Browse > Article
http://dx.doi.org/10.7858/eamj.2019.001

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR  

CHO, HONG RAE (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
LEE, HAN-WOOL (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
CHO, EUNSUNG (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
Publication Information
Abstract
We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.
Keywords
Fock space; Schrodinger equation; Cauchy-Euler type operator; Oscillatory semigroup;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform I, Comm. Pure Appl. Math. 14 (1961), 187-214.   DOI
2 H. R. Cho, H. Choi, and H.-W. Lee, Boundedness of the Segal-Bargmann Transform on Fractional Hermite-Sobolev Spaces, Journal of Function Spaces, Volume 2017 (2017), Article ID 9176914, 6 pages.
3 K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, Berlin, New York, 2000.
4 R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, Maidenhead, 1965.
5 A. K. Nandakumaran and P. K. Ratnakumar, Schrodinger equation and the oscillatory semigroup for the Hermite operator, J. Funct. Anal. 224 (2005), 371-385.   DOI
6 E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.   DOI
7 K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263. Springer, New York, 2012.