A travel groupoid is a pair (V, ${\ast}$) of a set V and a binary operation ${\ast}$ on V satisfying two axioms. For a travel groupoid, we can associate a graph in a certain manner. For a given graph G, we say that a travel groupoid (V, ${\ast}$) is on G if the graph associated with (V, ${\ast}$) is equal to G. There are some results on the classification of travel groupoids which are on a given graph [1, 2, 3, 9]. In this article, we introduce the notion of vertex-indexed partition systems on a graph, and classify the travel groupoids on the graph by the those vertex-indexed partition systems.