving. The Apartment house of permission balcony enlarged to increase the requirement of market of high-effective door. Since 2001 years the window and wall of insulation performance stronger frailty than keep up performance insulation that increase influence building energy generated heat loss at door. In study on presentation that high-insulation, air-tight door about experimental method and performance standard.
-
Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.
-
The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of
$32^{\circ}C$ , the regeneration air inlet temperature of$60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of$18.5^{\circ}C$ , when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of$60^{\circ}C$ . It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases. -
In this study the performance analysis and cooling capacity of desiccant cooling system incorporating regenerative cooler and direct evaporative cooler in the regeneration air inlet were investigated on the condition of low regeneration temperature and time rotation 180s and area ratio of regeneration to dehumidification section 0.7. The cooling capacity and COP are evaluated at various effectiveness values of the direct evaporative cooler or the regenerative evaporative cooler. As either of effectiveness of the regenerative and direct evaporative coolers of desiccant cooling system increases, both the cooling capacity and COP increase, but effectiveness value of regenerative cooler gives the opposite effect on the system performance. It is found that effectiveness of regenerative cooler less than 0.7 shows the optimum cooling capacity.
-
This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.
-
Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.
-
In this study, a consumer willingness to pays for residential heating systems are estimated by economic valuation method. The major Korean residential heating systems in apartments are central heating system (CH), district heating system (DH), and individual heating system (IH). However, DH and IH systems are adopted in newly constructed apartments. Each heating system has own characteristics which residents can identify and value. 700 households in apartment were surveyed to analyze the preference of the residential heating systems and to estimate willingness to pay. We find that the households in DH system are more satisfied with their heating system than the households in other systems overall and that consumers prefer an apartment with DH system than with IH system and the willingness to pay for IH system is less than DH system. The results indicate that DH system has the relative premium which may be caused by the safety and the convenience to manage the system.
-
In this study, theoretical analysis and evaluation tests were performed to assess the pipe stability against compaction equipments and vehicle loads when conventional construction criteria for pre-insulation heating pipes are applied and the alternative material, crushed sand, are used for backfills. The research outcomes shows that (1) the conventional code criteria for pre-insulated heating pipes is well established to support compaction equipments and vehicle loads, (2) the crushed sands as an alternative is usable as backfill materials for pre-insulated heating pipes based on the suitability evaluations of various types of pipes, and (3) the crushed sand agree well with the design consideration of pre-insulated heating pipes construction in the points of economical efficiency and construction criteria.
-
The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the
$1204\;m^2$ ($86\;m{\times}14\;m$ ), and the pumping power and branching characteristics are measured by transporting of the ice slurry. The ice slurry transporting pipe is as long as 200 m. For the same cooling load, the higher IPF is, the lower the transporting flow rate and the pumping power are. But when the IPF is higher than 15%, no less decrease of the pumping power does happen. For the branching characteristics, through the branch pipe where the flow resistance is higher, the higher IPF is measured. A little higher IPF is measured at the thermal expansion branch. -
Development of Single effect/Double lift Absorption Chiller & Heater for a District Heating Net workThis is to report the result of Development of Single effect/Double lift absorption chiller & heater which is used in the district heating net work. The heating cycle was newly developed to make the secondary hot water from evaporator and the cycle change-over function was added for the heating to the cooling mode and the cooling to the heating mode. Finally, it was assured through the site trial operation that the outlet temperature of primary hot water can be produced lower than
$68^{\circ}C$ when the outlet temperature of secondary hot water is$60^{\circ}C$ . -
Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Sang-Jae;Jeon, Dong-Soon;Choi, Jaug-Hyeon;Kwon, Hyeok-Min;Lee, Chang-Jun 673
This paper presents the optimization process of liquid desiccant cooling cycle using LiCl aqueous solution as a working fluid. Operating conditions and design factors for heat exchangers were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of$dT_{hw}$ on system performances was also examined. As$dT_{hw}$ increases, the cooling capacity increases and COP decreases. -
ERV system has installed in almost newly constructed residential building in Korea. Heat recovery features of ERV can be possible to decrease the heating and cooling load caused by ventilation. However, in case of the outdoor condition is favorable to control the indoor air, the heat recovery function of ERV does more harm than good in term of cooling load. In this study, the ERV with economizer cycle control for residential building is suggested and the performance of the suggested system will be analyzed using TRNSYS.
-
On account of Indoor Air Quality(IAQ) deterioration by reason of high insulation and air tightness for energy saving, absence of energy efficiency ventilation system development that can be domestic existing window system, the cost increase and the energy addition loss by mechanical ventilation for IAQ improvement, the ventilation obligation making design standard was prepared by a social and technical background and the necessity. In this study, an optimized design and simulation Analysis of natural ventilation window system classified by Apartment type was evaluated by CFD Computational analysis.
-
On account of Indoor Air Quality(IAQ) deterioration by reason of high isulation and air tightness for energy saving, absence of energy efficiency ventilation system development that can be domestic existing window system, the cost increase and the energy addition loss by mechanical ventilation for IAQ improvement the ventilation obligation making design standard was prepared by a social and technical background and the necessity. In this study, open module type natural ventilation window system for energy saving included a fixed and continuous quantity ventilation was developed. The purpose that indoor thermal comfort environment evaluate of indoor resident.
-
Maintaining an IAQ with fresh in school building is very important because the good IAQ can be possible to improve the academic performance. Since school buildings are very dense and require a lot of fresh air, the need for ERV(Energy Recovery Ventilator) has become obvious. While opening a window does provide ventilation, the building's heat and humidity will then be lost in the winter and gained in the summer, both of which are undesirable for the indoor climate and for energy efficiency. ERV technology offers an optimal solution: fresh air, better climate control and energy efficiency. However, when the outdoor air condition is favorable to control the indoor environment such as spring and autum in Korea, heat exchange in ERV would rather increase the cooling load than diminish. Economizer cycle control which using the outdoor air in controlling the indoor thermal environment has many benefit in terms of energy saving and IAQ control. In this study, the ERV with economizer cycle control will be suggested. And then the system control characteristics and energy saving effect will be analyzed through the TRSNSYS Simulation.
-
After revision of law of architecture in 2006, all houses which have more 100 households must has ventilation unit for the indoor air quality. Optimal design of the natural and the mechanical ventilation has being considered. In this paper, it is carried out about optimal design for airflow distribution of total heat exchanger in houses using CFD. As the result, first design of ventilation has some problem in porch area. Adding diffusers in porch area and changing diffuser schedule make more efficient ventilation than original design.
-
Energy shortage and environmental pollution caused by fossil fuels are very serious problem. Especially buildings have consumed more and more energy, and buildings are spend up to 25% of total energy consumption. So we should prepare alternatives to save energy in buildings. In apartment houses, The efficiency of thermal insulators and window glasses is very important to curtail heating energy. In this study, the energy rating of Apartment building is evaluated by applying various thermal insulators and window glasses.
-
Ondol is a tradtional Korea heating system with a long history. The ondol heating system is a default in ordinary houses and high-rise apartment alike. But Intensified Architecture Law insulation standard can't satisfied standard insulation only light weight concrete in ondol. The between light weight concrete and slab apply EPS insulation is construct for generate a method of construction. The standard insulation for floor heating system is responsible but complicate construction thermal transmittance and absorber, deteriorate the cost and decreasing the performance insulation & impact floor sound. In study on the evaluation decrease heating-load of floor construction of the insulation & absorber that improvement floor a Apartment house.
-
The purpose of this study is to present an in-site evaluation method for building insulation performance using Infra-red camera. The research contents of this study are to evaluate validity and suitability of building insulation defect survey using Infra-red camera for apartment housing with temperature & heat flow pattern analyze method. By establishing the in-site evaluation method building insulation performance using infra-red camera, it is expected that 1) building envelope repair market will be activated by using developed method in ESCO and remodeling companies, 2) the method developed in this research will contribute to reduce national energy consumption by promoting old building insulation remodeling.
-
Generally the window of the building is an objective of mining and having a distant view and also for a circulation it will can open and shut because becomes the structure insulation, the meat detailed drawing it does a very difficult portion, it is. To reduce the loss of the energy which leads, to an air conditioning energy and an expense increase problem the color which the interior furniture and the clothing due to the augmentation and the corpse ultraviolet rays of the unpleasant feeling which is caused by with the transient one solar energy influx which leads the window will burn, it joins in the window and it confronts and the novel solution is demanded.
-
The purpose of this study is to consider improvement performance to prevent condensation and draw the optimum insulation design method for building using simulation tool. In this study, the three corners, weak part in condensation, were conducted by three-dimensional steady state simulation. From the results, it is required to strengthen insulation design, and it is founded that existing insulation system typically applied to most Korean apartment buildings has serious insulation defect that insulation is disconnected by structural components at the joints of wall-slab and wall-wall in envelope. So, it is considerate to need a concrete technology improvement.
-
The filter has long been used in purification processes for indoor air quality. To determine the deodorization effect of several filter materials in a full-scale air-handling system, the present study has been carried out using a wind tunnel equipped with a heat exchanger and various filter materials, such as commercial fabric, activated carbon(AC) and silver nano-particles attached to activated carbon(Ag-AC). The experiment was conducted using an odor substance with ammonia, acetaldehyde, acetic acid. The results obtained indicate that odor substance is substantially decreased on the moisture condensation on the surface of the heat exchanger. The fabric filter has no effect for removal of odor substances. The deodorization efficiency is found to be approximately 7% in the AC filter, while the deodorization efficiency is increased up to 10% using the Ag-AC filter.
-
In Korea, since the implementation of the GMO Law, the intrest of biosafety level 3(BL3) lab. is increasing. In this study, using CONTAM which is applying multizone modelling, the multizone simulation for design verification of BL3 lab. was performed. In BL3 lab., because required air change rate is greater than general estimated air-conditioning load and it is difficult to maintain room pressure difference efficiently, to maintain pressure difference between laboratory rooms is important through sealing condition of doors and proper airflow control of laboratory rooms. In this study, about BL3 lab.(M. tuberculosis research lab.), the multizone simulation for four kind of biohazard scenarios was performed in the case of unexpected spread of contaminants in the laboratory room, anteroom, corridor and inside of BSC. Multizone simulation results show that these approach methods are used as a tool for the design and verification of BL3 lab.
-
In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has
$30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with$SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with$SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at$200{\sim}1400^{\circ}C$ . The efficiency is measured 96.67% at the particle size of$0.31{\mu}m$ , which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient. -
Axial-flow cyclone separator cluster can be used for a dust removal device inside a heating, ventilation, and air conditioning(HVAC) system of subway station. In this study, 3-dimensional computational fluid dynamics(CFD) analysis was performed to compare single unit axial-flow cyclone with couple unit axial-flow cyclone cluster. It is shown that the performance of cyclone separator is not influenced by number of single units but influenced by ability of single unit.
-
Some types of semi-Volatile organic compounds (SVOC) that are emitted from plastics used in building materials and household appliances have associated health risks, even at low concentrations. In this study, micro chamber method for measuring SVOC is introduced and SVOC such as di (2-ethylhexyl) phthalate and butylated hydroxyltoluene emitted a flooring material were measured using a micro chamber method. Airflow characteristics in a micro test chamber deeply depended on air exchange rate. From the evaluation using an index of air change efficiency, such as the air age and the coefficient of air change performance, a fixed air exchange rate of
$1.5\;h^{-1}$ in the micro chamber is desirable. -
A numerical study has been performed to investigate the thermal Performance of Solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.
-
The purpose of this research is to develop the high performance of solar chemical reactor for producing hydrogen by methane reforming reaction with steam. Two shape of chemical reactor is suggested: first type is filled with porous material and second type is spiral type. These reactors is installed on the dish-type thermal system of Inha University, Inha Dish-1. Performance analysis of these two reactors is conducted from getting methane conversion.
-
The photovoltaic/thermal collectors (PV/T collectors) combine the solar thermal collector and photovoltaic modules. They can produce thermal energy in the form of hot air or hot water, and converts solar radiation into electricity. The collecctors can improve the electrical performance of PV modules as the heat from the PV module carried away by the thermal part of the system keeping temperatures lower. The basic water cooled PVT collector has metallic water pipes attached to the back of a PV collector. There are main parameters affecting the performance (electrical and thermal) of PVT collectors. This paper analyzed the experimental performance of glazed water PVT module, considering the parameters of solar radiation, inlet water temperature and ambient temperature. It found that solar radiation is the dominant factor for the electrical performance of the collector, and for the thermal performance the inlet water temperature and ambient temperature appeared to be more related.
-
This study focus on verification of the thermal efficiency of volumetric air receiver with
$5kW_{th}$ Dish-type solar thermal system for high temperature uses by using numerical analysis compare with experimental data including shape change of absorber, direction of inlet and outlet. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Temperature variation and the flow change at the inside of the absorber has been analyzed by Star-ccm+ Version 3.02. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated. -
The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that receives solar radiation and produces electricity and heat simultaneously. In general, two types of PVT can be classified: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively lower temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of two types of the PVT combined module(water type), glazed(glass-covered) and unglazed, was analyzed. The electrical and thermal performance of the PVT combined modules were measured in outdoor conditions, and the results were compared.
-
In this study, dimensionless correlations of frost properties (i.e. the thickness and surface temperature of frost) on heat exchanger fin with nonuniform temperature distribution are proposed from frosting experiments. We analyzed the local fin temperature distribution, frost thickness and frost surface temperature on a 2D fin; in the airflow direction and the direction perpendicular to airflow. As a result, the frost growth on the fin had a close relation with fin heat conduction. The dimensionless correlations for the average frost properties were expressed as a function of dimensionless temperature, humidity ratio, Reynolds number, and Fourier number. These correlations agreed well with experimental data with the error less than 14%.
-
The present study measured frost pattern on a cylinder to propose empirical correlation equations for the local and average frost thickness, frost density and frost mass. The key parameters were diameter of the cylinders (7mm, 20mm), cooling surface temperature of the circular tube, absolute humidity of air, air temperature and air velocity. A 50% ethylene glycol aqueous solution was applied as a coolant. The frost thicknesses at both front and rear were larger than those at the other parts, while they were increased as diameter of the cylinder was increased. The local frost thicknesses at high air velocity were more uniform than those at low air velocity. The values predicted by Kim et al. under the freezer condition showed larger by the maximum of
$30{\sim}50%$ than the measured data under heat pump condition. The empirical correlations for the local and average frost thickness and frost mass were proposed. The correlation equations for the frost thickness and frost mass under the heat pump condition in the present study might predict more accurate than the other correlation equations. The proposed correlations might be applied for the freezer condition within the maximum 15% deviation from the previous correlations under freezer condition. -
A experimental study of a high efficiency transport refrigeration system for sliced-raw fish transportation is presented in this paper. The refrigeration system, that is powered by the car engine, is equipped with heat storage for reverse cycle-hot gas defrost; the stored heat is used during defrost cycle of the system. The heat storage has size
$400(L){\times}350(W){\times}250(H)\;mm$ and made of fin-tube heat exchanger. System performance and container operating conditions are experimentally investigated and analyzed under cooling and defrosting conditions with heat storage materials. The water is faster about 30% than paraffin in cooling-down time of heat storage materials with load and unload. -
Binary nanoemulsions which are defined as the, oil-droplet suspensions in binary solution (
$H_2O$ /LiBr), are developed to enhance the heat and mass transfer performance of absorption refrigeration systems. In this study, a novel two-step method is proposed to prepare the stable oil-in-binary solution (O/S) emulsion. Polymer is used as a steric stabilizer to stabilize the oil-droplets in a strong electrolyte ($H_2O$ /LiBr). It is found that the thermal conductivity of the binary nanoemulsion is inversely proportional to the emulsion size while the concentrations of oil and$H_2O$ /LiBr are less dominant for the thermal conductivity of binary nanoemulsions. -
Due to environmental concerns
$CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus actual working fluid in the system is$CO_2$ -oil mixtures even though the oil concentrations are low at the heat exchangers and the expansion device. The cooling heat transfer coefficients for$CO_2$ -oil mixtures under supercritical condition are required to designing of the gas cooler in the$CO_2$ refrigeration system properly. In the present study, the gas cooling heat transfer coefficients for$CO_2$ -PEC9 was estimated by using the Gnileinski correlation, and the Kim and Ghajar model through the previous prediction models for the thermo-physical properties of$CO_2$ -oil mixture. The Gnileinski correlation was used when the oil wt.% in the mixture is less than 1.0, and for the higher oil concentration the Kim and Ghajar model was applied. The estimated results agree with the experimental results conducted by the Dang et al. -
Exergy is the amount of reversible work obtainable when some matter is brought to a state of thermodynamic equilibrium with ambient. This exergy is availability or useful work induced from carnot cycle, and this can calculate the irreversible loss work which occurs within any thermal or power cycle. The exergy ratio is the value of exergy divided by enthalpy of ambient reference, where the quality of energy or enthalpy in substances is evaluated by exergy ratio. Exergy is very important in optimal design method of thermal system or each component, and the value of exergy at given state is calculated by equation. Here, designer can easily understand and find the value of enthalpy because enthalpy is graphically drawn in chart, however exergy did not. In this paper, exergy and exergy ratio of air were drawn on temperature-entropy chart, and we wish to this chart is a help to design, analysis and education.
-
In this paper, confined multiple slot jet impingement with exhaust ports is investigated numerically. A flow cell, defined as volume sectioned by the impingement and confinement surfaces and the centerlines of adjacent nozzle and exhaust port, is chosen for computational domain. The effects of Reynolds number and geometrical parameters on the heat transfer performance and the flow characteristics are studied. For turbulence, the Abe-Kondoh-Nagano version of the low-Reynolds k-
$\varepsilon$ model is employed. The results showed that the local Nusselt number distribution is shifted down and show poor heat transfer performance for small Reynolds number and small ratio of the lateral and axial length of flow cell. The rest of range, except the range of the shift phenomenon, can be classified into three groups by heat transfer characteristics. -
Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied several impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.
-
Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feed-water heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare wall thinning range according to change entrance nozzle diameter and position with reference numerical analysis model's wall thinning range, various numerical analysis models applied. In case of changing diameter, four different diameter is applied. And a side of nozzle position, two different position-vertical type and parallel type-is applied. And then this paper describes operation of numerical analysis which is composed similar condition with real feed water heater. In conclusion, this study shows effective design for shall wall thinning by changing nozzle diameter and position.
-
Test models which have geometrical similarities with a real room air conditioner (RAC) have been manufactured including visualization windows so that a laser beam can pass through a cross flow fan. Then, flow distributions of the RAC have been investigated using a visualization technique such as a Particle Image Velocimetry (PIV) to analyze an efficiency and noise of the RAC. Pitot tubes have also been used to measure the flow velocity inside the RAC with various positions to confirm the measurement accuracy of the PIV technique. The measured flow velocities have been analyzed and new designs of the RAC have been proposed to improve the efficiency and to reduce the noise for the RAC in this study.
-
In this study, the numerical study has carried out to analyze the leakage in a steam turbine labyrinth seal. We modified tooth shape of the labyrinth seal and finds out difference of leakage in this study. Original model is straight labyrinth seal and its modified model is slant labyrinth seal. The numerical analyses are implemented on two models. The numerical results show that each leakage of tooth shape are found 0.4781 kg/s and 0.4485 kg/s, respectively. Slant labyrinth seal seals in a steam better than straight labyrinth seal. Since, actual clearance of the stream function in the slant model is smaller than the straight model.
-
The drag reduction(DR) for Betaine+Amin and Xantan Gum as kinds of surfactant and Polyacrylamide as kinds of polymer solution according to the fluid velocity, temperature and surfactant concentration were compared experimentally. For this study, two kinds of experimental apparatus for short time and long time measurement were established. Each experimental appratus was equipped with hot water storage tanks, pumps, testing pipe network, flowmeter, two pressure gauges and data logging system was built for them. Results showed that Betaine+Amin and Xanthan Gum as kinds of surfactant had appeared optimal DR around 200-500 ppm and their DR tended to be decreased when flow velocity increased but Polyacrylamide as kinds of polymer solution showed the opposite trend to be increased when flow velocity increased. The both of them showed above 40% DR in the case of better condition by the short term measurement. But Polyacrylamide as kinds of polymer solution showed more degradation than Betaine+Amin and Xanthan Gum as kinds of surfactant by the long term measurement. As a result, Betaine+Amin and Xanthan Gum as kinds of surfactant showed better materials to use to the district heating system.
-
Bio safety level-3 laboratory is the research facility with concerns for the BL-3 contamination, at the same time the safety of it is guarantied. Based on comfortable environmental maintenance of the research laboratory, building, machinery, electricity, and controls are facilitated to keep airtightness(minus pressure) of each room in case of not only access and operation, but even emergency.
-
Biosafety research facilities require to verified about the facility and experimental environment, especially for level-3 and level-4 of biosafety research facilities verification is very important. In this paper, introduce verified procedures and present the methods and the results through a verified case of the biosafety level-3 research facilities.
-
The quantity of discharged oil from a compressor is one of the most important issues for proper operation of refrigeration system. If the oil is increased in the system not only pressure drop is increased in other components, such as evaporator and gas cooler but also heat transfer coefficient in the heat exchangers is decreased. In addition, the lack of oil in the compressor may cause a critical of the system failure. In this study, one stage single rotary compressor is used for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Characteristics of oil circulation ratio have been investigated for
$CO_2$ rotary compressor in the range of operation frequency 45 Hz to 63 Hz and the suction temperature range of$0^{\circ}C$ to$15^{\circ}C$ . The results obtained indicate that the oil circulation ratio is increased as the suction temperature or compressor operating frequency is increased. -
Recently, research and development of the linear compressor are being active. The reason is that the one has not only higher efficiency than reciprocating type, but also lower noise. But because the dicharge valve of linear compressor is operated in high pressure and temperature circumstance, it is important to prevent leakeage. In this paper three other plastic reinforced composite materials were used. Those are TPI, PEEK and PEK which were containing other volume and kind of carbon fibers. First, for assessing mechanical properties, we measured the hardness and the heating property of the trst sepecimen by the microvickers hardness tester and the differential scanning calorimeter respectively. Finally, through FALEX tester, we could know the characteristics of the wear proving the results of before-conducted experiments.
-
In this paper, a rolling piston rotary compressor having a combined vane and roller unit has been introduced. In a conventional rotary compressor, sliding motion takes place between the vane nose and roller. By combining the vane and the roller in one unit, gas leakage through a clearance between the vane nose and the roller can be eliminated, and the frictional loss between them can also be reduced to almost nought. Compressor model with the combined vane and roller has been fabricated and tested in a compressor calorimeter and computer simulation program has been developed to confirm merits of the new mechanism. In a test, cooling capacity has been found to be increased by 1.4%, and the compressor input decreased by 0.3%, resulting in 1.7% increased in EER. Simulation program confirmed the calorimeter test results and the merits of the new model as mentioned above.
-
For large reciprocating compressors in parallel operation, an analytical study has been carried out on the gas pulsation in associated discharge piping lines. Since the pressure pulsation at a valve, valve dynamics, and the gas flow rate through the valve are interrelated, affecting one another, these need to be solved simultaneously. Acoustic transfer matrix method, which relates acoustic pressure and velocity at one location to those at another location, has been adopted to calculate the effect of the gas flow at one valve location on the gas pulsation at other valve locations.
-
In this study, lubrication characteristics of sliding members were compared with the change of the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35, AISI 60) and nickel chromium molybdenum steel (AISI 4320). The Friction coefficients and the temperature variations of on the frictional surfaces were measured by disk-on-disk tribotester under the condition of fixed rotating speed. The friction surfaces were observed by scanning electron microscope (SEM). In the results, the friction coefficients of the disk surface were increased as hardness difference was increased. The friction coefficient lubricated in nano-oil was less than mineral oil. This is because a spherical nano particle plays a tiny ball bearing between the frictional surfaces, improved the lubrication characteristics.
-
Due to the law of use of sustainable alternative energy recently legislated, many public institutions are ordered to use renewable energy. So it gets people's eyes on Geothermal energy system among other suggested renewable energy. Since there is hardly existence of a volcanic region, Geothermal heat pump system is generally used most in Korea. However, the important technology and materials are not localized and further, with only our technical skills it is arduous to popularize and develop Geothermal energy because of lack of revitalization related to the law and the regime for locally suitable Data-base. Moreover, an access of renewable energy is too much hard because of people's low interests about Geothermal energy. But fortunately, the well-studied about Geothermal heat system started to be adopted in many other provinces. Therefore, we study this with intend to popularize and develop Geothermal energy.
-
The purpose of this study is to examine the energy consumption, carbon dioxide emission & energy cost of district heating using sewage source. The annual TOE of heat pump using sewage source save 37.1 percent than city gas boiler. And annual carbon dioxide emission of heat pump cut down 41.3 percent than city gas boiler. If it charges the rate schedule for district heating to apartment resident, collected amount are 3,127,170 thousand won. As energy cost of heat pump & circulation pump are 1,378,072 thousand won. the profits are 1,749,098 thousand won. As payback period is 8.97years, applicability is low level. However, it has advantages in energy consumption, carbon dioxide emission & energy cost. Therefore, it needs to proceed through government assistance.
-
To promote citizen's involvement in the GHG(Green House Gas) reduction policy, Busan city administration adopted an pilot energy incentive system called 'energy mileage'. The energy mileage system was designed to make energy end-users motivated to reduce domestic electricity use by providing financial rewards. Through the course of the pilot period, 5,3330 householders volunteerly participated the pilot system. About 66% of the participants managed to make energy saving against the same period of the previous year while 38.8% achieved the targeted reduction rate(i.e. over 10%) and received the equivalent rewards.
-
Energy planning for hybrid energy system is important to increase the flexibility in the urban community and national energy systems. Expected maximum loads, load profiles and yearly energy demands are important input parameters to plan for the technical and environmental optimal energy system for a planning area. The method for energy demand prediction has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. This method can produce 10% of errors hourly load profile from individual building to urban community. As the results of this paper, energy demand prediction system has been developed based on simulink.
-
The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector
$94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW. -
In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. Mathematical models of a main transformer cooling system were developed. These include models for the main transformer, the oil pump, the oil cooler, and the blower. The optimal oil temperature algorithm was also developed. This consists of the optimal setpoint algorithm and the control algorithm. A simulation program was developed by using mathematical models and the optimal oil temperature algorithm. Simulation results showed that the dynamic behavior of a main transformer cooling system was predicted well by mathematical models and a main transformer cooling system was controlled effectively by the optimal oil temperature algorithm.
-
Byun, Jong-Yeong;Joo, Woo-Jin;Choi, Jun-Hyuk;Moon, Choon-Geun;Yoon, Jung-In;Jeong, Seok-Kwon 961
This paper presents precise temperature control of oil outlet in an oil cooler with hot-gas bypass control as an industrial refrigerator. The control system was designed for obtaining precise temperature control performance even though abrupt disturbances based on flow rate control of hot-gas bypass. PID controller was adopted in feedback control system. We showed that the gain of PID could be easily determined by using gain-tuning methods without any numerical model. Through some experiments, excellent control performances such as overshoot within 1.7%, steady state temperature error within${\pm}0.1^{\circ}C$ were established by a simple PI controller. We expect that the system can control the target temperature within error of$0.33^{\circ}C$ under abrupt disturbances. -
A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector also were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flowrate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.
-
In this study, the thermal environment characteristics of On-Off control and thermal difference proportional control method in floor radiant heating system were researched by computer simulation. For the analysis of unsteady heat transfer phenomena in household, the method of using electrical equivalent R-C circuit is applied, and radiation heat transfer between panel, ceiling and walls in household is calculated by enclosure analysis method. The parametric study on two control methods, conventional on-off control and temperature error based time control(T.E.B.T.C.) method, are performed to compare thermal heating control performances, respectively.
-
This study has been conducted the possibility of the subcooling type ice storage cooling system that the stored ice used to subcool the condensed refrigerant. The experimental study was done to fine the characteristics of the cooling capacity according to the variation of the subcooling degree and the analysis for the peak shift effect of the full storage, partial storage and subcooling type ice storage system compared to the normal air conditioning system was also done. The result of the analysis was shown that the peak shift effect of this subcooling type ice storage system could be 61%.
-
The present study has been conducted to predict the temperature distribution in the core of the scraper type ice generator. The analytic model was simplified as the flow in the annular type cylinder, which had an inside wall moving in axial direction due to the rotation of screw and a fixed outside wall. The governing equations were arranged by the method of separation of variables. The results corresponded to the exact solutions of the Bessel function. The qualitative results such as general characteristics of heat transfer in annulus flow from outer cylinder wall to the inside wall were obtained. However the amount of the heat transfer was underestimated as low as
$1/5{\sim}1/6$ of the designed value. -
Experimental basic study was performed to understand the characteristics of sub-cooled refrigerant using a cold heat storage system. This system was made up general vapor-compression refrigeration cycle added sub-cooler and ice storage tank. The purpose of this study are to application use of cold-heat storage systems multiplicity of fields and to understand of sub-cooling system. At the condition using ice storage system, the ice making process was operated during night time by electric power. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. Comparing the result at general operation with the operation using sub-cooling system. This study showed the effects of the sub-cooled degree. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, and the compressor consume power was a little decreased. Thus the COP was also increased owing to the sub-cooling of refrigerant.
-
The purposes of this work were suggested and validated the methods of heat recovery from dyeing wastewater exhausted in Sihwa and Banwol dyeing industrial park. We analyzed the present conditions of heat supplies and demands. So it was made a selection of the system combined heat exchanger for waste heat recovery and the high temperature heat pump. We decided the specifications of the heat recovery facilities. After this, economical assessment is performed to this system. The payback periods are within 4 years, 20 years and 5 years in case of K company, S company and A company. In addition, when they are produced the heat of same capacity, quantities of pollutants from used fuels were calculated.
-
The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the
$1204\;m^2$ ($86\;m{\times}14\;m$ ). Three kinds of heat exchanger are selected, such as, plate, spiral and shell & tube type, to apply to the ice slurry systems. Experiment was done in the two cases. The first case, circulation water flow fixed at the design conditions for the state to change the flow of the supply of ice slurry. The second case, Ice slurry flow fixed at the design conditions for the state to change the flow of circulation water. Both side of Energy balance was calculated. The performance of plate heat exchanger is higher than others and it's enthalpy effectiveness is higher too. -
The theoretical simulation to predict the variation of supplying heat according to control methods of DHS(District Heating System) have been done by TRNSYS(A Transient System Simulation Program) 16. The physical system for DHS consists of primary and secondary supplying heating loop which is divided by based on heat exchanger for heating demand of building. The simulation results showed that control of secondary supplying heat had influenced more than primary supplying heat control to total energy consumption of DHS. And the outside temperature reset control of primary supplying heating loop could be reduced until about 4% overheating of each zone.
-
The optimal control system for heat source and HVAC system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters are supply air temperature and chilled or hot water temperatures. The optimal control study has been implemented for biosafety laboratory by using TRNSYS simulation program in order to investigate energy performance for heat source and HVAC system.
-
It is known that the classical tuning formula for typical PID controllers in general provides unsatisfactory results for industrial plants where the time delay exceeds the dominant lag time. For this reason, alternative strategies have been studied in order to cope with this problem and the most popular scheme is the Smith Predictor(SP). In this paper, the dynamic model of a unit apartment in the district heating system, which is the control process effected by the dead-time, is developed, and the on/off room temperature control method with the SP simulate using Matlab-Simulink. The simulation results show that the SP works effectively in outdoor temperature variation.
-
This study is intended to identify how quick disconnect coupling which connects with refrigerant piping of air-conditioner using R-22 refrigerant has effect on characteristics of flux. in the case where the air-conditioner installs utilizes quick disconnect coupling, COP has an effect on the quantity of cooling load because of changing flow rate and physical properties of refrigerant which flow into an entrance of expansion valve from coupling. Variation of flow rate can be regulated by changing expansion-contraction angle;
$\alpha$ of an entrance and an exit of coupling. In this study, quick disconnect coupling is presented flow of coupling by using FLUENT as heat flow program. To have an effect on the expansion entrance valve, and by changing expansion-contraction angle;$\alpha$ of an entrance and an exit -
In connection with a recent research project dealing with heating system in apartment buildings by district heating, it was realised that in general very little information on the actual performance of heating and hot water systems in apartment buildings has been documented. In order to improve of district heating systems, a prediction of the heat demand first needs to be determined before a production plan. this is hot water heat system developed in this paper. this is also analyzed relation heat load with preheat load in hot water heating exchanger system.
-
This paper proposes the new operation control method that let heat source system stop and circulate only hot water at low load, and verified the introduction effect. At first, we constructed simulation model of heat source system and examined the proposing method by using simulation model. At last, we examined the introduction effect of proposing method with actual building. As a result, the primary energy consumption of heat source system was reduced by about 13%.
-
Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.
-
Noise is one of the major environmental problems in human life. But hot water distributers with the flow rate control valve bring about often noise according to the heating control condition in residential buildings. The sound power level increased as the flow rate and pressure difference increased. And thus, experimental analyses for the flow rate control and the pressure difference control were carried out in this study to reduce the noise emitted from the flow rate control valve. As the results, the flow rate control method using a SMA(Shape Memory Alloy)-valve and the flow rate control system using a pressure difference sensor can be expected to control noise in the region of below 50 dB of sound power level.
-
The objective of this study is to find the optimal operational planning of the hybrid cooling system, which is combined by ice storage system and the absorption chiller. The optimization technique used in this study is dynamic programming. The objective function is summed cost during a day including charge and discharge periods of ice storage system and operation time of absorption chiller. Assuming that initially ice storage tank is stored fully and the cooling load is perfectly predicted for the operational planning. This method provides the most efficient and economic combination of equipment operational planning for cooling with respect to energy consumption cost.
-
In vapor compression systems which use refrigerant as a working fluid, the oil is commonly used for compressor lubrication. Since the presence of lubrication oil can change the characteristics properties of refrigerant, the oil affects the heat transfer performance of heat exchanger to a large extent. In this paper, we focus on the effect of PVE oil experimentally on heat transfer performance of the fin-tube heat exchangers which use R410A as a refrigerant. To evaluate the heat transfer performance, the refrigerant to air type test facility chamber has been used. Fin-tube heat exchanger with grooved has been tested while according to the oil mass fraction variation from nearly zero to 1.7 wt%. It was found that the low level of oil mass fraction has an obvious effect on heat transfer performance, while the high level seems no significant influence. The influence of the oil mass fraction to heat transfer performance, however, is different between evaporation and condensation.
-
Finned-tube heat exchangers are often made with aluminum fins and copper tubes. Usually the contact between fin collar and tube surface for finned tube heat exchanger is secured by mechanical expansion of the tubes. The objective of the present study is to apprehend how much effect clearance has on the performance of heat exchanger. This effect is studied using an experimental approach. The thermal fluid measurements are made using a psychometric calorimeter. Frontal air velocity varies in the range from 1.0m/s to 3.0 m/s. The heat transfer rate of sample which has bigger clearance is only 27% compare with the other's in dry condition. In wet condition, its heat transfer rate is 78% compare with the other's.
-
In this study, the distribution of
$CO_2$ in an evaporator with 10 parallel micro channel aluminum tubes are experimentally investigated. Each tube has 6 circular micro channels with a diameter of 0.8mm. The tubes are heated with electric resistance wires, and the distribution of$CO_2$ into each tube is investigated by measuring the outer wall temperature. The outer wall temperature was found to be higher at the exit part of the top tube. It is thought that the$CO_2$ vapor at the upper part of the header reduces the mass flow rate of$CO_2$ into the top tube. -
A numerical study of thermo-flow characteristics is presented to determine correlations of pressure drop and heat transfer for offset-strip fins. As a blockage ratio increased, previous correlations underestimate f values in laminar and turbulent regimes, and overestimate j values in laminar regime. Therefore, new correlations, which are applicable to fins with blockage ratios more than 15%, are presented.
-
The purpose of this study is to determine the performance characteristics for the micro-channel gascooler with various operating conditions. The performance of four kind of HX models were analyzed and optimized with the variation of refrigerant inlet temperature, air velocity, outdoor temperature. As a result, Model B showed the maximum capacity and high performance could be maintained for wide operating conditions. Beside, the micro-channel heat exchanger could be appled to
$CO_2$ system appropriately because of a small pressure drop and high heat transfer rate. -
The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to
$14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow. -
Mechanical facilities in modern buildings and industrial plants become more important in the view points of energy and environment issues. However, mechanical construction fields are still considered as to be subjected to buildings, even though design and construction of mechanical fields in the construction production process is independent of other fields. Recently, 'Framework Act on the Construction Industry' has been revised since 2007. According to the revision, the barrier of general construction and specialized construction is collapsed and the construction company can register any type of construction classification if they are able to carry out the construction mission. The mechanical construction fields are exempt until 2011 because of the protection of mechanical construction industry. In the present study, the bidding system has been prospected due to the revision of 'Basic Law on Construction Industry' after 2011. The trends for development of mechanical construction fields has been also discussed.
-
The aim of this paper is improvement plan of mechanical field construct production system in Korea construction industry market. Recently Korea's construction production system is changing rapidly. While change, mechanical system construction field must prepare proper system for construction production system and later mechanical construction work will give order directly. Through this study the author will show the improved mechanical field construct production system and it can useful future construction industry production system in Korea.
-
The use of cooling towers in the air conditioning systems of buildings is increasing. In closed wet cooling towers, the heat transfer between the air and surface tubes can be composed of the sensible heat transfer and the latent heat transfer. The latent heat transfer is affected by the air and spray water. This study provides a designing methodology of heat exchanger for closed wet cooling tower. The correlation equation was derived to interpret the mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental results. The results from this correlation equation showed fairly good agreement with experimental data.
-
The refrigerant R-134a flow distributions are experimentally studied for a round header/ten flat tube test section simulating a brazed aluminum heat exchanger. Three different inlet orientations (parallel, normal, vertical) were investigated. Tests were conducted with downward flow for the mass flux from 70 to
$130\;kg/m^2s$ and quality from 0.2 to 0.6. In the test section, tubes were flush-mounted with no protrusion into the header. It is shown that normal and vertical inlet yielded approximately similar flow distribution. At high mass fluxes or high qualities, however, slightly better results were obtained for normal inlet configuration. The flow distribution was worst for the parallel inlet configuration. Possible explanation is provided based on flow visualization results. -
A numerical study has been conducted to investigate the effect of tube arrangement on the heat transfer and the pressure loss for cross flow heat exchangers. By defining a transverse deviation factor,
${\varepsilon}_t=l_T/S_T$ , the flow pattern and the heat transfer characteristics are compared for selected${\varepsilon}_t$ values of 0.0(in-lined), 0.1, 0.2, 0.3, 0.4, 0.5(staggered) by using a commercial software. Computational domain includes 1 pitch in the transverse direction and 5 pitches in the flow direction with due periodic boundary conditions. -
The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with pass variations in 8 samples. Results of a numerical analysis using the CFX-11 were compared with results of an experiment. Numerical analysis and experiment were conducted under an input power of 150 W, inlet temperature of
$35^{\circ}C$ and mass flow rates of$0.7{\sim}2.0\;kg/min$ . The numerical results showed reasonably good agreement with the experimental results within about$3{\sim}5%$ . Also, the numerical results showed that the sample 2 types with the 2 pass gave better performance than the sample 1 types with the 1 pass from the viewpoints of heat transfer and pressure drop. -
Experimental investigation on two-phase flow boiling heat transfer of R-410A and R-134a in horizontal small tubes is reported. The pressure drop and local heat transfer coefficients were obtained over heat flux range of 5 to
$40\;kW/m^2$ , mass flux range of 70 to$600\;kg/m^2s$ , saturation temperature range of 2 to$12^{\circ}C$ , and quality up to 1.0 in test section with inner tube diameters of 3.0 and 0.5 mm, and lengths of 2000 and 330 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects of mass flux, heat flux, and inner tube diameter, on pressure drop and heat transfer coefficient are presented. The experimental results are compared against several existing correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes is developed. -
The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle
$180^{\circ}$ ,$160^{\circ}$ ,$140^{\circ}$ ,$120^{\circ}$ and$100^{\circ}$ . The zigzag PCHE was numerically investigated for Reynolds number in a range of$150{\sim}800$ . The temperatures of the hot side were performed at$80^{\circ}C$ while that of the cold side was conducted at$20^{\circ}C$ . The results show that the performance of heat transfer rate for zigzag channel$100^{\circ}$ increases about 11.5% compared to that of zigzag channel$180^{\circ}$ . On the other hand, the performance of pressure drop for zigzag channel$100^{\circ}$ is remarkably higher than that of zigzag channel$180^{\circ}$ , about 1.4 times. -
The performance of louver-finned flat-tube and fin & tube radiators for computer CPU liquid cooling were experimentally investigated. In this study, 7 samples of radiators with different shape and pass number (1, 2, 10) were tested in a wind tunnel. The experiments were conducted under the different air velocity range from 1 to 4 m/s. The water flow rate through a pass was 1.2 LPM. Inlet temperatures of air and water were
$20^{\circ}C$ and$30^{\circ}C$ respectively. It was found that the best performance was observed in the louver-finned flat-tube sample considering pressure drop and heat transfer coefficient. -
In the present study, the flow and heat transfer characteristics of a large plate heat exchanger are investigated numerically. The flow passages are very complicated due to the grooved corrugation patterns of the plate surface so that the detailed mesh and the large amount of the computation time have to be required in the numerical simulation for the conjugate heat transfer analysis. In order to accomplish the efficient and fast analysis of the heat transfer characteristics in the plate heat exchanger, a semimicroscopic method using the porous media model has been investigated numerically. The results showed that the characteristics of the heat transfer and pressure drop, which are respectively presented with Colburn j-factor and Fanning f-factor, are in a good agreement between the detailed mesh and the porous media model. The results of the present study could be applicable to the numerical analysis of entire flow passages in the large plate heat exchanger using porous media treatment.
-
Fin-tube heat exchangers are widely used in refrigeration systems. To improve the performance of fin-tube heat exchangers, the shape of plain fin was developed in slit fin and louver fin. These pins have higher heat transfer performance as well as larger pressure drop. Recent studies of a delta winglet vortex generators(DWVG) show less heat transfer capacity than louver fin. However, the DWVG have very small pressure drop. This paper compares the performance for the plain fin and DWVG fin in terms of flow characteristics and heat transfer based on CFD analyses. The DWVG generate vortex and delayed flow separation and leads to a reduction of a wake region behind a tube. The results show that the DWVG produce improved heat transfer and reduced pressure drop compared to a plain fin. This result is opposite to the Reynolds analogy.
-
In the present study, natural convection over a heat sink with a horizontal circular base and rectangular fins was numerically analyzed. To calculate natural convection heat transfer, the assumptions of ideal gas and laminar flow were made for air. Flow patterns around the heat sink were chimney-like. The resultant temperature distribution on the circular base appeared almost uniform. Parametric studies were performed to compare the effects of fin length, fin height, the ideal number of fins, and heat flux on the average temperature of a heat sink and the average heat transfer coefficient from the heat sink array. Correlation to predict the average Nusselt number was presented.
-
Heat loss from a convective rectangular profile annular fin with variable inside fluid heat transfer coefficient and fin height is calculated by using both the one dimensional analytic method and two dimensional variables separation method. Heat loss from the two dimensional method and the relative error of heat loss between the one dimensional method and two dimensional method are presented as a function of the fin length, ambient convection characteristic number and fin height. One of the results shows that the relative error of heat loss between one dimensional method and two dimensional method is within 0.7% in the range of given parameters in this study.
-
Korea is an industrial country that overspends energy and has a policy that is more focused on a supply side. When an urban developmental program is to set up, surveys are carried out only with the respect to electricity, telecommunication, gas, and heating sources. Based on the existing survey results, the problems related to the supply side are being dealt with more importantly and the quantities of those supplies are estimated only by each energy source. The aim of this study is to provide basic information on energy consumption patterns of a diverse comsumer groups including industry, transportation, commerce, public and household to plan diverse energy policies. Through this basic information, it may be possible to analyze the energy consumption pattern by each consumer group and provide data for setting up efficient energy policies by the government. The energy consumption map that are analyzed and developed by the data obtained from Busan municipal area will be deposited and used as a part of the national energy statistics.
-
The T-s chart of air displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. In previous study, the software analyzing 31 kinds of values in water system and 32 kinds of values in air-conditioning system were developed. In this study, the software drawing 13 kinds of quantity of state on air properties as ideal gas and analyzing 25 kinds of values in any air system was developed. The 13 kinds of quantity of state on air properties are temperature, pressure, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, and velocity of sound, and the 25 kinds of values including 13 kinds are mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, reversible work, lost work, and relative humidity. The developed software can draw any range of chart and analysis any state or process on air system. Also, this supports various document-editing functions such as power point. We wish to this chart is a help to design, analysis, and education in air system field.
-
Cost allocation on cogeneration is a methodology dividing the input of common cost to electricity cost and heat cost. In the cost allocation methodology of the electricity and heat on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, reversible work method, various exergetic methods, and so on. In previous study, various cost allocation methodologies have been applied and analyzed on a gas-turbine cogeneration producing the 33.1 MW of electricity and the 32.2 Gcal/h of heat, a steam-turbine cogeneration producing the 22.2 MW of electricity and the 44.3 Gcal/h of heat, and combined-cycle cogeneration producing the 314.1 MW of electricity and the 279.4 Gcal/h of heat. In this study, we integrately analyze the results of previous studies and examine the generality and rationality each methodology. Additionally, a new point of view on the values of alternative electricity efficiency and alternative heat efficiency in the previous methodologies was proposed. As the integrated result, we conclude that reversible work method of various common cost allocation methodologies is most rational.
-
In this paper, the flow characteristics of the mixed-flow pump impellers and diffusers were numerically predicted by commercial CFD software and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. Firstly, the design optimization of the defined impeller geometric variables has been done. After that, the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design of the defined diffuser shape variables has been performed. The reason for the performance improvement was discussed by examining the flow characteristics through the diffuser.
-
Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.
-
In this study, the performance of solar assisted hybrid heat pump system with cloud cover were analyzed by using experimental method in spring season. It was consisted of concentric evacuated tube solar collector, heat medium tank, heat storage tank, heat pump, and so on. As a result, the solar radiation should be maintained over
$4.1\;MJ/m^2$ in order to operate solar heating system for heating. Solar heat of collector wasn't affected by ambient temperature, but cloud cover has a big effect to collector efficiency. In addition, the collector efficiency is about 50-60%, and solar fraction is 40% for this system. -
A manipulator is operated for the motion of mechanical hands or arms. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to viscous effect (the Reynolds number), aspect ratio of the liquid inside the cup and the acceleration ratio (the Froude number). Through this study, the height of the free surface rise in a cup has been predicted and the detailed velocities in the liquid have been examined. Generally, the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. However, the influence of the aspect ratio on the maximum rise of the free surface is not negligible in the range of 10 < Re < 100.
-
This paper presents operating characteristics of internal heat exchanger(IHX) for
$CO_2$ geothermal heat pump in the heating mode. Mass flow rate of$CO_2$ , inlet temperatures of$CO_2$ at high and low pressure side were selected as main effect factors by using fractional factorial DOE(Design of Experiments). And RSM(Response Surface Method) was used in optimization phase. The results show that heat transfer rate of IHX increases when either inlet temperature of low pressure side decreases or inlet temperature of high pressure side increases. Effectiveness of IHX increases with increasing of inlet temperature of either high pressure side or low pressure side. Finally, performance contour map was provided over the operation ranges of the main design factors. -
Recently, we often encounter water shortage problem due to drought during dry season. Although we have built dams and expanded our tap water system greatly to meet the increasing demand of water, this approach has its inherent limitation including environmental destruction in the course of the dam construction. Therefore, this paper is aimed to analyze the water recycling models developed in other countries and modify them to fit into our system. Also the water recycling system in Busan municipal area was analyzed to propose an alternative method for reusing the recycled water from wastewater treatment area.
-
As Social Overhead Capital(SOC) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, it is needed to introduce a compulsory ventilation system as well as natural ventilation mechanism. The former, that is, a special compulsory ventilation facility is very useful and helpful to prevent a tunnel of being contaminated by traffic in most case. In the case of obtaining clearer and longer driving view, the ventilation systems have to be considered in order to remove floating contaminants or exhaust gas from engines. In this paper, discharge electrode design technology will be discussed.
-
In this study it is intended to review the moving characteristics of smoke by performing visualization for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than
$173\;m^3/s$ ,$236\;m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time. -
Snow melting system is adapted for safety and environment sides. Geothermal System has some problem of unbalance between summer and winter heat loads. Snow melting system with piping system is widely adapted in Japan. In this paper, the variation of road surface temperature along time for heating load is investigated. And for checking the difference between electrical melting system and piping melting system, other design parameters is investigated.
-
Seawater amounts to 70% of the earth and represents a quite unlimited resource for the production of fresh water by desalination processes and for the extraction of dissolved salts present in it. Recently, the falling film evaporation has increased in interest as an efficient method for seawater desalination system. In the desalination system, the flow characteristics of the falling film is very important issue to make highly efficient system. So, this study is taken to investigate numerically the falling film thickness on the inlet Renold Number ranges are 400 to 700. Numerical simulations are performed using FLUENT6.3.26, a commercial CFD code.
-
The study aims to analyzed and identify the heat transfer characteristics of heating unit for car using experimental method in order to design DPH. The temperature comparison processes were done with various experimental conditions. In addition, the optimal conditions of DPH design were proposed as field test in real car, hot air flow, transient situation.
-
In the present study, performance characteristics on environment change of A/C applied fin-tube and PF heat exchangers were experimentally investigated. Capacity and COP changing an outlet air velocity, an indoor/outdoor temperature and a relative humidity were obtained. Air-enthalpy calorimeter was used. As the air velocity, indoor temperature and relative humidity increase, capacity and COP increase. PF A/C has smaller refrigerant weight than the fin-tube A/C. The performance of PF-2 A/C with the squarer fin was more excellent than that of PF-1 A/C with the triangler fin.
-
The purpose of this study is to introduce wasted heat recovery heat exchanger for different kind of material in HVAC systems in field. For the purpose of estimating the large volume rotary heat exchanger and cross flow plate heat exchanger in heat recovery ventilator.
-
The main objective of this prototype is to control resonance frequency of DTL system through the temperature control of cooling water. It is to resonant frequency of the drift tube cavities to 350 MHz. This paper describes the design of a prototype cooling water skid required for the temperature control of the DTL cavities, focusing in the modeling and simulation of the cooling system, the sizing of water pumping skid component.
-
In this study, an analysis was performed on an evaporative steam generator (concentrator), where natural circulation convective boiling occurs on tube-side by condensing hot steam on shell-side. Existing correlations on two-phase pressure drop, boiling or condensation heat transfer were used for the analysis. The effect of number of tubes, tube length, etc. on thermal performance was investigated. Simulation results reveal that steam generation rate increases almost proportionally to the tube length, or number of tubes. It is also shown that water circulation rate decreases as tube length increases.
-
The TES (Thermal Energy Storage) cooling system utilizing cheaper off-peak electricity has been applied just for building air-conditioning currently and causes limitation of usage rate and inefficiency of national resources utilization. In this regard, more says the necessity to apply TES system in industrial cooling system which is longer using period and wider usage. In this study, we will approve the technical and economical improvement in efficiency of industrial cooling system applied TES system by utilizing cheaper off-peak electricity and it will attribute the promotion of TES system and stabilization of supply and demand of electric power by proving the necessity to develop more efficient industrial cooling system by combining TES system.
-
Since the operating pressure of
$CO_2$ gascooler is so high compared with that of previous subcritical condenser, the optimization of gascooler is needed for improve heat exchanger performance. In this study, the performance characteristics of five kinds of heat exchangers were analyzed and compared with operating conditions. As a result, the 4-20 HX-tube shows the maximum gascooler capacity because the heat transfer is effective and pressure drop is small. Beside, the high performance of 4-20 HX-tube could be keep for wide operating condition. -
The energy conservation in buildings affects environmental preservation as well as economic benefits, and creates the comfortable indoor environment set for the inhabitants. Especially, apartment buildings show ever-increasing energy consumption with large-sized and high-class tendency, thus energy saving counterplans are needed. The present study is to develop an optical control algorithm by using heating load curve according to the outdoor temperature change. Heating load analysis should be performed before the present method can be applied. Dynamic heating load simulations are performed by resistance-capacitance method. Results show that heating load decrease linearly according to the increase of outdoor temperature.
-
In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as
$NH_3$ , SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data. -
Growing interest in
$CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing$CO_2$ emissions manifested in the Kyoto Protocol. In this paper,$CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently$CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more$CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its$CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar. -
Natural gas liquefaction plant and LNG carrier needs large capital investment. Therefore a lot of small or middle scale natural gas fields aren't developed due to poor profitability. If natural gas is made to gas hydrate instead of liquefaction, developing small-scale natural gas field can be profitable because building cost of gas hydrate plant and carrier are economical. Because the process of making gas hydrate consumes much energy, the gas hydrate formation process has to be optimized for energy consumption. In this study, gas hydrate formation process was investigated experimentally. Experimental apparatus consists of reactor, pressure regulator, chiller, and magnetic stirrer. 99.95% methane was used to make gas hydrate. Tests were conducted at variable pressure and temperature condition.
-
The impeller and vane diffuser for the mixed flow pump(NS550) was designed by using meridional selection program and inverse design method. We decided the meridional shape of the impeller from the meridional design parameter, such as the specific speed and maximum diameter at the impeller exit. The meridional shape of vane diffuser was set from the impeller shape, distribution of cross sectional area and maximum diffuser diameter. The angle of impeller blade and diffuser vane was designed by using inverse design method. The predicted overall performance by using commercial CFD code(ANSYS CFX-11) shown good agreement with design goals.
-
Drying process in the cylindrical thin film layer of sludge with the thickness less than a few millimeters has been investigated. Thin film drying is specially designed and used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic cylindrical surface through which thermal energy is supplied to the layer during drying. The wall temperature is assumed to be constant during drying in the present study for the simplification. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of some physical parameters on drying has been examined to figure out the drying characteristics of the sludge layer.
-
If water-chillers are arranged in series-series counterflow, compressor lift of each chiller will be decreased in comparison with water-chillers in parallel. That means that compressor power of the chillers in series will be lower than that of chillers in parallel. However, the pressure drop of the water flow through the chillers in series will increase, and thus increase the power of water pumps. This disadvantage will be made good by increasing the temperature difference of water flow through evaporator and condenser, but the water flow rates will decrease. This paper explores the optimal parameters in system of series-series counterflow for central chilled water plants such as the leaving chilled water temperature, the leaving condenser water temperature, condenser water flow rate and number of chillers in series.
-
This test was progressed in the test house of KICT as sectional research of Center for Sustainable Housing. It included a ventilation rate of hybrid ventilation equipment, temperature, and gas test using the SF-6. The purpose of this test is to demonstrate the performance of viovent by estimating an outdoor air flow rate through viovent which the flimmer filter is installed and decide the leakage after operating the constant airflow fan within a house. First, the outdoor airflow rate through viovent measured
$130\;m^3/h$ more than a legal required ventilation rate,$104\;m^3/h$ . And then it sufficiently satisfy a legal standard, 0.7 air change/h. Secondly, the result of this test exposes that the leakage in the residence is about$20{\sim}25%$ . Especially, the outdoor air flowing through the gate occupies 50% of the total leakage. -
In order to comply with the global energy crisis and environment problem, it is necessary to research and develop the energy utilization technology with the reduction of the primary energy usage. Although the increasing rate of energy consumption started to attenuate, the entire consumption of energy as well as
$CO_2$ emission rate tends to increase steadily along with an economic growth in Korea. The energy demand in Korea increases by annual 3.7% during the period from 2000 to 2006. And it is expected that we should take a charge of the greenhouse gas reduction obligation by the Climatic Change Convention(Kyoto Protocol) during the 2nd pledge period($2013{\sim}2017$ ). According to the IEA report in 2005, the emission amount of carbon dioxide is the 10th place in the world, and the increasing rate is 4.7% annually. Considering the economic scale of Korea, the degradation of energy usage is inevitable when the greenhouse gas reduction obligation come into effect. Therefore, effective energy usage is a very important issue to minimize baneful influence on industrial and economic activities. -
The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of V type circular fin-tube heat exchanger. Four kinds of V type fin having the same fin area and the different span wise angle tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for decreasing the span wise angle up to 58% and 25% respectively.
-
This study simulates the flow characteristics of the turbo-fan which was applied to the industrial scale. Numerical analysis has been carried out to investigate a pulsation behavior of exhaust air that flow out the turbo fan, considering a constant rotating rate of impeller. Moving mesh technique provides time-accurate solutions for the flow inside an impeller. From the numerical results, FFT analysis has been made for pressure pulsations inside turbo-fan casing. The numerical simulation shows the pulsation of model-2 has higher than model. Additionally, BPF value is almost same as the numerical results.
-
This study is to see the internal flow for the plasma cutting fume collector. Plasma cutters are widely used in the canning industry and Fume cause the device because it will affect the performance of the design of dust collector. Therefore, to determine the distribution of the internal flow using CFD and Solver was used for calculated with commercial CFD code STAR-CCM+. The results show that design of chamber was incorrect after passed the filter for exhaust to the fan. And the location of the duct to the influx of dust collector and the design was incorrect. In addition, an array of filter was also inappropriate. As a result, present fume collector need to improvement.
-
A proprietary device is adopted to break out the membrane of cell in the rigid polyurethane foam. As it is known, the membrane of cell is hardly tearing-off thoroughly in a mechanical way due to both its elastic characteristic and micro sized pores. In this study, a novel experimental approach is introduced to burst out all gases inside the cells of the rigid polyurethane foam by abrasively grinding micro-cells completely into fine powder. The biggest advantage of this approach is to be capable of releasing all gases out from the cell even in the micro pores. As clearly reflected from the repeatability, the accuracy of the result is highly improved and high confidence in the data sets as well. For the measurements of not only gas composition but partial pressure for each gas simultaneously as well, a precision gas mass spectrometer is used in-line directly to the abrasive grinding device. To control the starting point of the polyurethane foam, all samples were prepared on site in the laboratory. Manufactured time is one of the most critical factors in characterization of cell gas composition because it is known that one of gas composition, especially, carbon dioxide, is diffused out dramatically in a short period of time as soon as it is foamed.
-
This study is aiming comparison and analization between efficiency of hybride air conditioning system which uses low temperature water under dam and air and EHP(Electric Heat Pump). The experimental was carried out with air cooling tests for EHP system having 80HP and composition heat pump system. P-i diagram of both systems and COP was used to derive schemetic and calcuations. As results of the tests, hybride system has 1.4 time higher efficiency coefficient.
-
High power light emitting diode(LEDs), a strong candidate for the next generation general illumination applications are of interest. With major advantages of power saving, increased life expectancy and faster response time over traditional incandescent bulb, the LEDs are rapidly taking over many applications such as LCD backlighting, traffic light, automotive lighting, signage, etc. The increased electrical currents used to drive the LEDs have focused more attention on the thermal management because the efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. There exist some problems that are caused by heat generation in the LED package, such as wire breakage, yellowing of epoxy resin, lifted chip caused by reflow of thermal paste chip attach and interfacial separation between LED package and silicon resin. The goal of this study is to analyze high power LED thermal properties of using pulsating heat pipe.
-
In this study the purpose is development of passive cooling system for telecommunication cabinet used by latent heat material. This cooling system is not required for electronic power. It was tested for the performance of the telecommunication combined latent heat material with
$48^{\circ}C$ of phase changed temperature and heat pipe. At$45^{\circ}C$ of outside temperature, when heater power was 1,000 W and 1,500 W, the inside temperature of the cabinet was$55^{\circ}C$ and$62^{\circ}C$ . This system was showed better performance than the other systems. -
The direct drive motor used in a precision motion rotate at about 1/10 speed and high torque comparing with general rotary motor. Excessive heating of the coils cause an exacerbating the heat problems and reducing the performance of motor. Because the rotation speed of the rotor and surrounding air is low, the motor can not be inefficiently cooled, the thermal analysis in the motor is very important. As the variations of rotation speed and torque, the temperature of several parts is measured and the features of the heat transfer is analyzed and improved.
-
In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(
${\eta}_E$ ) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased. -
Stirred tanks are widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. In this study, a numerical study was conducted to predict the mixing characteristics in a simple stirred tank. The flow in the model stirred tank was calculated utilizing the multiple reference frame (MRF) and the sliding mesh (SM) capabilities of a commercial CFD code (Fluent 6.2). The results of the flow simulation were analyzed in terms of the mixing efficiency, and the applicability of MRF and SM methods was also discussed.
-
BIM(Building Information Modeling) is considered a new paradigm and a powerful method in building design, construction and maintenance. However, it is still hard to implement environmental performance analysis using BIM in design stages. This study aims to reveal practical problems and evaluate interoperability between building design information and performance analysis with case studies. Three case studies are performed using two environmental analysis programs (IES/VE, EnergyPlus) and BIM-based architectural design programs (Revit, GoogleSketchUp) in this paper.
-
This study describes experimental study on the performance characteristics with load condition in hybrid solar heating system during spring season. The room temperatures, the hot water conditions and the lower part temperatures of heat storage tank were changed to analyze the system performances. As a results, the hot water was significantly affected by the ambient temperature. The indoor setting temperature affected the solar fraction. When the low part temperature of the storage tank increased, the temperature of the hot water rose and the temperature of the hot water in morning was affected by the ambient temperature.
-
The performance of a heat pump using river water as a heat source was compared with that of a conventional air-conditioner for cooling and a boiler system for heating. The heat pump system using river water considered the 1-stage cycle for cooling and the 2-stage cycle for heating. The COPs of the river water source heat pump were
$0.5{\sim}1.1$ higher than those of the conventional system in the cooling season. The LCC of the river water source heat pump system was lower 13.5% and 32.4% than that of the conventional system I and II. In addition, when the initial cost ratios of the river water source heat pump system to the conventional system I and II were less than 1.2 and 1.4, respectively, an acceptable payback was found to be less than 5 years. -
Recently electronic circuit pattern printing technologies like antennas of RFID process are paid attention. oven drying system is being used since drying and curing time of RFID Tag Gravure printing normally takes from 5 minutes and up to 30 minutes long. In this case the parental material which is of a sheet shape is possible, however, for a massive and a continuous production drying and curing process must be done on-line. This research compared and analyzed the an oven type drying device and a traditional hot-air drying device. Considering the experiment result, the cell depth that shows low resistivity, which doesn't consider the pattern difference, is
$31{\sim}33{\mu}m$ . Also, oven drying system showed some resistivity after around 120 seconds of drying time, and showed much better performance in minimum resistivity compared to the hot-air drying system. -
Drainage noise with making think about what they do disturbs neighborhoods live under source of noise. elbow pipe built in the house. the general elbow pipe has a rectangular elbow because of easiness when the plan set up or executing. therefore, free falling fluid impacts on the wall of the elbow pipe almost at one point. in this paper, to disperse the potential energy, the shock decentralizes from tiny area to large area. And It is considered how the characteristics change according to the noise of transformed shape of pipe, then researched the effectiveness of transformed pipe configuration.
-
Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.
-
Combustion instability is a major issue in design of co-generation gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of co-generation gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a simple co-generation gas turbine combustion system, which shows the validity and effectiveness of the approach.
-
While industrial development as many buildings were builted, amount of energy consume in building also increase rapidly. At this point be tormented the energy depletions are big problem on the rise. The development of renewable energy in trying to resolve the fundamental problem that the technical level is still incomplete. Because of this, reduce energy use in buildings to lot of study. Most of the energy involved in building mechanical system for so many research is continue. Among them, be interested in building mechanical system. Building mechanical system is configured Air conditioning, sanitation, urban (environmental) equipment. In the design of equipment, installation, maintenance, applies to all devices in the field of industrial equipment and general engineering equipment field are within bounds to say that all of the equipment field. However, domestic technology level is still fly short of international standards in architecture, we spand many energy. Because of this, find the current situation and identify the problems look up ways to improve them.
-
Darrieus wind turbine blade is one of the vertical wind power system in which the lift of blade is used. In the calculation of wind power for the type of that, the multiple streamtubes method is known as an effective method. But it has big difference in the region of higher tip speed ratio because the incoming air velocity is used in the calculation of lift. The incoming air velocity is reduced from inlet to outlet continually by transferring energy to the wind blade. In this study, the air velocity on the blade, which is called blade velocity, is obtained with newly developed algorithm and used to determine the lift. And it is verified that applying blade velocity on the lift calculation cause the power prediction to improve dramatically in the region of higher tip speed ratio.
-
Until now for the safety of structures and equipment monitoring technology to measure the amount of the physical, if that is the one, one-point or single-source target is one the most. Therefore, becoming more numerous and complex to measure the amount of physical measurement technology that is comprehensive and complex, multi-source concepts to the monitoring of a multi-sensing technology is required. Have the same characteristics of multi-source multi-use space such as a multi-structure of facilities/equipment is. The people's safety in a multi-use facility will be directly related to life and even a little carelessness can lead to large-scale disaster occurs because of several factors, risks and to manage detect in advance the development of an intelligent monitoring technology is essential. Therefore, this study shows that multiple structures/facilities to improve the quality of human life in research to maintain a safe and comfortable living space for multi-source intelligence to the development of monitoring technology to achieve that goal, and the ubiquitous sensor network system on the basis of the wireless transmission module, and multiple research facilities/equipment for the ultra-small sensors for health monitoring study was performed.
-
In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around
$51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day. -
Since the cooling performance of a
$CO_2$ cooling cycle is varied significantly with a variation of refrigerant charge amount and outdoor temperature, the reliability of$CO_2$ system is down. In this study, the performance characteristics of three kinds of$CO_2$ systems were measured and analyzed by varying refrigerant charge amount and outdoor temperature so as to study the characteristics of variation with cycle option. The applied system options are the single-stage compression(1C-1E) system, two-stage compression with 1-EEV(2C-1E) system, and two-stage compression with 2-EEV(2C-2E) system. The performances of two-stage compression with 2-EEV system were less sensitive than those of other systems and the system operated safely and steadily for wide charge amount. The performance of the two-stage compression with 1-EEV(2C-1E) system was the most sensitive to the charge amount, and that of the single-stage compression(1C-1E) system varied a lot with outdoor temperature. -
Fluid flow and structural analyses of an electronic expansion valve (EEV) using CO2 as a working refrigerant are carried out to estimate the mass flow rate and maximum stress. An engineering sample EEV that the orifice diameter is 1.8 mm was fabricated. The mass flow rates were measured at various EEV inlet temperatures and pressures for several EEV openings using experimental heat pump system. The sample EEV has over 35 MPa burst pressure and the maximum mass flow rate of CO2 through the EEV increased to 100 g/s at full opening condition.
-
The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.
-
Kong, Sang-Woon;Ha, Soo-Jung;Jang, Jeong-Wan;Hwang, Jong-Ho;Son, Kil-Jae;Lee, Hyun-Jik;Kim, Jong-Soo 1503
Bubble jet loop heat pipe is a newly devised variation of heat pipe in which heat is effectively transported by the latent heat of evaporation and condensation as well as the heat capacity of circulating working fluid. The circulatory and oscillating motion of the working fluid becomes possible by the motion of bubble jet which is generated at a narrow circular gap. These bubbles are condensed at the condensing section. Bubble jet loop heat pipe makes it possible to carry heat long distances upward and horizontal directions. Because Its structure is a very simple and a low cost, it is available for the floor heating, vinyl house heating, the defrosting of heat pump system and home refrigerator. -
Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.
-
Renewability and pollutant free energy source makes hydrogen energy popular rapidly. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of a steel pipe used in snubber system. The amplitude of pressure reduction were varied from
$0.054{\sim}0.321\;kPa$ for 10 hz to 60 hz motor speed. Compressor operation by motor with 10 to 60 hz were resulted in reduction of pressure pulsation from 16.415% to 35.151%. Pressure losses were varied from$0.001%{\sim}0.759%$ , and pressure drop per centimeter of the steel pipe were varied from$0.0160{\sim}16.03\;Pa$ . -
This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.
-
Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to
$40\;kW/m^2$ , mass flux range of 200 to$600\;kg/m^2s$ , saturation temperature range of 5 to$10^{\circ}C$ , and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.