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ANALYSIS OF L1-WEIGHTS IN ONE-DIMENSIONAL

MINKOWSKI-CURVATURE PROBLEMS

Rui Yang and Yong-Hoon Lee∗

Abstract. L1-weight functions are investigated to give necessary condi-
tions on the existence of nontrivial solutions for various types of scalar

equations and systems of one-dimensional Minkowski-curvature problems.

1. Introduction

In this paper, we first consider the following one-dimensional Minkowski-
curvature problem −

(
φ(u′(t))

)′
= r(t)u(t), t ∈ (a, b),

u(a) = 0 = u(b),
(P )

where φ(y) = y√
1−|y|2

, y ∈ (−1, 1), function r ∈ L1(a, b) satisfies r(t) ≥ 0,

r(t) 6≡ 0 in any compact subinterval of [a, b].
The weight functions play a critical role in determining the eigenvalues and

eigenfunctions. One may refer to [2, 7, 8, 9, 10, 11] for the existence, nonexis-
tence and smoothness of solutions of p-Laplace problem (∆pu = div(|∇u|p−2∇u),
p > 1) and [1, 12, 13, 14] for other types of differential equations.

From the properties of Minkowski-curvature operator, we notice that it is
hard to analyze eigenvalues and eigenfunctions of the boundary valve prob-
lem (abbreviated to BVP) of the operator directly. However the existence and
multiplicity of solutions for the problems with continuous or L1-class weight
functions can be studied regarding the eigenvalues corresponding to the second
order linear problem, see [4, 5, 6]. For the BVP of second order linear ordinary

differential equation, Lyapunov [1] proved that 4
b−a ≤

∫ b

a
r(t)dt is a necessary
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condition for the existence of a positive solution for the linear ordinary differ-
ential equation {

−u′′ = r(t)u, t ∈ (a, b),

u(a) = 0 = u(b),

where r ∈ C([a, b], [0,∞)).
For the BVP of one-dimensional p-Laplacian equation, readers can refer to [2,

3]. Specially, Sim-Lee [3] estimated Lyapunov inequalities for a single equation,
a cycled system and a coupled system with weight functions which are beyond
L1(a, b). The authors only dealt with the case of positive solutions in [3] but here
in this paper, we could handle any nontrivial solutions with help of C1-regularity
of solutions. It is the advantage of L1 condition on the weight function.

In this paper, we aim at exploring L1-weight functions to give necessary
conditions for the existence of nontrivial solutions for scalar equations as well
as systems of one-dimensional Minkowski-curvature problems.

The rest of this paper is organized as follows. We analyze L1-weight functions
for a scalar equation, a cycled system and a strongly coupled system of one-
dimensional Minkowski-curvature problems in Section 2, 3, and 4, respectively.

2. Scalar equation

We say u a solution of problem (P ) if u ∈ C[a, b] ∩ C1(a, b), |u′(t)| < 1
for t ∈ (a, b), and φ

(
u′(t)

)
is absolutely continuous in any compact subinterval

of (a, b), and u satisfies the equation and the boundary conditions in problem
(P ). The following proposition shows that all solutions u of problem (P ) are in
C1[a, b] and satisfy ‖u′‖∞ < 1.

Proposition 2.1. If u is a nontrivial solution of problem (P ), then u ∈ C1[a, b],
|u′(t)| < 1 for t ∈ [0, 1].

Proof. Let u be a nontrivial solution of problem (P ). Then it suffices to prove
that u ∈ C1[a, b] and |u′(a)| < 1 and |u′(b)| < 1. Since u ∈ C[a, b], there exists
a t∗ ∈ (a, b) such that u′(t∗) = 0. Thus we obtain

u′(t) = φ−1

(∫ t∗

t

r(τ)u(τ)dτ

)
.(1)

r ∈ L1(a, b) implies that u′(a) exists and thus |u′(a)| < 1. Similarly we get u′(b)
exists and |u′(b)| < 1. This completes the proof. �

Theorem 2.2. If problem (P ) has a nontrivial solution, then one has

4

b− a
<

∫ b

a

r(t)dt.(2)
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Proof. Let u be a nontrivial solution of problem (P ). By Proposition 2.1, u ∈
C1[a, b]. For t ∈ [a, b], we have

|u(t)| ≤
∫ t

a

|u′(τ)|dτ,

and

|u(t)| ≤
∫ b

t

|u′(τ)|dτ.

Applying Hölder’s inequality, we have

2|u(t)| ≤
∫ b

a

|u′(τ)|dτ ≤ (b− a)1/2

(∫ b

a

|u′|2dτ

)1/2

,

that is

|u(t)|2 ≤ b− a
4

(∫ b

a

|u′|2dτ

)
.(3)

Multiplying both sides of (3) by r(t), we get

r(t)|u(t)|2 ≤ b− a
4

r(t)

(∫ b

a

|u′|2dτ

)
.(4)

Since u is a nontrivial solution of problem (P ), we have∫ b

a

|u′|2√
1− |u′|2

dt =

∫ b

a

r(t)|u(t)|2dt.(5)

Integrating (4) in (a, b), we get∫ b

a

r(t)|u(t)|2dt ≤ b− a
4

∫ b

a

r(t)dt

(∫ b

a

|u′|2dτ

)
.(6)

From (5) and (6), it follows that∫ b

a

|u′|2√
1− |u′|2

dt <
b− a

4

∫ b

a

r(t)dt

(∫ b

a

|u′|2√
1− |u′|2

dτ

)
.

And we obtain (2). �

Remark 1. In Theorem 2.2, there is no equality in (2) for the Minkowski-
curvature problem compared with the result in Laplacian problem, see [1].
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3. Cycled system

In this section, let us consider L1-weights which can guarantee the existence
of nontrivial C1-class solution for a cycled system

(
φ(u′1(t))

)′
+ r1(t)u2(t) = 0,(

φ(u′2(t))
)′

+ r2(t)u3(t) = 0,

· · ·(
φ(u′n−1(t))

)′
+ rn−1(t)un(t) = 0,(

φ(u′n(t))
)′

+ rn(t)u1(t) = 0, t ∈ (a, b),

u1(a) = · · · = un(a) = 0 = u1(b) = · · · = un(b),

(CS)

where ri ∈ L1(a, b), 1 ≤ i ≤ n. Mainly due to the fact ri ∈ L1(a, b), we may
prove a solution (u1, u2, · · · , un) of (CS) satisfies ui ∈ C1[a, b], ‖u′i‖∞ < 1 by
obvious modification of the proof of Proposition 2.1. We say (u1, u2, · · · , un) a
solution of problem (CS) if ui ∈ C1[a, b], ‖u′i‖∞ < 1, and φ

(
u′i(t)

)
is absolutely

continuous in any compact subinterval of (a, b), and ui satisfies the equations
and the boundary conditions in problem (CS), 1 ≤ i ≤ n.

Theorem 3.1. If problem (CS) has a nontrivial solution, then one has(
4

b− a

)n

<

∫ b

a

r1(t)dt · · ·
∫ b

a

rn(t)dt.(7)

Proof. Let (u1, u2, · · · , un) be a nontrivial solution of problem (CS). As in (3),
we have

|ui(t)|2 ≤
b− a

4

(∫ b

a

|u′i|2dt

)
.(8)

Multiplying both sides of the first equation in problem (CS) by u1(t) and then
integrating it over (a, b), we obtain∫ b

a

|u′1|2√
1− |u′1|2

dt =

∫ b

a

r1(t)|u1(t)||u2(t)|dt.

Together with (8), we get∫ b

a

|u′1|2dt <
∫ b

a

|u′1|2√
1− |u′1|2

dt

=

∫ b

a

r1(t)|u1(t)||u2(t)|dt

≤ b− a
4

∫ b

a

r1(t)dt

(∫ b

a

|u′1|2dt

)1/2(∫ b

a

|u′2|2dt

)1/2

,
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i.e., (∫ b

a

|u′1|2dt

)1/2

<
b− a

4

∫ b

a

r1(t)dt

(∫ b

a

|u′2|2dt

)1/2

.

Similarly, we can get

(∫ b

a
|u′2|2dt

)1/2
< b−a

4

∫ b

a
r2(t)dt

(∫ b

a
|u′3|2dt

)1/2
,

· · ·(∫ b

a
|u′n−1|2dt

)1/2
< b−a

4

∫ b

a
rn−1(t)dt

(∫ b

a
|u′n|2dt

)1/2
,(∫ b

a
|u′n|2dt

)1/2
< b−a

4

∫ b

a
rn(t)dt

(∫ b

a
|u′1|2dt

)1/2
.

Multiplying all inequalities, we obtain (7). �

4. Strongly coupled system

In this section, we study L1-weights which can guarantee the existence of
nontrivial C1-class solution for a strongly coupled system

(
φ(u′1(t))

)′
+ r1(t)(u1(t) + · · ·+ un(t)) = 0,

· · ·(
φ(u′n(t))

)′
+ rn(t)(u1(t) + · · ·+ un(t)) = 0, t ∈ (a, b),

u1(a) = · · · = un(a) = 0 = u1(b) = · · · = un(b),

(SCS)

where ri ∈ L1(a, b), 1 ≤ i ≤ n. By obvious manner as before, we may prove a
solution (u1, u2, · · · , un) of (SCS) satisfies ui ∈ C1[a, b], ‖u′i‖∞ < 1. So we say
(u1, u2, · · · , un) a solution of problem (SCS) if ui ∈ C1[a, b], ‖u′i‖∞ < 1, and
φ
(
u′i(t)

)
is absolutely continuous in any compact subinterval of (a, b), and ui

satisfies the equations and the boundary conditions in problem (SCS), 1 ≤ i ≤
n.

Theorem 4.1. If problem (SCS) has a nontrivial solution, then one has

4

b− a
<

∫ b

a

r1(t)dt+ · · ·+
∫ b

a

rn(t)dt.(9)

Proof. Let (u1, u2, · · · , un) be a nontrivial solution of problem (SCS). As in
(3), we have

|ui(t)| ≤
(
b− a

4

)1/2
(∫ b

a

|u′i|2dt

)1/2

.(10)



82 R. YANG AND Y.H. LEE

Multiplying both sides of the first equation in problem (SCS) by u1(t) and
integrating it over (a, b), we get∫ b

a

|u′1|2√
1− |u′1|2

dt =

∫ b

a

r1(t)(|u1(t)|2 + · · ·+ |u1(t)||un(t)|)dt.

Together with (10), we get∫ b

a

|u′1|2dt <
∫ b

a

|u′1|2√
1− |u′1|2

dt

=

∫ b

a

r1(t)(|u1(t)|2 + · · ·+ |u1(t)||un(t)|)dt

≤ b− a
4

∫ b

a

r1(t)dt

(∫ b

a

|u′1|2dt

)
+ · · ·+

+
b− a

4

∫ b

a

r1(t)dt

(∫ b

a

|u′1|2dt

)1/2(∫ b

a

|u′n|2dt

)1/2

,

i.e.,(∫ b

a

|u′1|2dt

)1/2

<
b− a

4

∫ b

a

r1(t)dt

(∫ b

a

|u′1|2dt

)1/2

+ · · ·+

(∫ b

a

|u′n|2dt

)1/2
 .

Similarly, we can get

(∫ b

a
|u′2|2dt

)1/2
< b−a

4

∫ b

a
r2(t)dt

((∫ b

a
|u′1|2dt

)1/2
+ · · ·+

(∫ b

a
|u′n|2dt

)1/2)
,

· · ·(∫ b

a
|u′n|2dt

)1/2
< b−a

4

∫ b

a
rn(t)dt

((∫ b

a
|u′1|2dt

)1/2
+ · · ·+

(∫ b

a
|u′n|2dt

)1/2)
.

Adding all equalities, we derive (9). �
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