Proceedings of the Korean Magnestics Society Conference (한국자기학회:학술대회 개요집)
The Korean Magnetics Society (KMS)
- Semi Annual
- /
- 2233-9485(pISSN)
- /
- 2233-9574(eISSN)
Domain
- Physics > Particle Physics/Field Theory
2003.06a
-
Semiconductors with ferromagnetism at room temperature has been actively searched for in recent years; a prospect of devices using both charge and spin continuously gives impetus to the activities. Transition metal doped oxide materials have been of particular interest. Co substituted ZnO [1] and TiO
$_2$ [2] thin films, for example, were reported to show ferromagnetic properties at room temperature. However, various studies do not seem to converge on a definite picture [3,4,5]. The issue is rather fundamental: whether a system shows ferromagnetic properties at all, and in case it does, whether the system possesses a close coupling between magnetism and transport properties. In this talk, we shall assess the current status of transition metal doped oxide materials as room temperature ferromagnetic semiconductors. -
Microstructure and magnetic transport phenomina in rf sputtered AlN/Co type ten-layered discontinuous films of nanoscaled [AlN (3 nm)/Co (t nm)]...
$\sub$ 10/ with t$\sub$ Co/=1.0∼2.0 nm have been investigated. The microstructure and tunneling magnetic resistance of the samples are strongly dependent on the thickness of Co layer. Negative tunneling magneto-resistance due to the spin-dependent transport has been observed along the current-in-plane configuration in the samples having the Co layers below 1.6 nm thick. When the thickness of Co layer was less than 1,2 nm, randomly oriented granular Co particles were completely isolated and embedded in amorphous AlN matrix, and the films showed the superparamagnetic behavior with a high MR value of Δ$\rho$ /$\rho$ $\sub$ 0/=1.8 %. As t$\sub$ Co/ increases, a transition from the regime of co-existence of superparamagnetic and ferromagnetic behaviors to ferromagnetic behavior was observed. Tunneling barrier called "decay length for tunneling" for the films having the thickness of Co layer from 1.4 to 1.6 nm was measured to be ranged from 0.004 to 0.021${\AA}$ $\^$ -1/. -
-
Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10
$\^$ -5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$ -4/ range at bias voltage of more than 1.8 V, collector current of near l${\mu}$ A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications. -
-
고에너지적 Nd-Fe-B계 소결자석 제조를 위한 펄스자장 성형시, 금형 및 다양한 성형조건이 자석의 이방화율 향상에 미치는 영향에 대하여 조사하였다. 일반적으로 butterfly, disk or coin 형태의 자석을 제조하는 방법으로는, 종축자장성형법(Axial Die Press, ADP)을 이용하여 최종제품의 near-net shape으로 성형 및 소결하는 방법과, 횡축자장성형법(Transverse Die Press, TDP)을 이용하여 blick or cylinder 형태로 제조한 후 여러 단계의 가공공정을 거쳐 최종제품으로 제조하는 방법이 적용되고 있다. 그러나, ADP의 경우 분말의 자장정렬 후 성형단계에서 성형밀도가 증가함에 따라 배향의 틀어짐 현상이 증가하므로 이방화율 향상의 한계가 있어 (BH)
$_{MAX}$ +iHc=54 이상의 자석은 제조되기 어렵고, TDP의 경우 고이방화 자석의 제조가 가능하나 복잡한 형상의 제품을 직접 성형할 수 없어 성형/소결 후 복잡한 가공공정을 거쳐야 하므로 재료의 손실뿐만 아니라 고가의 가공비용이 소요되므로 경제적인 문제점을 갖게 된다. 반면에, 펄스자장 종축성형방법(PDP)은 3T~5T의 펄스자장을 이용하여 분말의 정렬 및 성형을 동시에 수행함으로써 TDP보다 향상된 배향율이 얻어질 수 있으며, ADP으로만 실현 가능한 복잡한 형성의 자석을 near-net shape으로 제조가 가능한 잇점이 있다.다. -
-
-
Finding a solid material with a large value of the magnetocaloric effect near room temperature is of exceeding importance, since this would lead to the development of more compact and environmentally safer cooling systems. Recently, manganites become the focus of attention due to its large magnetocaloric effect. We demonstrate, via dynamic calorimetric measurements, that the large magnetocaloric effect in perovskite manganites stems from the first-order nature of the magnetic transition. Our results offer a clue in search for ideal magnetocaloric materials working in the vicinity of room temperature.
-
-
-
-
-
-
-
Phan, Manh-Huong;Kim, Yong-Seok;Yu, Seong-Cho;Nghi, Nguyen-Hoang;Dung, Nguen-Van;Chien, Bui-Xuan;Lee, Heebok 56
-
We have developed a simple model allowing further clarifications of the magnetoresistance (MR) contribution to the giant magnetoimpedance (GMI) effect in thin films. The theoretical considerations are the following. It is absolutely assumed that a thin film with no magnetic domain structure and a high frequency ac current I = I
$\sub$ 0/e$\^$ iwt/ flowing parallel to the Z direction in the plane of the film. The sample has the thickness 2a in the X direction, thus the Y direction in the plane of the sample and perpendicular to the current direction. The transverse permeability${\mu}$ $\sub$ Y/ in the Y direction is uniform. In the case of GMI effect, the total impedance Z = R + iX can be written as. -
Theoretical considerations on a giant magneto-impedance (GMI) effect in amorphous ribbons (i.e., thin films) have been made in terms of the expressions of effective permeability and impedance derived in the frame of classical electrodynamics and ferromagnetism. The dependence of GMI effect on the external do magnetic field (H
$\_$ ext/) and the frequency of alternating current are simulated and discussed in the knowledge of energy conversion consisting of the current energy loss, the ferromagnetic energy consumption, and the magnetic energy storage in the film. The obtained results are summarized as follow: (a) As frequency f< 20 ㎒, the real part of effective permeability (${\mu}$ ′) changes slightly. The peak of the${\mu}$ ′curve always locates at H$\_$ ext/=H$\_$ ani/ - the anisotropy field. However, the peak value of${\mu}$ ′ tends to increase with increasing frequency in the frequency range of 11-20 ㎒. (b) In the frequency range, f= 21-23 ㎒, a negative peak additionally appears. Meanwhile, both the positive and negative peak values rapidly increase with increasing frequency and their peak positions shift towards a high H$\_$ ext/. (c) The positive peak value of${\mu}$ ′ starts to decrease at f= 29 ㎒ and its negative peak does so at about 35 ㎒. Then, both peaks keep such a tendency and their peak positions move to high H$\_$ ext/, as increasing frequency. (d) The dependence of the imaginary part of effective permeability (${\mu}$ ") on the external dc magnetic field and the frequency of the alternating field indicates that there is only one peak involved in${\mu}$ " for the whole frequency range. (e) The impedance vs. magnetic field curves at various frequencies show that there is a critical value of frequency around f= 18-19 ㎒ where the transition between two frequency regimes occurs; the one (low frequency) in which${\mu}$ ′ predominantly contributes to the GMI effect and the other (high frequency) in which${\mu}$ " determines the GMI effect. -
Electron-phonon interaction plays a significant role in forming of colossal magnetoresistance effect (CMR). Polaron formation was observed by neutron diffraction and by extended X-ray absorption fine structure (EXAFS) analysis. Local probe as given by the EXAFS is a useful method to study the polaronic charge and its dependence on temperature and ions size. Here we present the EXAFS study of polaronic charge in
$La_{0.7}Ca_{0.3-x}Ba_{x}MnO_3$ compositions. -
-
Bismuth (Bi) has been an attractive materials for studying spin dependent transport properties because it shows very large magnetoresistance (MR) resulting from its highly anisotropic Fermi surface, low carrier concentrations, long carrier mean free path 1 and small effective carrier mass m*[1-3]. With all the intriguing properties, difficulty in fabrication of high quality Bi thin films may have prevented extensive application of Bi in magnetic field sensing and spin-injection devices. Previous works found that the surface roughness and small grain size in 100-200 nm of Bi thin film made by evaporation and sputtering are major causes of low MR. Although relatively higher MR in electrodeposited Bi followed by annealing was reported, it still suffers from rough sulfate roughness which is so severs that it is hardly able to make a field sensing and spin-injection device using conventional photolithography process.
-
-
-
-
Phan, Manh-Huong;Kim, Yong-Seok;Quang, Pham-Hong;Yu, Seong-Cho;Nguyen Chau;Chien, Nguyen-Xuan 88
During the past decade, giant magnetotransport phenomena such as giant magetoresistance (GMR) in thin films and in manganese perovskites, and, giant magnetoimpedance (GMI) in soft magnetic amorphous ribbons, have brought much interest in the basic physical understanding and their applications as magnetic recording heads and in magnetic sensors technology. Among the parameters required for the quality of a magnetic sensor, temperature dependences of GMR and GMI profiles are playing an important role. In the present work, we have studied temperature dependences of the longitudinal permeability and giant magnetoimpedance effect in$Co_{70}$ F$e_{5}$ S$i_{15}$ N$b_{2.2}$ C$u_{0.8}$ $B_{7}$ amorphous ribbons expecting as a promising candidate in the domain of magnetic sensors.rs.rs.rs.s. -
Amorphous magnetic materials with competing magnetic interactions are the subject of current interest. Critical behaviour studies have been performed in order to understand the nature of the phase transition at the Curie point (T
$\sub$ c/) and type of magnetic ordering below the T$\sub$ c/. In some cases there exists a temperature interval in which the magnetic system consists of ferromagnetic grains separated by the paramagnetic interlayers. Magnetic properties of nanoparticles embedded in amorphous matrix also are the subject of recent interest. While these materials exhibit excellent soft magnetic properties at room temperature, some of them have been found to be superparamagnetic in the temperature range above the T$\sub$ c/ of the matrix. Thus the role of different magnetic phases in the intergrain magnetic coupling can possibly be taken apart in a sufficiently broad temperature range and investigated separately. In particular materials with competing magnetic exchange interactions show characteristics of enhanced magnetoresistance and softer magnetic properties when magnetic nanocrystals are dispersed in amorphous matrix. We expect careful magnetic measurements in the vicinity of T$\sub$ c/ would throw some light on magnetic behaviour of above materials. We present here the FMR analysis of Fe$\sub$ 82/Mn$\sub$ 8-x/B$\sub$ x/Zr$\sub$ 10/ alloy near the Curie point. -
-
-
-
-
-
-
-
-
-
Mn 합금형태의 반강자성체 물질인 IrMn은 열처리 전과 후에 교환결합세기를 400 Oe 이상 쉽게 얻을 수 있다. IrMn 스핀밸브나 터널링 접합 소자는 높은 교환 결합세기와 우수한 열적안정성으로 인하여 자기센서로서 실용화하기에 이르렀다. Mn이 계면의 이웃층으로 확산이 왕성하므로 자성층의 종류에 따라 교환결합세기의 변화에 심각한 영향을 주게 된다. 더욱이 열처리시에 일어나는 Mn 확산 및 이동을 통해 이웃층의 계면 손상과 자기 수송 특성을 완화 내지 손상시키는 중요한 요인으로 밝혀져 있다. 열처리 전과 후에 따른 자기적 특성의 변화가 비교적 큰 IrMn에서 Mn 성분에 따른 fcc 결정성 및 교환결합세기의 변화를 상세히 관찰함으로서 Mn 확산에 의한 반자성층의 Mn 결핍 또는 상변화를 극-초박막 Mn층 삽입으로 보상효과를 이용하여 교환결합세기 강화 및 열적안정성을 향상시킨 실험결과를 소개한다.
-
고분자 재료인 이온교환수지 박막 안에서의 이온교환반응과 전기화학적 환원반응을 이용하여 코발트 나노 입자를 제조하였다. 투과전자현미경 결과로부터 고분자 박막 (MF-4SK) 1 gram에 코발트가 7.8
$\times$ $10^{19}$ atoms 포함된 시편에서 코발트가 나노 크기로 입자를 형성하고 있음을 확인하였으며, 자기측정 결과로부터 코발트 나노 입자가 blocking temperature (T$_{B}$ ) 이상에서 초상자성을 나타내는 것을 확인하였다. 이 결과는 고분자 박막 내에서 코발트 나노 입자가 자성 단상(single domain) 구조를 이루고 있음을 보여주는 것으로, 강자성 나노 입자들의 초상자성 거동을 고찰하였다. -
-
Recently, a large magneto-caloric effect (MCE) in perovskite materials has generated growing interests among scientists and manufacturers, because of its assessable and practical potential for the field of magnetic refrigeration. Nevertheless, further efforts of seeking a proper material that has a large magnetic-entropy change (ΔS
$\sub$ M/) or a large adiabatic temperature change (ΔT$\sub$ ad/), i.e. a large MCE, in a vast variety of temperatures have been extensively devoted, but no theoretical treatments are satisfactorily made. -
-
-
Park, Jeongyong;Park, Sungyoul;Park, Jiyoun;Y. H. Hwang;Y. H. Um;Sunglae Cho;Woo, Byung-Chul;Lee, Hee-Woong 146
-
In the past years, a giant magnetoresistance (GMR) effect found in perovskite-like structured materials has attracted considerable attention among scientists and manufacturers, since, a practical point of view, the capacity of producing magnetic and sensing sensors. In a stream of this interest, further efforts to understand the underlying mechanism that leads to the GMR effect relative to the correlation between transport and magnetic properties, have been extensively devoted. In these cases, spin-glass-like behaviors are ascribed to the frustration of random competing exchange interactions, namely the ferromagnetic double-exchange interaction between Co
$\^$ 3+/ (or Mn$\^$ 3+/) and Co$\^$ 4+/(or Mn$\^$ 4+/) and the antiferromagnetic one like spins. Noticeably, the distinction of spin-glass region from cluster-glass one, involved in the remarkable changes in transport and magnetic properties at a critical value of doping concentration, was observed. Magnetic anomalies in zero-field-cooled (ZFC) magnetization as well as ac magnetic susceptibility below Curie temperature T$\sub$ c/ and the charge/orbital fluctuation were also realized. In this work, we present a study of magnetic properties of a deficient manganese perovskites system of La$\sub$ 0.6/Sr$\sub$ x/MnTi$\sub$ y/O$_3$ , and particularly provide its new magnetic phase diagram. -
Choi, Sungyoul;Choi, Jeongyong;Choi, Jiyoun;Hong, Soon Cheol;Cho, Sunglae;Jung, Chi-Un;Rhie, K.;Park, Yongsup;Lee, Kyu-Won;Park, Hyun-Min 152
-
Park, Jiyoun;Park, Sungyoul;Park, Jeongyong;Hong, Soon-Cheol;Sunglae Cho;Park, Yongsup;Lee, Gu-Won;Park, Hyun-Min;Kim, Y. C. 154
Substituting transition metals such as V, Cr, Mn, Fe, Co and Ni into semiconductors have been of interest because of its unique electrical and magnetic properties. It was reported that the magnetoresistance(MR) ratio of CrGe was 1.7% and 1 4% at 120 K in fields of 0.5 and 5 T, respectively. The MR ratio of FeGe was 19% at 180K. The electrical resistivity of CrGe changed according to Cr concentration. In this talk, we report transport properties of V-doped Ge single crystals with several different V concentrations. The carrier densities and mobilities will be determined from Hall measurement. -
-
-
-
-
최근 세계적 주목을 받고 있는 spin FET 소자는 반도체에 주입된 spin 편향된 전자가 gate voltage(V
$_{G}$ )에 의해 반도체 계면에 유도된 전기장의 영향을 받아, Spin 세차운동을 하는 mechanism(Rashba 효과)이 근간을 이루고 있다. 작은 band gap을 가지는 반도체(narrow gap 반도체)는 작은 유효질량의 전자에 의해서 이러한 Rashba 효과를 크게 할 수 있어서, spin FET 구현을 위한 강력한 후보이며, 요즘 한창 연구되고 있는 주제이기도 하다. Rashba 효과가 저자기장 영역에서의 weak antilocalization효과로 나타남을 이용하여, 본 논문에서는 metal gate가 형성된 HgCdTe FET를 제작하여(FET1 시료, Fig. 1(a)참조), V$_{G}$ 에 따른 weak localization(WL) 및 weak antilocalization(WAL) 효과를 얻었다. 또한, Rashba 효과에 의한 spin 세차운동을 측정할 수 있는 소자(FET3 시료, Fig.1(b) 참조)를 제작하여 spin FET 구조에 대하여 연구하였다. -
-
-
-
YIG 에피택시박막은 다른 강자성, 페리자성재료에 비해 수 GHz의 영역에서 매우 우수한 특성을 나타내고 있다. YIG 에피택시 박막은 고상에피택시 방법으로 제조할 경우 매우 편리하게 제조할 수 있는 것으로 알려져 있는데, 이 방법은 상온에서 Y-Fe-O 박막을 GGG(111)기판에 스파터한 뒤 공기 중에서 열처리하면 간편하게 얻을 수 있다. 이 방법은 통상과 같이 고온에서 아주 느린 속도로 에피택시박막을 성장시키는 스파터방법에 비해 매우 간편하고 경제적인 것으로, 본 연구에서는 보통의 분말소결공정으로 제작된 2.5인치 YIG 타겟을 사용하여 두께 2.5
$\mu\textrm{m}$ 비정질 Fe-Y-O 박막을 만든 뒤 550 - 1050$^{\circ}C$ 의 공기 중에서 열처리하였다. 비정질 박막을$600^{\circ}C$ 이하에서 10 시간동안 열처리하였을 경우 매우 약한 YIG상의 회절선만 관찰할 수 있었다. 반면에 온도를$650^{\circ}C$ 로 올리면 매우 강한 (444) 또는 (888)회절선과 매우 약한 다른 회절선을 관찰 할 수 있었다. 이 시편의 경우 (888)회절선의 강도는 GGG기판의 (888)회절선의 강도와 비교할 정도로 매우 강하여 에피택시성장이 매우 잘 이루어질 수 있다는 가능성을 확인할 수 있었다. 그리고 YIG(888) 회절선의 록킹곡선의 반가폭이 0.14$^{\circ}$ 이었고, 이것은 에피택시성장이 매우 잘 이루어지고 있음을 의미하는 것이다. 열처리 온도가 감소함에 따라 YIG박막의 격자상수는 감소하였으며 YIG(888)회절선의 강도는 그림 1과 같이 넓어지고 그 강도는 약해진다. -
As a result of the recent miniaturization an enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with high magnetic permeability in the high frequency range, high saturation magnetization, in high electrical resistivity, and low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm and 1
$\mu\textrm{m}$ thickness were deposited on Si wafer, using RF magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2mTorr, O$_2$ partial pressure of 5%, input power of 400W, and Al pellets on an Fe disk with purity of 99,9%. Magnetic properties of the continuous films as followed: the 4$\pi$ M$\_$ s/ of 19.4kG, H$\_$ c/ of 0.6Oe, H$\_$ k/ of 6.0Oe and effective permeability of 2500 up to 100㎒ were obtained. In this work, we expect to enhance effect of magnetic anisotropy on patterned of Fe-Al-O thin films. -
전자의 스핀정보를 이용한 spintronics 기술이 발전하면서 상온 강자성 반도체에 대한 연구가 주목을 각광 받고 있다. 자성반도체에 대한 연구는 diluted magnetic semiconductor(DMS)에 대한 연구로 시작되었다 할 수 있다. 과거 DMS는 II-IV족 또는 III-V족 반도체에 Mn, Cr, Co, Fe 원소들을 도핑 시켜 제작하여 왔으나, 상온 이상에서 강자성 특성을 가지는 DMS을 제작하는 데는 실패하였다. 최근에 Dietl 팀이 mean field 이론을 이용하여 망간이 도핑된 ZnO가 실온이상의 Tc를 가질 수도 있을 것으로 예측하였다.
-
-
Nano 결정립 N
$d_2$ F$e_{l4}$ B+F$e_3$ B 복합상 자성 리본은 Extractive melt spinner의 wheel speed를 달리하여 제조하였다. 초기 조성은 N$d_4$ F$e_{77.5}$ $B_{18.5}$ 이고, 이후 제조한 자성 리본의 자기특성은 VSM 및 AGM(Alternating gradient magnetometer)으로 측정하였다. wheel speed 1500rpm,$650^{\circ}C$ 에서 10분간 열처리한 자성 리본에서$B_{r}$ = 11.73 kG,$_{i}$ $H_{c}$ = 3.082 kOe, (BH)$_{max}$ = 12.28 MGOe의 자기특성이 나타났다. 이러한 자기특성 원인 규명을 위해$\delta$ M plot과 뫼스바우어 분광학을 사용하였다.$\delta$ M plot을 통해 exchange coupling은 초미세립 복합상의 잔류자속밀도에 큰 영향을 미치는 것으로 판단된다. 또한, 뫼스바우어 분광학을 통해 경자성상(N$d_2$ F$e_{l4}$ B)과 연자성상 F$e_3$ B의 부피분율비가 7:3 정도일 때 가장 최적의 자기특성을 발현하였다. 이 경우에 초미세립 복합상의 상호작용력이 가장 크게 발현하는 것으로 판단된다.단된다..된다..된다.. -
-
-
-
Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1
$\_$ 0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$ O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$ . So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated. -
-
-
-
-
It is recognized that the magnetization reverses with a sequence of discrete and jerky jumps, known as the Barkhausen effect. Recently, interest in the Barkhausen effect has grown as it is a good example of dynamical critical behavior, evidenced by experimental observation of a power law distribution of the Barkhausen jump size. So far, most experimental studies have been carried out on bulk samples using a classical inductive technique, which is difficult to apply to thin film samples mainly due to the ]ow signal intensity. For this reason, very few experiments have been done on two-dimensional ferromagnetic thin films. In this talk, we report a direct domain observation of Barkhausen avalanche at criticality in Co and MnAs thin films investigated by means of a magnetooptical microscope magnetometer (MOMM), capable of time-resolved domain observation with an image grabbing rate of 30 frames/s in real time. In Fig. 1, we demonstrate a series of six representative domain-evolution patterns of 25-nm Co film observed successively by means of the MOMM, where one can directly witness Barkhausen avalanche.
-
Creating a new spin-based electronics (often called "spin-electronics" or "spintronics") is one of the hot topics in the current solid-state physics and electronics research. In order to utilize the spin degree of freedom in solids, particularly in semiconductors the current electronics is based on, we need to fabricate appropriate materials, understand and control the spin-dependent phenomena. In this ta1k, I will review the recent deve1opments of epitaxial ferromagnetic hetero structures based on semiconductors towards spintronics. This includes the semiconductor materials and hetero structures having high ferromagnetic transition temperature (III-V based alloy magnetic semiconductors, Mn-delta-doped magnetic semiconductors, and related heterostructures), spin-dependent transport and tunneling, and their device applications (tunneling magnetoresistance devices and three-terminal devices). Future issues and prospects will be also discussed.
-
The most distinguishing character of diluted magnetic semiconductors (DMSs) is a strong interaction between sp-carriers and localized d-spins (sp-d exchange interaction). Recently many "room-temperature (RT) ferromagnetic DMS" have been reported. However, it should be noted that their sp-d exchange interactions have not been confirmed yet. The lack of a clear evidence of the sp-d exchange interaction causes the controversy on the origin of the observed ferromagnetism. For the detection of the sp-d exchange interaction, magneto-optical spectroscopy such as a magnetic circular dichroism (MCD) measurement is the most powerful tool. By using the MCD spectroscopy, we have shown the sp-d exchange interactions in Zn
$_{l-x}$ Cr$_{x}$ Te. Recently, we have obtained the RT ferromagnetism in a Zn$_{l-x}$ Cr$_{x}$ Te (x = 0.20) film.0) film. -
Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.
-