East Asian Math. J.
Vol. 35 (2019), No. 1, pp. 067-075
YNMS
http://dx.doi.org/10.7858/eamj.2019.009

THE ASYMPTOTIC BEHAVIOUR OF THE AVERAGING VALUE OF SOME DIRICHLET SERIES USING POISSON DISTRIBUTION

Sihun Jo

Abstract

We investigate the averaging value of a random sampling of a Dirichlet series with some condition using Poisson distribution.

Our result is the following: Let $L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ be a Dirichlet series that converges absolutely for $\operatorname{Re}(s)>1$. If X_{t} is an increasing random sampling with Poisson distribution and there exists a number $0<\alpha<\frac{1}{2}$ such that $\sum_{n \leq u} a_{n} \ll u^{\alpha}$, then we have $$
\mathbb{E} L\left(1 / 2+i X_{t}\right)=O\left(t^{\alpha} \sqrt{\log t}\right)
$$ for all sufficiently large t in \mathbb{R}. As a result, we get the behaviour of $L\left(\frac{1}{2}+i t\right)$ such that L is a Dirichlet L-function or a modular L-function, when t is sampled by the Poisson distribution.

1. Introduction

The Lindelöf Hypothesis is an important conjecture about behaviour of the Riemann zeta function along the $\operatorname{Re}(z)=\frac{1}{2}$. The conjecture states the absolute value of $\zeta\left(\frac{1}{2}+i t\right)$ is less than t^{ϵ} as $t \rightarrow \infty$. (cf. [5], [6]) Naturally, the Lindelöf Hypothesis can be extended other Dirichlet series including Dirichlet L-function and modular L-function.

In regard to the Lindelöf Hypothesis, there are many attempts using probabilitic methods. Lifshits and Weber [4] researched the behaviour of the Riemann zeta function $\zeta\left(\frac{1}{2}+i t\right)$ using the Cauchy random walk. After that, Jo and Yang [3] researched the behaviour of the Riemann zeta function $\zeta\left(\frac{1}{2}+i t\right)$ using the Gamma distribution. In the previous paper, Jo [6] studied the behaviour of the Riemann zeta function $\zeta(s)$ along the critical strip $s=1 / 2+i t$, when t is sampled by the Poisson distribution.

In this paper, we study the behaviour of Dirichlet series with some conditions using the Poisson distribution. From this, we get the behaviour of $L\left(\frac{1}{2}+i t\right)$ such

Received December 4, 2018; Accepted January 7, 2019.
2010 Mathematics Subject Classification. Primary 11M26, Secondary 42A61.
Key words and phrases. Dirichlet L-function, holomorphic cusp form, Poisson distribution.
that L is a Dirichlet L-function or a modular L-function, when t is sampled by the Poisson distribution.

The following is the main result of this paper.
Theorem 1.1. Let X_{t} denote the Poisson process with $\mathbb{E}\left(X_{t}\right)=t$ and $\operatorname{Var}\left(X_{t}\right)=$ t. Suppose that the Dirichlet series

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges absolutely for $\operatorname{Re}(s)>1$. If there exists a number $0<\alpha<\frac{1}{2}$ such that

$$
A(u)=\sum_{n \leq u} a_{n} \ll u^{\alpha}
$$

then for all sufficiently large t,

$$
\mathbb{E} L\left(1 / 2+i X_{t}\right)=O\left(t^{\alpha} \sqrt{\log t}\right)
$$

From this theorem, we have the following corollaries:
Corollary 1.2. Let X_{t} denote the Poisson process with $\mathbb{E}\left(X_{t}\right)=t$ and $\operatorname{Var}\left(X_{t}\right)=$ t. And let χ be a non-principal Dirichlet character with modulo N and $L_{\chi}(s)$ be the corresponding Dirichlet L-function such that

$$
L_{\chi}(s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

Then we have for all sufficiently large t,

$$
\mathbb{E} L_{\chi}\left(1 / 2+i X_{t}\right)=O(\sqrt{\log t})
$$

Corollary 1.3. Let X_{t} denote the Poisson process with $\mathbb{E}\left(X_{t}\right)=t$ and $\operatorname{Var}\left(X_{t}\right)=$ t. And let f be a cusp form of weight k over $\mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
f(z)=\sum_{n=1}^{\infty} a(n) n^{\frac{k-1}{2}} \exp (2 \pi i n z)
$$

and $L_{f}(s)$ be the corresponding L-function such that

$$
L_{f}(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

Then we have for all sufficiently large t,

$$
\mathbb{E} L_{f}\left(1 / 2+i X_{t}\right)=O\left(t^{\frac{1}{3}} \sqrt{\log t}\right)
$$

Because the Poisson process is increasing with mean value t and its variance t, we can use this process to explain the behaviour of $L\left(\frac{1}{2}+i t\right)$ as $t \rightarrow \infty$. In this paper, we use the Landau notation $f=O(g)$, which means that $|f(x)| \leq C g(x)$ for some constant C and the Vinogradov notation $f \ll g$ which is equivalent to $f=O(g)$.

2. Preliminaries

2.1. Poisson process

The Poisson distribution is the discrete probability distribution of the number of events that occur in an interval time period.

If the probability mass function of X is given by

$$
\begin{equation*}
P\left(X_{t}=k\right)=\frac{t^{k} e^{-t}}{k!} \tag{1}
\end{equation*}
$$

for $k=0,1,2, \cdots$, then we say that a discrete random variable X_{t} has a Poisson distribution with parameter $t>0$.

Using (1), we can get the followings:

$$
\begin{align*}
& \mathbb{E}\left(X_{t}\right)=\sum_{k=0}^{\infty} k \frac{t^{k} e^{-t}}{k!}=t \\
& V\left(X_{t}\right)=\mathbb{E}\left|X_{t}\right|^{2}-\left|\mathbb{E} X_{t}\right|^{2}=t \\
& \mathbb{E}\left(e^{i u X_{t}}\right)=\exp \left(t\left(e^{i u}-1\right)\right) \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\mathbb{E}\left(X_{t} e^{i u X_{t}}\right)=t e^{i u} \exp \left(t\left(e^{i u}-1\right)\right) \tag{3}
\end{equation*}
$$

2.2. Dirichlet character and Dirichlet L-function

A Dirichlet character with modulo N is a function χ from \mathbb{Z} to \mathbb{C} with conditions:

- $\chi(n)=\chi(n+N)$ for all $n \in \mathbb{Z}$.
- If $\operatorname{gcd}(n, N)>1$, then $\chi(n)=0$. If $\operatorname{gcd}(n, N)=1$, then $\chi(n) \neq 0$.
- $\chi(m n)=\chi(m) \chi(n)$ for all $m, n \in \mathbb{Z}$.

A Dirichlet character χ with modulo N is called principal character if $\chi(n)=$ 1 for all $n \in \mathbb{Z}$ such that $\operatorname{gcd}(n, N)=1$.
Note that if χ is a non-principal character with modulo N, then

$$
\begin{equation*}
\sum_{a=1}^{N} \chi(a)=0 \tag{4}
\end{equation*}
$$

A Dirichlet L-function is a function of the following form: for $\operatorname{Re}(s)>1$,

$$
L_{\chi}(s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a Dirichlet character. By analytic continuation, $L_{\chi}(s)$ can be extended to whole complex plane and if χ is a non-principal character, then $L_{\chi}(s)$ can be extended to an entire function.

2.3. Holomorphic cusp form

A holomorphic cusp form of weight k on

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

is a complex-valued function f on $\mathfrak{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ satisfying the following conditions:

- f is a holomorphic function on \mathfrak{H}.
- For any $z \in \mathfrak{H}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, we have

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

- f is holomorphic and goes to zero as $z \rightarrow i \infty$.

Let f be a cusp form of weight k over $\mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
f(z)=\sum_{n=1}^{\infty} a(n) n^{\frac{k-1}{2}} \exp (2 \pi i n z)
$$

It is well known that the corresponding L-function

$$
L_{f}(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

converges absolutely for $\operatorname{Re}(s)>1$. And for the partial sum $A_{f}(u)=\sum_{n \leq u} a(n)$, we have a bound

$$
\begin{equation*}
A_{f}(u) \ll u^{\frac{1}{3}} \tag{5}
\end{equation*}
$$

by Hafner and Ivić [1].

3. Proof of Theorem

We start the following lemma about partial sum.
Lemma 3.1. Suppose that the Dirichlet series

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

converges absolutely for $\operatorname{Re}(s)>1$. If there exists a number $0<\alpha<1$ such that

$$
A(u)=\sum_{n \leq u} a_{n} \ll u^{\alpha}
$$

then $L(s)$ can be extended to $\operatorname{Re}(s)>\alpha$ as follows:

$$
L(s)=s \int_{1}^{\infty} A(u) u^{-s-1} d u
$$

Proof. Note that

$$
\begin{aligned}
\sum_{n=1}^{M} \frac{a_{n}}{n^{s}} & =\int_{1^{-}}^{M} x^{-s} d A(x)=\left[A(x) x^{-s}\right]_{1^{-}}^{M}-\int_{1^{-}}^{M} A(x) d\left(x^{-s}\right) \\
& =\frac{A(M)}{M^{s}}+s \int_{1}^{M} A(x) x^{-s-1} d x
\end{aligned}
$$

Therefore we have

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=s \int_{1}^{\infty} A(x) x^{-s-1} d x
$$

for $\operatorname{Re}(s)>1$. If $\operatorname{Re}(s)>\alpha$, then

$$
\int_{1}^{\infty} A(x) x^{-s-1} d x \ll \int_{1}^{\infty} x^{-\operatorname{Re}(s)+\alpha-1} d x=\frac{1}{\operatorname{Re}(s)-\alpha} .
$$

Hence $L(s)$ can be extended to $\operatorname{Re}(s)>\alpha$.
Proof of Theorem 1.1. By Lemma 3.1, (2) and (3), we have
$\mathbb{E} L\left(1 / 2+i X_{t}\right)$
$=\mathbb{E}\left(\left(1 / 2+i X_{t}\right) \int_{1}^{\infty} A(u) u^{-1 / 2-i X_{t}-1} d u\right)$
$=\frac{1}{2} \int_{1}^{\infty} A(u) u^{-3 / 2} \mathbb{E}\left(u^{-i X_{t}}\right) d u+i \int_{1}^{\infty} A(u) u^{-3 / 2} \mathbb{E}\left(X_{t} u^{-i X_{t}}\right) d u$
$=\frac{1}{2} \int_{1}^{\infty} A(u) u^{-3 / 2} \exp \left(t\left(u^{-i}-1\right)\right) d u+i t \int_{1}^{\infty} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u$
$=: A+B$.
First, we estimate the integral A.
Note that

$$
\begin{equation*}
\exp \left(t\left(u^{-i}-1\right)\right)=\exp (t(\cos (\log u)-1-i \sin (\log u))) \tag{6}
\end{equation*}
$$

Because

$$
\left|\exp \left(t\left(u^{-i}-1\right)\right)\right|=\exp (t(\cos (\log u)-1)) \leq 1
$$

we have that

$$
A=\frac{1}{2} \int_{1}^{\infty} A(u) u^{-3 / 2} \exp \left(t\left(u^{-i}-1\right)\right) d u=O\left(\int_{1}^{\infty} u^{\alpha-\frac{3}{2}} d u\right)=O(1) .
$$

Second, we consider the integral B.
Note that

$$
\cos \left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)=1-\frac{1}{2}\left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)^{2}+O\left((\log t)^{2} / t^{2}\right)
$$

and

$$
\begin{aligned}
\exp \left(t\left(\cos \left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)-1\right)\right) & =\exp \left(-\frac{t}{2}\left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)^{2}+O\left((\log t)^{2} / t\right)\right) \\
& =\exp (-\log t)\left(1+O\left((\log t)^{2} / t\right)\right) \\
& =\frac{1}{t}+O\left((\log t)^{2} / t^{2}\right)
\end{aligned}
$$

Suppose that, for $m \in \mathbb{Z}$,

$$
\frac{\sqrt{2 \log t}}{\sqrt{t}} \leq|\log u-2 \pi m| \leq \pi
$$

Then, for $\alpha=\log u-2 \pi m$, we have $0 \leq \cos \alpha \leq \cos \left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)$. Therefore we have

$$
\begin{aligned}
\exp (t(\cos (\log u)-1)) & =\exp (t(\cos (2 \pi m+\alpha)-1))=\exp (t(\cos \alpha-1)) \\
& \leq \exp \left(t\left(\cos \left(\frac{\sqrt{2 \log t}}{\sqrt{t}}\right)-1\right)\right)=\frac{1}{t}+O\left((\log t)^{2} / t^{2}\right)
\end{aligned}
$$

From (6), we have $\left|\exp \left(t\left(u^{-i}-1\right)\right)\right|=\exp (t(\cos (\log u)-1))$. Hence, for $m \in \mathbb{Z}$, if

$$
\frac{\sqrt{2 \log t}}{\sqrt{t}} \leq|\log u-2 \pi m| \leq \pi
$$

then

$$
\begin{equation*}
\left|\exp \left(t\left(u^{-i}-1\right)\right)\right| \ll t^{-1} \tag{7}
\end{equation*}
$$

Let

$$
S=\bigcup_{m=0}^{\infty}\left\{u \in \mathbb{R}\left|u \geq 1,|\log u-2 \pi m|<\frac{\sqrt{2 \log t}}{\sqrt{t}}\right\}\right.
$$

We divide B into two parts.

$$
\begin{aligned}
B= & i t \int_{S} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u+i t \int_{R} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& =: B_{1}+E
\end{aligned}
$$

where $R=[1, \infty)-S$.
case 1) We consider the integral for R. From (7), we can get

$$
E=i t \int_{R} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u=O\left(t \int_{1}^{\infty} u^{\alpha-\frac{3}{2}} \frac{1}{t} d u\right)=O(1)
$$

case 2) The integral for S is the following:

$$
B_{1}=i t \sum_{m=1}^{\infty} \int_{e^{2 \pi m-\sqrt{2 \log t / t}}}^{e^{2 \pi m+\sqrt{2 \log t / t}}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u
$$

We divide B_{1} into two parts as following:

$$
\begin{aligned}
B_{1}= & i t \sum_{m<\frac{1}{2 \pi} \log t} \int_{e^{2 \pi m-\sqrt{2 \log t / t}}}^{e^{2 \pi m+\sqrt{2 \log t / t}}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& +i t \sum_{m \geq \frac{1}{2 \pi} \log t} \int_{e^{2 \pi m-\sqrt{2 \log t / t}}}^{e^{2 \pi m+\sqrt{2 \log t / t}}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
= & M_{1}+M_{2} .
\end{aligned}
$$

First, we calculate the integral M_{2}.

$$
\begin{aligned}
M_{2} & \ll t \sum_{m \geq \frac{1}{2 \pi} \log t} \int_{e^{2 \pi m-\sqrt{2 \log t / t}}}^{e^{2 \pi m+\sqrt{2 \log t / t}}} u^{\alpha-3 / 2} d u \ll t \sum_{m \geq \frac{1}{2 \pi} \log t} e^{-(1-2 \alpha) \pi m}\left(\frac{\sqrt{\log t}}{\sqrt{t}}\right) \\
& \ll t^{\alpha} \sqrt{\log t} .
\end{aligned}
$$

Next, we calculate the integral M_{1}.
We divide M_{1} into the following:

$$
\begin{aligned}
& i t \sum_{m<\frac{1}{2 \pi} \log t} \int_{e^{2 \pi m-\sqrt{2 \log t / t}}}^{e^{2 \pi m+\sqrt{2 \log t / t}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u} \\
& =i t \sum_{m<\frac{1}{2 \pi} \log t} \int_{\left[e^{2 \pi m-\sqrt{2 \log t / t}]}\right.}^{\left[e^{2 \pi m+\sqrt{2 \log t / t}]}\right.} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& +i t \sum_{m<\frac{1}{2 \pi} \log t} \int_{\left[e^{2 \pi m+\sqrt{2 \log t / t}]}\right.}^{e^{2 \pi m+\sqrt{2 \log t / t}}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& -i t \sum_{m<\frac{1}{2 \pi} \log t} \int_{\left[e^{2 \pi m-\sqrt{2 \log t / t}]}\right.}^{e^{2 \pi m-\sqrt{2 \log t / t}}} A(u) u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& =: M_{1,1}+E^{+}+E^{-} .
\end{aligned}
$$

From an integration by parts using the equation

$$
\begin{equation*}
\frac{d}{d u} \exp \left(t\left(u^{-i}-1\right)\right)=-i \exp \left(t\left(u^{-i}-1\right)\right) t u^{-i-1}, \tag{8}
\end{equation*}
$$

we get

$$
\begin{aligned}
E^{+} & =i t\left(\sum_{n \leq\left[e^{2 \pi m+\sqrt{2 \log t / t}}\right]} a(n)\right) \int_{\left[e^{2 \pi m+\sqrt{2 \log t / t}]}\right.}^{e^{2 \pi m+\sqrt{2 \log t / t}}} u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& \ll t e^{2 \pi m \alpha} \int_{\left[e^{2 \pi m+\sqrt{2 \log t / t}]}\right.}^{e^{2 \pi m+\sqrt{2 \log t / t}}} u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
& \ll t e^{2 \pi m \alpha} \frac{e^{-\pi m}}{t}=e^{(2 \alpha-1) \pi m} .
\end{aligned}
$$

Similarly, we have $E^{-} \ll e^{(2 \alpha-1) \pi m}$.
Using (8), we have

$$
\begin{aligned}
& M_{1,1}= i t \sum_{k=\left[e^{2 \pi m-\sqrt{2 \log t / t}]}\right.}^{\left[e^{2 \pi m+\sqrt{2 \log t / t}]-1}\right.} A(k) \int_{k}^{k+1} u^{-3 / 2-i} \exp \left(t\left(u^{-i}-1\right)\right) d u \\
&= i t \sum_{k=\left[e^{2 \pi m-\sqrt{2 \log t / t}]}\right.}^{\left[e^{2 \pi m+\sqrt{2 \log t / t}]-1}\right.} A(k)\left(\left[\frac{u^{-1 / 2} i}{t} \exp \left(t\left(u^{-i}-1\right)\right)\right]_{k}^{k+1}\right. \\
&\left.+i \int_{k}^{k+1} \frac{u^{-3 / 2}}{2 t} \exp \left(t\left(u^{-i}-1\right)\right) d u\right) \\
& \ll t e^{\left[e^{2 \pi m+\sqrt{2 \log t / t}]}-1\right.} \sum_{k=\left[e^{2 \pi m-\sqrt{2 \log t / t}]}\right.}^{\alpha} \frac{k^{-\frac{1}{2}}}{t} \lll e^{(2 \alpha+1) \pi m} \frac{\sqrt{\log t}}{\sqrt{t}} .
\end{aligned}
$$

From these facts, we have

$$
M_{1} \ll \sum_{m<\frac{1}{2 \pi} \log t}\left(e^{(2 \alpha+1) \pi m} \frac{\sqrt{\log t}}{\sqrt{t}}+2 e^{(2 \alpha-1) \pi m}\right) \ll t^{\alpha} \sqrt{\log t} .
$$

Because $M_{2} \ll t^{\alpha} \sqrt{\log t}$, we have

$$
B_{1}=M_{1}+M_{2} \ll t^{\alpha} \sqrt{\log t} .
$$

Hence, from case 1 and case 2 , we can get $B \ll t^{\alpha} \sqrt{\log t}$.
Therefore we can know

$$
\mathbb{E} L\left(1 / 2+i X_{t}\right) \ll t^{\alpha} \sqrt{\log t}
$$

and the proof is complete.
Proof of Corollary 1.2. From (4), we know

$$
\left|\sum_{n \leq u} \chi(n)\right| \leq N .
$$

By Theorem 1.1, we have

$$
\mathbb{E} L_{\chi}\left(1 / 2+i X_{t}\right)=O(\sqrt{\log t}) .
$$

Proof of Corollary 1.3. From (5), we know

$$
A_{f}(u)=\sum_{n \leq u} a(n) \ll u^{\frac{1}{3}} .
$$

By Theorem 1.1, we have

$$
\mathbb{E} L_{f}\left(1 / 2+i X_{t}\right)=O\left(t^{\frac{1}{3}} \sqrt{\log t}\right) .
$$

References

[1] J. L. Hafner, A. Ivić, On sums of Fourier coefficients of cusp forms, Enseign. Math. (2) 35 (1989), no. 3-4, 375-382.
[2] S. Jo, The averaging value of a sampling of the Riemann zeta function on the critical line using Poisson distribution, East Asian Math. J. 34 (2018), no. 3, 287-293.
[3] S. Jo, M. Yang, An estimate of the second moment of a sampling of the Riemann zeta function on the critical line, J. Math. Anal. Appl. 415 (2014) 121-134.
[4] M. Lifshits, M. Weber, Sampling the Lindelöf hypothesis with the Cauchy random walk, Proc. Lond. Math. Soc. 98 (2009), no. 1, 241-270.
[5] E. Lindelöf, Quelques remarques sur la croissance de la fonction $\zeta(s)$, Bull. Sci. Math. 32 (1908), 341-356.
[6] M. Jutila, On the value distribution of the zeta function on the critical line, Bull. London Math. Soc. 15 (1983), no. 5, 513-518.

Sihun Jo
Department of Mathematics Education, Woosuk University, 443 Samnye-ro, Samnyeeup, Wanju-Gun, Jeollabuk-do 55338, Republic of Korea

E-mail address: sihunjo@woosuk.ac.kr

