

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

HONG RAE CHO*, HAN-WOOL LEE, AND EUNSUNG CHO

ABSTRACT. We consider the initial value problem of the Schrödinger equation for an interesting Cauchy-Euler type operator \mathscr{R} on \mathbb{C}^n that is an analogue of the harmonic oscillator in \mathbb{R}^n . We get an appropriate $L^1 - L^\infty$ dispersive estimate for the solution of the initial value problem.

1. Introduction and statement of the main result

Associated to any self-adjoint differential operator L on \mathbb{R}^n , one can formally define an oscillatory semigroup e^{-itL} , using the spectral theory for L. Assume that L has the spectral representation

$$Lf = \int_E \lambda dP_\lambda(f), \quad f \in L^2(\mathbb{R}^n),$$

where P_{λ} is a projection valued measure supported on the spectrum E of L. Then the operator e^{-itL} can be defined by

$$e^{-itL}f = \int_E e^{-it\lambda} dP_{\lambda}(f), \quad f \in L^2(\mathbb{R}^n).$$

Consider the differential operator $i\partial_t - L$ and the associated initial value problem for the Schrödinger equation for L:

$$\begin{cases} (i\partial_t - L)u &= 0 \quad \text{on} \quad \mathbb{R}^n \times \mathbb{R} \\ u(\cdot, 0) &= f \quad \text{on} \quad \mathbb{R}^n. \end{cases}$$

Assuming $f \in L^2(\mathbb{R}^n)$, the solution u can be represented by

$$u(x,t) = e^{-itL}f(x).$$

We thus call e^{-itL} , the Schrödinger oscillatory semigroup for L.

©2019 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received August 23, 2018; Accepted October 20, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 30H20; Secondary 32A15; 35F10; 35J10.

Key words and phrases. Fock space; Schrödinger equation; Cauchy-Euler type operator; Oscillatory semigroup.

This work was supported by a 2-Year Research Grant of Pusan National University.

^{*} Corresponding author.

Let H be the most basic Schrödinger operator in \mathbb{R}^n , $n \ge 1$, the Hermite operator (or the harmonic oscillator):

(1)
$$H = -\Delta + |x|^2.$$

Then the Schrödinger equation for H can be written by

$$(i\partial_t - H)u = 0.$$

This is an important model in quantum mechanics (see for example [4]).

In [5], Nandakumarana and Ratnakumar considered the regularity of the following initial value problem for the Schrödinger equation for *H*:

$$\begin{cases} (i\partial_t - H)u &= 0 \quad \text{on} \quad \mathbb{R}^n \times \mathbb{R} \\ u(\cdot, 0) &= f \quad \text{on} \quad \mathbb{R}^n. \end{cases}$$

For $f \in L^2(\mathbb{R}^n)$ the solution to the initial value problem is given by

$$u(x,t) = e^{-itH}f(x).$$

They proved the following regularity estimate

$$\int_{-\pi}^{\pi} \|u(\cdot,t)\|_{L^{p}(\mathbb{R}^{n})}^{q} dt \leq C_{n} \|f\|_{2}^{q},$$

where $1 < q < \infty$, $2 \le p < \Lambda$, where $\Lambda = \infty$ for n = 1 and $\Lambda = \frac{2n}{n-2}$ for $n \ge 2$.

Let \mathbb{C}^n be the complex *n*-space and dV be the ordinary volume measure on \mathbb{C}^n . If $z = (z_1, \dots, z_n)$ and $w = (w_1, \dots, w_n)$ are points in \mathbb{C}^n , we write

$$z \cdot \overline{w} = \sum_{j=1}^{n} z_j \overline{w}_j, \qquad |z| = (z \cdot \overline{z})^{1/2}.$$

For any $0 we let <math>L^p_G(\mathbb{C}^n)$ denote the space of Lebesgue measurable functions f on \mathbb{C}^n such that the function $f(z)e^{-\frac{1}{2}|z|^2}$ is in $L^p(\mathbb{C}^n, dV)$. When 0 , it is clear that

$$L^p_G(\mathbb{C}^n) = L^p\left(\mathbb{C}^n, e^{-\frac{p}{2}|z|^2} \, dV(z)\right)$$

We define

$$\|f\|_{L^p_G} = \left[\left(\frac{p}{2\pi}\right)^n \int_{\mathbb{C}^n} \left| f(z)e^{-\frac{1}{2}|z|^2} \right|^p \, dV(z) \right]^{\frac{1}{p}}$$

For $p = \infty$ the norm in $L^{\infty}_{G}(\mathbb{C}^{n})$ is defined by

$$||f||_{L_G^{\infty}} = \operatorname{esssup}\left\{|f(z)|e^{-\frac{1}{2}|z|^2} : z \in \mathbb{C}^n\right\}$$

Let $F^p(\mathbb{C}^n)$ denote the space of entire functions in $L^p_G(\mathbb{C}^n)$. If $0 , then <math>F^p \subset F^q$, and the inclusion is proper and continuous (see [7]). Note that F^2 is a closed subspace of the Hilbert space L^2_G (see [7]) with inner product

$$\langle f,g \rangle = \frac{1}{\pi^n} \int_{\mathbb{C}^n} f(z) \overline{g(z)} e^{-|z|^2} dV(z).$$

The Hermite operator H on \mathbb{R}^n has the representation

$$H = \frac{1}{2} \sum_{j=1}^{n} (a_j a_j^{\dagger} + a_j^{\dagger} a_j)$$

in terms of the creation operators $a_j = -\frac{d}{dt} + x_j$ and the annihilation operator $a_j^{\dagger} = \frac{d}{dx_j} + x_j$, j = 1, 2, ..., n. There is an interesting operator \mathscr{R} on \mathbb{C}^n , given by

$$\mathscr{R} = \frac{1}{2} \sum_{j=1}^{n} \left(A_j A_j^* + A_j^* A_j \right),$$

where

$$A_j = 2\frac{\partial}{\partial z_j}, \qquad A_j^* = z_j, \quad 1 \le j \le n$$

Both A_j and A_j^* , as defined above, are densely defined linear operators on F^p (unbounded though). We have

$$\mathscr{R} = 2\sum_{j=1}^{n} z_j \frac{\partial}{\partial z_j} + n.$$

Thus \mathscr{R} is a Cauchy-Euler type operator.

Remark 1. Let

$$f(z) = \sum_{k=0}^{\infty} \frac{z_1^k}{\sqrt{2}^k (k+1)\sqrt{k!}}.$$

Then $f \in F^2$, but $\mathscr{R}f \notin F^2$.

The remark above tells us that $\mathcal{D}om(\mathscr{R}) \subsetneq F^2$. Thus \mathscr{R} is an unbounded operator on F^2 .

The Segal-Bargmann transform \mathcal{B} is defined by

$$\mathcal{B}f(z) = \frac{1}{\pi^{n/4}} \int_{\mathbb{R}^n} f(x) e^{x \cdot z - \frac{1}{2}|x|^2 - \frac{1}{4}z \cdot z} \, dV(x),$$

where dV(x) is the volume measure on \mathbb{R}^n . It is well-known that the Segal-Bargmann transform is a unitary isomorphism between $L^2(\mathbb{R}^n)$ and $F^2(\mathbb{C}^n)$ ([1], [7]). Moreover, we know that

$$\mathcal{B}H = \mathscr{R}\mathcal{B}$$
 on $L^2(\mathbb{R}^n)$

Motivated by these relations, we consider the initial value problem:

(2)
$$\begin{cases} (i\partial_t - \mathscr{R})u &= 0 \quad \text{on} \quad \mathbb{C}^n \times (0, \infty) \\ u(\cdot, 0) &= f \quad \text{on} \quad \mathbb{C}^n. \end{cases}$$

We get an appropriate $L^1 - L^\infty$ dispersive estimate for the solution of the initial value problem as following.

Theorem 1.1. For $f \in F^1(\mathbb{C}^n)$, the solution $u(z,t) = e^{-it\mathscr{R}}f(z)$ of the initial value problem (2) satisfies the following regularity estimate

$$\sup_{0 < t < \infty} \|u(\cdot, t)\|_{F^q} \le \|f\|_{F^p},$$

where $1 \le p \le 2$, $2 \le q \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$.

2. Proof of Theorem 1.1

We define

$$e_{\alpha}(z) = \frac{z^{\alpha}}{\|z^{\alpha}\|_{F^2}} = \frac{z^{\alpha}}{\sqrt{\alpha!}}.$$

Then $\{e_{\alpha} : \alpha \in \mathbb{N}_{0}^{n}\}$ is an orthonormal basis for F^{2} . We know that \mathscr{R} is a positive, selfadjoint operator on $\mathcal{D}om(\mathscr{R})$ with the discrete spectrum $\sigma(\mathscr{R}) = \{2|\alpha| + n : \alpha \in \mathbb{N}_{0}^{n}\}$ [2]. For $f \in F^{2}$ let

$$f(z) = \sum_{\alpha \in \mathbb{N}_0^n} c_\alpha e_\alpha(z)$$

be the orthonormal decomposition of f. Associated with the operator \mathscr{R} is a semigroup $\{B_t\}_{t>0}$ defined by the expansion

$$B_t f(z) = \sum_{\alpha \in \mathbb{N}_0^n} e^{-i(2|\alpha|+n)t} c_\alpha e_\alpha(z).$$

It is easy to see that $B_t f(z)$ converges in F^2 for every fixed $t \ge 0$ whenever $f \in F^2$. Moreover, $B_t f(z) \to f(z)$ in F^2 as $t \to 0^+$ by the dominated convergence theorem since $|e^{-i(2|\alpha|+n)t} - 1| \le 2$. Thus $u(z,t) = B_t f(z)$ is the solution of the initial value problem:

$$\begin{cases} (i\partial_t - \mathscr{R})u &= 0 \quad \text{on} \quad \mathbb{C}^n \times (0, \infty) \\ u(\cdot, 0) &= f \quad \text{on} \quad \mathbb{C}^n. \end{cases}$$

We know that $\{B_t\}_{t\geq 0}$ is a strongly continuous semigroup. Moreover, $-i\mathscr{R}$ is the infinitesimal generator of $\{B_t\}_{t\geq 0}$ [2]. That is,

$$\lim_{t \to 0^+} \frac{B_t f - f}{t} = -i\mathscr{R}f$$

Thus, we have (see [3])

$$B_t = e^{-it\mathscr{R}}.$$

It is well-known ([1], [7]) that for $f \in F^2$ we have the reproducing formula such that

$$f(z) = \int_{\mathbb{C}^n} f(w) K(z, w) e^{-|z|^2} dV(w),$$

where K(z, w) is the reproducing kernel defined by

$$K(z,w) = \sum_{\alpha} e_{\alpha}(z) \overline{e_{\alpha}(w)}.$$

By the spectral theory,

$$\begin{split} u(z,t) &= e^{-it\mathscr{R}} f(z) \\ &= e^{-it\mathscr{R}} \int_{\mathbb{C}^n} f(w) \sum_{\alpha} e_{\alpha}(z) \overline{e_{\alpha}(w)} e^{-|w|^2} dV(w) \\ &= e^{-it\mathscr{R}} \left(\sum_{\alpha} e_{\alpha}(z) \right) \int_{\mathbb{C}^n} f(w) \overline{e_{\alpha}(w)} e^{-|w|^2} dV(w) \\ &= \sum_{\alpha} e^{-it(2|\alpha|+n)} e_{\alpha}(z) \int_{\mathbb{C}^n} f(w) \overline{e_{\alpha}(w)} e^{-|w|^2} dV(w) \\ &= \int_{\mathbb{C}^n} f(w) \sum_{\alpha} e^{-it(2|\alpha|+n)} e_{\alpha}(z) \overline{e_{\alpha}(w)} e^{-|w|^2} dV(w) \\ &= \int_{\mathbb{C}^n} f(w) K_t(z,w) e^{-|w|^2} dV(w). \end{split}$$

Interchanging the order of summation and integration is justified by the dominated convergence theorem since

$$\sum_{\alpha} |e_{\alpha}(z)| \int_{\mathbb{C}^n} |f(w)| |e_{\alpha}(w)| e^{-|w|^2} dV(w) \le \sum_{\alpha} \frac{|z^{\alpha}|}{\sqrt{\alpha!}} \|f\|_{F^2}$$

and the power series on the right side of the inequality above is convergent for every $z \in \mathbb{C}^n$.

Note that

$$K_t(z,w) = \sum_{\alpha} e^{-it(2|\alpha|+n)} e_{\alpha}(z) \overline{e_{\alpha}(w)}$$
$$= e^{-int} \sum_{\alpha} e^{-2it|\alpha|} \frac{z^{\alpha} \overline{w}^{\alpha}}{\alpha!}$$
$$= e^{-int} \exp(e^{-2it} z \cdot \overline{w}).$$

Hence

$$|K_t(z,w)| = \exp[\operatorname{Re}(e^{-2it}z \cdot \bar{w})] \le e^{|e^{-2it}z \cdot \bar{w}|} = e^{|z \cdot \bar{w}|}.$$

We first prove that the $B_t = e^{-it\mathscr{R}}$ maps L^1 to L^{∞} and L^2 to L^2 , respectively, and combine them with Riez-Thorin interpolation to drive the desired result.

Now we can calculate that

$$\begin{aligned} \|u(\cdot,t)\|_{F^{\infty}} &= \sup_{z \in \mathbb{C}^{n}} |u(z,t)| e^{-\frac{1}{2}|z|^{2}} \\ &\leq \sup_{z \in \mathbb{C}^{n}} \left[\int_{\mathbb{C}^{n}} |f(w)| |K_{t}(z,w)| e^{-|w|^{2} - \frac{1}{2}|z|^{2}} dV(w) \right] \\ &\leq \sup_{z \in \mathbb{C}^{n}} \left[\int_{\mathbb{C}^{n}} |f(w)| e^{-|w|^{2} - \frac{1}{2}|z|^{2} + |z \cdot \bar{w}|} dV(w) \right] \\ &\leq \left[\int_{\mathbb{C}^{n}} |f(w)| e^{-\frac{1}{2}|w|^{2}} dV(w) \right] = \|f\|_{F^{1}}, \end{aligned}$$

where we used the following relation in third inequailty:

$$-|w|^{2} - \frac{1}{2}|z|^{2} + |z \cdot \bar{w}| \le -|w|^{2} - \frac{1}{2}|z|^{2} + |z||w| \le -\frac{1}{2}|w|^{2}.$$

On the other hand, for $f \in F^2$, we have a holomorphic expansion of $f(z) = \sum c_{\alpha} e_{\alpha}(z)$. Then

$$\begin{split} u(z,t) &= e^{-it\mathscr{R}} f(z) \\ &= e^{-int} \sum_{\alpha} e^{-2it|\alpha|} c_{\alpha} e_{\alpha}(z). \end{split}$$

So we have

$$\begin{split} \|u(\cdot,t)\|_{F^2}^2 &= \langle u(\cdot,t), u(\cdot,t) \rangle \\ &= \left\langle e^{-int} \sum_{\alpha} e^{-2it|\alpha|} c_{\alpha} e_{\alpha}, e^{-int} \sum_{\beta} e^{-2it|\beta|} c_{\beta} e_{\beta} \right\rangle \\ &= \sum_{\alpha,\beta} c_{\alpha} \overline{c_{\beta}} e^{-2it(|\alpha| - |\beta|)} \langle e_{\alpha}, e_{\beta} \rangle \\ &= \sum_{\alpha} |c_{\alpha}|^2 = \|f\|_{F^2}^2. \end{split}$$

Hence by Riesz-Thorin interpolation theorem [6], for $p \in [1, 2]$ we have

$$\|u(\cdot,t)\|_{F^q} \le \|f\|_{F^p},$$

where (p,q) is a conjugate pair.

References

- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 (1961), 187-214.
- [2] H. R. Cho, H. Choi, and H.-W. Lee, Boundedness of the Segal-Bargmann Transform on Fractional Hermite-Sobolev Spaces, Journal of Function Spaces, Volume 2017 (2017), Article ID 9176914, 6 pages.
- [3] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, Berlin, New York, 2000.
- [4] R. P. Feynman and A. R. Hibbs, *Quantum mechanics and path integrals*, McGraw-Hill, Maidenhead, 1965.

- [5] A. K. Nandakumaran and P. K. Ratnakumar, Schrödinger equation and the oscillatory semigroup for the Hermite operator, J. Funct. Anal. 224 (2005), 371-385.
- [6] E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
- [7] K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263. Springer, New York, 2012.

HONG RAE CHO

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, REPUBLIC OF KOREA

E-mail address: chohr@pusan.ac.kr

HAN-WOOL LEE

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, REPUBLIC OF KOREA

E-mail address: lhw2725@naver.com

EUNSUNG CHO

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, REPUBLIC OF KOREA

E-mail address: immortal6685@naver.com