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BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL

ELLIPTIC JUMPING PROBLEM WITH CROSSING

n−EIGENVALUES

TACKSUN JUNG and Q-HEUNG CHOI∗

Abstract. This paper is dealt with one-dimensional elliptic jumping prob-

lem with nonlinearities crossing n eigenvalues. We get one theorem which
shows multiplicity results for solutions of one-dimensional elliptic bound-

ary value problem with jumping nonlinearities. This theorem is that there

exist at least two solutions when nonlinearities crossing odd eigenvalues, at
least three solutions when nonlinearities crossing even eigenvalues, exactly

one solutions and no solution depending on the source term. We obtain

these results by the eigenvalues and the corresponding normalized eigen-
functions of the elliptic eigenvalue problem and Leray-Schauder degree

theory.

1. Introduction

Let Ω = (c, d) ⊂ R, c < d, m ∈ N , m <∞. Let L2m(Ω, R) be 2m−Lebesgue
space and W 1,2m(Ω, R) be the Lebesgue Sobolev space. We know that the
eigenvalue problem

−(u′)′ = λu in Ω = (c, d),

u = 0 on Ω,

has infinitely many positive positive eigenvalues λj , j = 1, 2, · · · , 0 < λ1 < λ2 ≤
· · · ≤ λk ≤ · · · and the corresponding normalized eigenfunctions φj , j = 1, 2, · · ·
and the first eigenfunction φ1 is positive. We note that the elliptic eigenvalue
problem

−(|u′|2m−2u′)′ = Λ|u|2m−2u in Ω
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u = 0 on Ω

has infinitely many eigenvalues Λj = λmj , 0 < Λ1 = λm1 < Λ2 = λm2 ≤
· · · ≤ Λk = λmk ≤ · · · and the corresponding normalized eigenfunctions φj ,
j = 1, 2, · · · , where the first eigenfunction φ1 is positive.

In this paper we consider multiplicity of solutions u ∈ W 1,2m(Ω, R) for the
following one-dimensional elliptic Dirichlet boundary value problem with jump-
ing nonlinearities;

−(|u′|2m−2u′)′ = b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 in Ω, (1.1)

u = 0 on ∂Ω,

where s ∈ R, u+ = max{u, 0} and u− = −min{u, 0}.
p−Laplacian boundary value problems with p−growth conditions arise in ap-

plications of nonlinear elasticity theory, electro rheological fluids, non-Newtonian
fluid theory in a porous medium (cf. [7], [12]). Our problems are characterized
as a jumping problem. Jumping problem was first suggested in the suspension
bridge equation as a model of the nonlinear oscillations in differential equation

utt +K1uxxxx +K2u
+ = W (x) + εf(x, t), (1.2)

u(0, t) = u(L, t) = 0, uxx(0, t) = uxx(L, t) = 0.

This equation represents a bending beam supported by cables under a load f.
The constant b represents the restoring force if the cables stretch. The nonlinear-
ity u+ models the fact that cables resist expansion but do not resist compression.
Choi and Jung (cf. [2], [4], [5]) and McKenna and Walter (cf.[10]) investigate the
existence and multiplicity of solutions for the single nonlinear suspension bridge
equation with Dirichlet boundary condition. In [3], the authors investigate the
multiplicity of solutions of a semilinear equation

Au+ bu+ − au− = f(x) in Ω,

u = 0 on Ω,

where Ω is a bounded domain in Rn, n ≥ 1, with smooth boundary ∂Ω and A
is a a second order linear partial differential operator when the forcing term is
a multiple sφ1, s ∈ R, of the positive eigenfunction and the nonlinearity crosses
eigenvalues.

In general, when 1 < p <∞, the eigenvalue problem

−(|u′|p−2u′)′ = ν|u|p−2u in Ω, (1.3)

u = 0 on ∂Ω.

has a nondecreasing sequence of nonnegative eigenvalues νj obtained by the
Ljusternik-Schnirelman principle tending to∞ as j →∞, where the first eigen-
value ν1 is simple and only eigenfunctions associated with ν1 do not change
sign, the set of eigenvalues is closed, the first eigenvalue ν1 is isolated. Thus
there are two sequences of eigenfunctions (βj)j and (µj)j corresponding to the
eigenvalues νj such that the first eigenfunction β1 > 0 in the sequence (βj)j and
the first eigenfunction µ1 < 0 in the sequence (µj)j , which was proved in [8].
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Let us set the operator −L2m by

−L2mu = −(|u′|2m−2u′)′.

Then (1.1) is equivalent to the equation

u = (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ).

Our main theorem is as follows:

Theorem 1.1. Let m ∈ N , m <∞, a < b, −∞ < a < λm1 , · · · , λmn < b < λmn+1

and s ∈ R. Then
(i) if m <∞ and s > 0, then (1.1) has no solution
(ii) if m <∞ and s = 0, then (1.1) has a unique trivial solution u = 0.
(iii) if m < ∞, there exists s1 < 0 such that for any s with s1 < s < 0, (1.1)
has at least two solutions if n is odd, and three solutions if n is even.

For the proof of Theorem 1.1 we estimate a priori bound and calculate the
Leray-Schauder degree of u−(−L2m)−1(b|u|2m−2u+−a|u|2m−2u−+sφ2m−1

1 ) in
the neighborhood of positive solution, in the neighborhood of negative solutions
and in the whole solution bounded subspace, respectively. The outline of the
proof of Theorem 1.1 is as follows: In Section 2, we introduce some preliminaries.
In Section 3, we prove Theorem 1.1 by using direct computations and Leray-
Schauder degree theory.

2. Preliminaries

Let Lp(Ω, R) be the Lebesgue space defined by

Lp(Ω, R) = {u| u : Ω→ R is measurable,

∫
Ω

|u|pdx <∞}

which is endowed with the norm

‖u‖Lp(Ω) = inf{λ > 0|
∫

Ω

|u(x)

λ
|p ≤ 1},

and W 1,p(Ω, R) be the Lebesgue Sobolev space defined by

W 1,p(Ω, R) = {u ∈ Lp(Ω, R)| u′ ∈ Lp(Ω, R)}
which is endowed with the norm

‖u‖W 1,p(Ω,R) = [

∫
Ω

|u′(x)|pdx]
1
p + [

∫
Ω

|u(x)|pdx]
1
p ].

Let 1 < p <∞ and h ∈ Lr(Ω), r > 1. Then the problem

−(|u′|p−2u′)′ = h(x) in Ω, (2.1)

u = 0 ∂Ω

has a unique solution u ∈ C1(Ω̄) which is of the form

u(x) =

∫
Ω

g−1
p

(
cf−

∫
Ω

h(τ)dτ
)
dy, (2.2)
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where gp(t) = |t|p−2t for t 6= 0, gp(0) = 0 and its inverse g−1
p is g−1

p (t) = t
1

p−1

if t > 0 and g−1
p (t) = −|t|

1
p−1 if t < 0 and cf is the unique constant such that

u = 0 on ∂Ω. By [[9], Lemma 2.1 or [10], Lemma 4.2], the solution operator
S satisfies that S : Lp(Ω) → C1(Ω̄) is continuous and by [[13], Corollary 2.3],
the embedding S : Lp(Ω) → C(Ω̄) is continuous and compact. We also have
Poincar′e-type inequality.

Lemma 2.1. Let 1 < p <∞. Then
(i) the embedding

W 1,p(Ω, R) ↪→ C(Ω̄, R)

is continuous and compact.
Moreover the embedding

W 1,p(Ω, R) ↪→ Lp(Ω̄, R)

is continuous and compact and
(ii) there is a constant C > 0 independent of u such that

‖u‖Lp(Ω̄,R) ≤ C‖u‖W 1,p(Ω̄,R).

Proof. (i) By [Chapter 4.1.2 of [1]] and [Chapter 5 and Chapter 6 of [6]], when
Ω = (a, b) ⊂ R1, the embedding

W 1,p(Ω, R) ↪→ C(Ω̄, R)

is continuous and compact. Since C(Ω̄, R) ⊂ Lp(Ω̄, R), it follows that the
embedding

W 1,p(Ω, R) ↪→ Lp(Ω̄, R)

is continuous and compact.
(ii) By (1.3), we have

‖u‖p
W 1,p(Ω̄,R)

= [

∫
Ω̄

|u′(x)|pdx]
1
p + [

∫
Ω̄

|u(x)|pdx]
1
p ]

≥ ν
1
p [

∫
Ω

|u(x)|pdx]
1
p + [

∫
Ω

|u(x)|pdx]
1
p

= (ν
1
p + 1)[

∫
Ω

|u(x)|pdx]
1
p

= (ν
1
p + 1)‖u‖Lp(Ω̄,R).

Thus there exists a constant C > 0 such that ‖u‖Lp(Ω̄,R) ≤ C‖u‖W 1,p(Ω̄,R). �

3. Proof of Theorem 1.1

Proof of (i) of Theorem 1.1 (For the case s > 0)
We assume that m ∈ N , m < ∞, a < b, −∞ < a < λm1 , · · · , λmn < b < λmn+1

and s > 0. Then (1.1) can be rewritten as

−(|u′|2m−2u′)′−λm1 |u|2m−2u = (b−λm1 )|u|2m−2u+−(a−λm1 )|u|2m−2u−+sφ2m−1
1 .
(3.1)
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Taking inner product both side of (3.1) with φ1, we have〈
−(|u′|2m−2u′)′−λm1 |u|2m−2u, φ1

〉
=
〈
(b−λm1 )|u|2m−2u+−(a−λm1 )|u|2m−2u−+sφ2m−1

1 , φ1

〉
.

(3.2)
The left hand side of (3.1) is equal to 0. On the other hand, the right hand
side of (3.1) is positive because b− λm1 > 0, −(a− λm1 ) > 0 and sφ2m−1

1 > 0 for
s > 0. Thus if s > 0, then there is no solution for (1.1).

Proof of (ii) of Theorem 1.1 (For the case s = 0)
If s = 0, then (3.2) is reduced to the equation〈
−(|u′|2m−2u′)′−λm1 |u|2m−2u, φ1

〉
=
〈
(b−λm1 )|u|2m−2u+−(a−λm1 )|u|2m−2u−, φ1

〉
,

i.e., ∫
Ω

[(−(|u′|2m−2u′)′ − λm1 |u|2m−2u)φ1]dx = 0

=

∫
Ω

[((b−λm1 )|u|2m−2u+−(a−λm1 )|u|2m−2u−)φ1]dx.

(3.3)
Since b− λm1 > 0 and −(a− λm1 ) > 0, the only possibility to hold (3.3) is that
u = 0.

Lemma 3.1. (A priori bound) Assume that m ∈ N , m < ∞, −∞ < a <
λm1 , · · · , λmn < b < λmn+1, s ∈ R. Then there exist s1 < 0, s2 > 0 and a constant
C > 0 depending only on a, b and s such that for any any s with s1 ≤ s ≤ s2,
any solution u of (1.1) satisfies ‖u‖W 1,2m(Ω) < C.

Proof. Suppose that the lemma is false. Then there exists a sequence (un)n,
(an)n, (bn)n and (tn)n such that −∞ < an < λm1 , · · · , λmn < bn < λmn+1,
s1 ≤ tn ≤ s2, ‖un‖W 1,2m(Ω) = ρn →∞ and

−(|u′n|2m−2u′n)′ = bn|un|p−2u+
n − an|un|2m−2u−n + tnφ

2m−1
1 in Ω (3.4)

or equivalently

un = (−L2m)−1(bn|un|2m−2u+
n − an|un|2m−2u−n + tnφ

2m−1
1 ) in Ω.

Let us set wn = un

‖un‖W1,2m(Ω)
. Then (wn)n is bounded, so there exists a subse-

quence, up to a subsequence (wn)n such that (wn)n → w weakly for some w in
W 1,2m(Ω). Dividing (3.4) by ‖un‖2m−1

W 1,2m(Ω), we have

−(|u′n|2m−2u′n)′

‖un‖2m−1
W 1,2m(Ω)

= bn
|un|2m−2u+

n

‖un‖2m−1
W 1,2m(Ω)

−an
|un|2m−2u−n
‖un‖2m−1

W 1,2m(Ω)

+
tnφ

2m−1
1

‖un‖2m−1
W 1,2m(Ω)

in Ω,

(3.5)
i.e.,

wn = (−L2m)−1(bn|wn|2m−2w+
n − an|wn|2m−2w−n +

tnφ
2m−1
1

‖un‖2m−1
W 1,2m(Ω)

) in Ω.
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Since by Lemma 2.1, the embeddingW 1,2m(Ω) ↪→ L2m(Ω) is compact, and when
m < ∞, (−L2m)−1 is compact operator, (wn)n → w strongly in W 1,2m(Ω).
Moreover (an)n and (bn)n satisfying −∞ < an < λm1 , · · · , λmn < bn < λmn+1

converge strongly to some a and b with −∞ < a < λm1 , · · · , λmn < b < λmn+1.
Moreover (tn)n with s1 ≤ tn ≤ s2 also converge strongly to some s with s1 ≤
s ≤ s2. Limiting (3.5) as n→∞, we have

−(|w′|2m−2w′)′ = b|w|2m−2w+ − a|w|2m−2w−. (3.6)

By (ii) of Theorem 1.1, (3.6) has only trivial solution, which is absurd because
‖w‖W 1,2m(Ω) = 1. Thus the lemma is proved. �

We shall consider the Leray-Schauder degree on a large ball

Lemma 3.2. Assume that m ∈ N , m < ∞, −∞ < a < λm1 , · · · , λmn < b <
λmn+1. Then there exist a constant R > 0 depending on a, b, s, and s1 < 0 and
s2 > 0 such that for any s with s1 ≤ s ≤ s2, the Leray-Schauder degree

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ), BR(0), 0) = 0,

where −L2mu = −(|u′|2m−2u′)′.

Proof. Let us consider the homotopy

F (x, u) = u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ). (3.7)

By (i) of Theorem 1.1, for any s > 0, (1.1) has no solution. Thus there exist
s2 > 0 and a large R > 0 such that (3.7) has no zero in BR(0) for any s ≥ s2,
and by the a priori bound in Lemma 3.1, there exists s1 < 0 such that for any
s with s1 ≤ s ≤ s2, all solutions of

u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ) = 0

satisfy ‖u‖W 1,2m(Ω) ≤ R and (3.7) has no zero on ∂BR for any s1 ≤ s ≤ s2.
Since

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + s2φ
2m−1
1 ), BR(0), 0) = 0,

by homotopy arguments, for any s1 ≤ s ≤ s2, we have

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ), BR(0), 0)

= dLS(u−(−L2m)−1(b|u|2m−2u+−a|u|2m−2u−+sφ2m−1
1 +λ(s2−s)φ2m−1

1 ), BR(0), 0)

= dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + s2φ
2m−1
1 ), BR(0), 0) = 0

for any 0 ≤ λ ≤ 1. Thus the lemma is proved. �

Lemma 3.3. Let K be a compact set in L2m(Ω). Let ξ > 0 a.e. Then there
exists a modulus of continuity α : R→ R depending only on K and ξ such that

‖|(|τ | − ξ

η
)+‖L2m(Ω) ≤ α(η) for all τ ∈ K.
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Proof. For any τ ∈ K, Let τn = (|τ | − ξ
η )+. Since 0 ≤ τn ≤ |τ | and τn(x) → 0

as η → 0 a.e., it follows that ‖τn‖L2m(Ω) → 0 for all τ ∈ K. We claim that for
given ε > 0, there exists δ > 0 such that if τ ∈ K, then ‖τn‖L2m(Ω) ≤ 2ε for
all η ∈ [0, δ]. Choose {τi, i = 1, · · · , N} as an ε net for K. Choose δ so that
‖(τi)δ‖L2m(Ω) < ε for i = 1, · · · , N . Then for any τ ∈ K, there exists τk, α,

‖α‖L2m(Ω) < ε that τ = τK+α. Since (u+v)+ ≤ u+ +v+, we have ‖τδ‖L2m(Ω) ≤
(τK)δ + |α| and therefore ‖τη‖L2m(Ω) ≤ ‖τδ‖L2m(Ω) + ‖α‖L2m(Ω) ≤ 2ε �

Lemma 3.4. Assume that m ∈ N , m < ∞, −∞ < a < λm1 , · · · , λmn < b <
λmn+1. Then there exist a small constant ε and s1 < 0 such that for any s with
s1 ≤ s < 0, the Leray-Schauder degree

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ), Bε|s|(u0), 0) = (−1)n,

where u0 = ( s
λm

1 −b
)

1
2m−1φ1 > 0 is a positive solution of (1.1).

Proof. Let us set M = (−L2m − bg2m)−1. Then (1.1) can be rewritten as

(−Lp − bg2m)(u) = b|u|2m−2u+ − a|u|2m−2u− − b|u|2m−2u+ sφ2m−1
1

or equivalently

u = M(b|u|2m−2u+ − a|u|2m−2u− − b|u|2m−2u+ sφ2m−1
1 ). (3.8)

The operator M is compact on L2m(Ω), and the set K = M(B̄), where B̄
is the closed unit ball in L2m(Ω). Then K is a compact set. Let us set
γ = min{b− λmn , λmn+1− b}. We can observe that if m <∞, then ‖M‖L2m(Ω) ≤
‖ 1

γ
1

2m−1
g−1

2m‖L2m(Ω). Let α be the modulus continuity of Lemma 3.3 correspond-

ing to K and ξ = Mφ2m−1
1 = ( 1

λm
1 −b

)
1

2m−1φ1 and choose ε > 0 so that

α(ε
1

2m−1 ((b− a)
1

2m−1 + γ
1

2m−1 ) ≤ γ
1

2m−1

4(b− a)
1

2m−1 ((b− a)
1

2m−1 + γ
1

2m−1 )
. (3.9)

We have

‖b|u|2m−2u+ − a|u|2m−2u− − b|u|2m−2u‖L2m(Ω) ≤ (b− a)‖|u|2m−2u−‖L2m(Ω).
(3.10)

It follows from that

‖M
(
b|u|2m−2u+− a|u|2m−2u−− b|u|2m−2u

)
‖L2m(Ω) ≤

(b− a)
1

2m−1

γ
1

2m−1

‖u−‖L2m(Ω).

(3.11)

For u = ( |s|
λm

1 −b
)

1
2m−1φ1 + (|s|εv)

1
2m−1 with v ∈ B̄,

‖u−‖L2m(Ω) =‖(( s

λm1 − b
)

1
2m−1φ1 + (|s|ε)

1
2m−1 v

1
2m−1 )−‖L2m(Ω)

≤‖((|s|εv)
1

2m−1 )−‖L2m(Ω) ≤ (|s|ε)
1

2m−1
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since ( s
λm

1 −b
)

1
2m−1φ1 > 0. Then T (u) = M(b|u|2m−2u+−a|u|2m−2u−−b|u|2m−2u+

sφ2m−1) can be rewritten as

T (u) = (
s

λm1 − b
)

1
2m−1φ1 + (|s|ε)

1
2m−1 ((b− a)

1
2m−1 + γ

1
2m−1 )w

1
2m−1 , w ∈ K.

If u is a solution of (3.8), then u = Tu and by Lemma 3.3,

‖u−‖L2m(Ω) = ‖(( s

λm1 − b
)

1
2m−1φ1+((|s|ε)

1
2m−1 ((b−a)

1
2m−1 +γ

1
2m−1 )w

1
2m−1 )−‖L2m(Ω)

≤ ((|s|ε)
1

2m−1 ((b−a)
1

2m−1 +γ
1

2m−1 )α(ε
1

2m−1 ((b−a)
1

2m−1 +γ
1

2m−1 ) <
γ

1
2m−1 (|s|ε)

1
2m−1

4(b− a)
1

2m−1

.

(3.12)
Combining (3.11) with (3.12), we have

‖M(b|u|2m−2u+ − a|u|2m−2u− − b|u|2m−2u)‖L2m(Ω)

≤ (b− a)
1

2m−1

γ
1

2m−1

‖u−‖L2m(Ω) ≤
1

4
(|s|ε)

1
2m−1 ≤ 1

4
|s|ε.

Thus we have shown that any solution u ∈ ( s
λm

1 −b
)

1
2m−1φ1+|s|εB̄ of (3.8) belong

to ( s
λm

1 −b
)

1
2m−1φ1 + 1

4 |s|εB̄. This estimate holds if we replace b|u|2m−2u+ −
a|u|2m−2u− − b|u|2m−2u by λ(b|u|2m−2u+ − a|u|2m−2u− − b|u|2m−2u) with 0 ≤
λ ≤ 1. Thus the equation

u = (−L2m)−1(sφ2m−1
1 +b|u|2m−2u+λ(b|u|2m−2u+−a|u|2m−2u−−b|u|2m−2u))

has no solution on the boundary of the ball Bε|s|((
s

λm
1 −b

)
1

2m−1φ1) for 0 ≤ λ ≤ 1.

By the homotopy invariance degree,

dLS(u−(−L2m)−1(sφ2m−1
1 +b|u|2m−2u+λ(b|u|2m−2u+−a|u|2m−2u−−b|u|2m−2u),

Bε|s|(
s

λm1 − b
)

1
2m−1φ1, 0)

is defined for 0 ≤ λ ≤ 1 and is independent of λ. For λ = 0,

dLS(u− (−L2m)−1(sφ2m−1
1 + b|u|2m−2u,Bε|s|((

s

λm1 − b
)

1
2m−1φ1), 0) = (−1)n.

since u = ( s
λm

1 −b
)

1
2m−1φ1 is the unique solution of the equation and since there

are n eigenvalues λm1 , · · · , λmn of −L2m to the left of b and thus the operator
I−b(−L2m)−1 has n negative eigenvalues, while all the rest are positive. When
λ = 1, we have

dLS((u−(−L2m)−1(sφ2m−1
1 +b|u|2m−2u++1(b|u|2m−2u+−a|u|2m−2u−−b|u|2m−2u),

Bε|s|((
s

λm1 − b
)

1
2m−1φ1), 0)

= dLS(sφ2m−1
1 + b|u|2m−2u+ − a|u|2m−2u−, Bε|s|((

s

λm1 − b
)

1
2m−1φ1), 0).
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Thus by the homotopy invariance of degree, we have

dLS(sφ2m−1
1 + b|u|2m−2u+ − a|u|2m−2u−, Bε|s|((

s

λm1 − b
)

1
2m−1φ1), 0)

= dLS(u− (−L2m)−1(sφ2m−1
1 + b|u|2m−2u,Bε|s|((

s

λm1 − b
)

1
2m−1φ1), 0) = (−1)n.

Thus the lemma is proved. �

Lemma 3.5. Assume that m ∈ N , m <∞, −∞ < a < λm1 , · · ·λmn < b < λmn+1

and s1 < 0. Then there exist a constant ε > 0 depending on a, b, s such that
for any s with s1 ≤ s < 0, the Leray-Schauder degree

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ), Bε|s|(u1), 0) = 1,

where u1 = −( s
a−λm

1
)

1
2m−1φ1 < 0 is a negative solution of (1.1).

Proof. We can prove this lemma by the almost identical proof to that of Lemma
3.4. �

Proof of (iii) of Theorem 1.1

By Lemma 3.4 and Lemma 3.5, there is a solution ( s
λm

1 −b
)

1
2m−1φ1 > 0 in

B|s|ε((
s

λm
1 −b

)
1

2m−1φ1) and a solution−( s
a−λm

1
)

1
2m−1φ1 < 0 inB|s|ε(−( s

a−λm
1

)
1

2m−1φ1).

We may assume that |s|ε < ( s
λm

1 −b
)

1
2m−1 and |s|ε < ( s

a−λm
1

)
1

2m−1 . Then these

two balls B|s|ε((
s

λm
1 −b

)
1

2m−1φ1) and

B|s|ε(−( s
a−λm

1
)

1
2m−1φ1) are disjoint. Then there is a large ball BR centred at

origin and containing B|s|ε((
s

λm
1 −b

)
1

2m−1φ1) and B|s|ε(−( s
a−λm

1
)

1
2m−1φ1). Since

dLS(u− (−L2m)−1(b|u|2m−2u+ − a|u|2m−2u− + sφ2m−1
1 ), BR(0), 0) = 0,

dLS(u−(−L2m)−1(b|u|2m−2u+−a|u|2m−2u−+sφ2m−1
1 ), B|s|ε((

s

λm1 − b
)

1
2m−1φ1), 0) = (−1)n

and

dLS(u−(−L2m)−1(b|u|2m−2u+−a|u|2m−2u−+sφ2m−1
1 ), B|s|ε(−(

s

a− λm1
)

1
2m−1φ1), 0) = 1,

we have

dLS(u−(−L2m)−1(b|u|2m−2u+−a|u|2m−2u−+sφ2m−1
1 ), BR(0)\(B|s|ε((

s

λm1 − b
)

1
2m−1φ1)

∪B|s|ε(−(
s

a− λm1
)

1
2m−1φ1), 0)

=

{
0 if n is odd,

−2 if n is even.

Thus if n is odd, then we can not assure that there exists a third solution in

BR(0)\
(
B|s|ε((

s

λm1 − b
)

1
2m−1φ1) ∪B|s|ε(−(

s

a− λm1
)

1
2m−1φ1)

)
,
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and if n is even, then we can assure that there exists a third solution in

BR(0)\
(
B|s|ε((

s
λm

1 −b
)

1
2m−1φ1)

∪B|s|ε(−( s
a−λm

1
)

1
2m−1φ1)

)
. Thus (iii) of Theorem 1.1. is proved.
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