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It is recognized that the magnetization reverses with a sequence of discrete and jerky
jumps, known as the Barkhausen effect [1]. Recently, interest in the Barkhausen effect
has grown as it is a good example of dynamical critical behavior, evidenced by
experimental observation of a power law distribution .of the Barkhausen jump size. So
far, most experimental studies have been carried out on bulk samples using a classical
inductive technique, which is difficult to apply to thin film samples mainly due to the
low signal intensity. For this reason, very few experiments have been done on
two-dimensional ferromagnetic thin films. In this talk, we report a direct domain
observation of Barkhausen avalanche at criticality in Co and MnAs thin films
investigated by means of a magnetooptical microscope magnetometer (MOMM), capable
of time-resolved domain observation with an image grabbing rate of 30 frames/s in real
time [2]. In Fig. 1, we demonstrate a series of six representative domain-evolution
patterns of 25-nm Co film observed successively by means of the MOMM, where one
can directly witness Barkhausen avalanche,
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FIG. 1. A series of six domain images showing the avalanches of the domain structure
captured successively on the same 400x320 um® area of a 25-nm Co film. The color
code represents the elapsed time from 0 to 4 seconds when magnetization reversal

occurs.
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Through a statistical analysis of the fluctuating size of Barkhausen jump from more
than 1000-times repetitive experiments for each sample, the distribution of Barkhausen
jump size was obtained. The distribution is found to exhibit power law behavior and
fitted as P(s) ~ s~ with critical exponent T = 1.34 * 0.07, 1.29 = 0.06, 1.32 + 0.03, and
1.30 + 0.05 for 5, 10, 25, and 50-nm Co films, respectively, as plotted in Fig. 2.
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FIG. 2. Distribution of Barkhausen jump size in 25-nm Co
samples. Distributions in 5, 10, and 50-nm Co samples are shown in

the insets. Fitting curve with T = 1.33 is denoted at each graph.

The most striking feature of Fig. 2 is the fact that the T values are in the same
universality class (~ 1.33) for all samples within the measurement error despite of the
difference in the film thickness. We may expect that the 50-nm film has about
ten-times larger number of defects compared with the 5-nm film, since all samples
were prepared with the same preparation conditions except the thickness. This result
implies an invariance of the critical exponent T irrespective of the number of defects in
the Co thin films [3]. Our experimental results directly validify the CZDS model [4],
where the model describes 180°-type flexible domain wall deformed by localized defects
with consideration of long-range dipolar interaction.
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