Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.