In this paper, we consider a split least-squares characteristic mixed element method for Sobolev equations with a convection term. First, to manipulate both convection term and time derivative term efficiently, we apply a characteristic mixed element method to get the system of equations in the primal unknown and the flux unknown and then get a least-squares minimization problem and a least-squares characteristic mixed element scheme. Finally, we obtain a split least-squares characteristic mixed element scheme for the given problem whose system is uncoupled in the unknowns. We prove the optimal order in $L^2$ and $H^1$ normed spaces for the primal unknown and the suboptimal order in $L^2$ normed space for the flux unknown.