1 |
V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 (1961), 187-214.
DOI
|
2 |
H. R. Cho, H. Choi, and H.-W. Lee, Boundedness of the Segal-Bargmann Transform on Fractional Hermite-Sobolev Spaces, Journal of Function Spaces, Volume 2017 (2017), Article ID 9176914, 6 pages.
|
3 |
K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, Berlin, New York, 2000.
|
4 |
R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, Maidenhead, 1965.
|
5 |
A. K. Nandakumaran and P. K. Ratnakumar, Schrodinger equation and the oscillatory semigroup for the Hermite operator, J. Funct. Anal. 224 (2005), 371-385.
DOI
|
6 |
E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
DOI
|
7 |
K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263. Springer, New York, 2012.
|