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GLOBAL EXISTENCE OF STRONG SOLUTION FOR SOME

CONTROLLED ODE-PDE SYSTEMS

Sang-Uk Ryu

Abstract. This paper is concerned with the global existence of strong

solution for the controlled ode-pde systems. Also, we consider the contin-

uous dependence of solution on the control.

1. Introduction

The modelling of forest age structure dynamics is one of the most important
problems of mathematical ecology. The following model is introduced as base
mathematical model of mono-species forest with two age classes ([1], [2], [7]).

∂y

∂t
= d

∂2y

∂x2
− γ(ρ)y − fy + gρ in I × (0, T ],

∂ρ

∂t
= fy − hρ− u(t)ρ in I × (0, T ], (1.1)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) = 0 on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in I.

Here, I = (0, L) is a bounded interval in R. y = y(x, t) denotes tree density of
young age class in I at time t and ρ = ρ(x, t) is tree density of old age class in
I at time t. d > 0 is a diffusion rate. g > 0 is fertility of the species. h > 0 and
f > 0 denote death and aging rates. γ(ρ) denotes a mortality rate function of
the young trees with γ(ρ) = a(ρ− b)2 + c (a, b, c > 0). u(t) denotes the control
term.

In [3] and [5], the authors studied the global existence of strong solution and
the optimal control problem for prey-predator reaction diffusion model. In [4],
the existence of strong solution and the control problem for FitzHugh-Nagumo
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system were studied. In [6], the author considered the local existence of strong
solution and the existence of optimal control for (1.1). In this paper, we show
the global existence of strong solution and the continuous dependence of solution
on the control.

The paper is organized as follows. Section 2 is a preliminary section. In
Section 3, we obtain the global existence of strong solution. Also, we show the
continuous dependence of solution on the control.

Notation. Lp(I;H), 1 ≤ p ≤ ∞, denotes the Lp space of measurable func-
tions in I with values in a Hilbert spaceH. C(I;H) denotes the space of continu-
ous functions in I with values in H. W 1,2(I;H) = {y;Djy ∈ L2(I;H), j = 0, 1},
where D is the derivative in the sense of distributions. For simplicity, we shall
use a universal constant C to denote various constants which are determined in
each occurrence in a specific way by a, b, c, d, f, g, h, m, l and I.

2. Preliminaries

In this section, we recall the existence and uniqueness of a local strong solu-
tion for (1.1) as in [6].

We rewrite (1.1) as an abstract problem (2.1) in the Hilbert spaces H =
L2(I) × L2(I). To this end, let us define the operator A : D(A) ⊂ H → H as
follows:

AY =

(
d ∂2

∂x2 0
0 0

)(
y

ρ

)
, Y =

(
y

ρ

)
∈ D(A).

Here, D(A) =
{
Y =

(
y
ρ

)
∈ H2(I) × L∞(I), ∂y∂x (0) = ∂y

∂x (L) = 0
}

. Then A is a

self adjoint dissipative operator in H.
Thus, (1.1) is formulated to the following abstract form

dY

dt
+AY = F (t, Y (t)), 0 < t ≤ T, (2.1)

Y (0) = Y0

in the space H. Here, F (t, Y (t)) : [0, T ]×H → H is the mapping

F (t, Y (t)) =

(
f(t, y, ρ)

g(t, y, ρ)

)
=

(
−γ(ρ)y − fy + gρ

fy − hρ− u(t)ρ

)
and Y0 is defined by Y0 =

(
y0
ρ0

)
. K =

{(
y0
ρ0

)
∈ D(A); y0 ≥ 0 and ρ0 ≥ 0

}
and

Uad = {u ∈ H1(0, T ); ‖u‖H1(0,T ) ≤ m, 0 ≤ u(t) ≤ l}.

Now, we have the followig result for the local strong solution to (1.1)(for the
proof, see [6]).
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Theorem 2.1. For Y0 ∈ K and u ∈ Uad, (1.1) has a unique strong solution
Y =

(
y
ρ

)
∈W 1,2(0, S;H) such that

0 ≤ y ∈ L∞((0, S))× I) ∩ L∞(0, S;H1(I)) ∩ L2(0, S;H2(I)),

0 ≤ ρ ∈ L∞((0, S)× I) ∩ L∞(0, S;L2(I)).

Here, the time S ∈ (0, T ] is determined by ‖y0‖L∞(I) and ‖ρ0‖L∞(I).

3. Global existence of strong solution

Theorem 3.1. For any 0 ≤ y0 ∈ H2(I) and 0 ≤ ρ0 ∈ H1(I) and u ∈ Uad,
(1.1) has a unique global strong solution Y =

(
y
ρ

)
∈W 1,2(0, T ;H) such that

0 ≤ y ∈ L∞((0, T )× I) ∩ L∞(0, T ;H1(I)) ∩ L2(0, T ;H2(I)),

0 ≤ ρ ∈ L∞((0, T )× I) ∩ L∞(0, T ;L2(I)).

Moreover, the estimates∥∥∥∂y
∂t

∥∥∥
L2(0,T ;L2(I))

+ ‖y‖L2(0,T ;H2(I)) + ‖y‖H1(I) + ‖y‖L∞((0,T )×I) ≤ C (3.1)

and ∥∥∥∂ρ
∂t

∥∥∥
L2(0,T ;L2(I))

+ ‖ρ‖L∞((0,T )×I) + ‖ρ‖L2(I) ≤ C (3.2)

hold, where C is also determined by ‖y0‖L∞(I) and ‖ρ0‖L∞(I).

Proof. Let y, ρ be any local strong solution of (1.1) on an interval [0, S] as in
Theorem 2.1. We shall obtain the desired result by three steps.

Step 1. Multifly the first equation of (1.1) by y and integrate the product in
I. Then, we have

1

2

d

dt

∫ L

0

y2dx+ f

∫ L

0

y2dx+ d

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx
= g

∫ L

0

ρydx−
∫ L

0

γ(ρ)y2dx. (3.3)

Multifly the second equation of (1.1) by ρ and integrate the product in I. Then,
we have

1

2

d

dt

∫ L

0

ρ2dx+ h

∫ L

0

ρ2dx = f

∫ L

0

yρdx−
∫ L

0

u(t)ρ2dx (3.4)

≤ f
∫ L

0

yρdx.
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Thus, we obtain from (3.3) and (3.4) that

1

2

d

dt

∫ L

0

(y2 + ρ2)dx+ (f + h)

∫ L

0

(y2 + ρ2)dx+ d

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx
≤ (f + g)

∫ L

0

ρydx−
∫ L

0

γ(ρ)y2dx. (3.5)

Here, we notice that

(f + g)ρy − γ(ρ)y2 = −
[
a(ρ− b)2y2 − (f + g)(ρ− b)y +

(f + g)2

4a

]
−
(
cy2 − (f + g)by +

(f + g)2b2

4c

)
+

(f + g)2

4

(1

a
+
b2

c

)
≤ (f + g)2

4

(1

a
+
b2

c

)
.

Therefore, we have

d

dt

∫ L

0

(y2 + ρ2)dx+ 2(f + h)

∫ L

0

(y2 + ρ2)dx ≤ C. (3.6)

If we solve (3.6), we have

‖y(t)‖2L2(I) + ‖ρ(t)‖2L2(I)

≤ C
[
e−2(f+h)t

(
‖y0‖2L2(I) + ‖ρ0‖2L2(I)

)
+ 1
]
, 0 ≤ t ≤ S. (3.7)

If we use (3.5), we obtain∫ t

0

‖y(s)‖2H1(I)ds ≤
(
‖y0‖2L2(I) + ‖ρ0‖2L2(I)

)
+ Ct, 0 ≤ t ≤ S. (3.8)

Step 2. We will estimate the norm ‖ρ‖L∞(I). Since ρ0, y(x, t) and u(t) are
non-negative, we have

ρ(t) =e−
∫ t
0
(h+u(τ))dτρ0 + f

∫ t

0

e−
∫ t
s
(h+u(τ))dτy(x, s)ds (3.9)

≤e−htρ0 + f

∫ t

0

e−h(t−s)y(x, s)ds.

Now, we obtain several estimates in order to obtain ‖ρ‖L∞(I). Firstly, we have

‖e−htρ0‖H1(I) =‖e−htρ0‖L2(I) +
∥∥∥e−ht ∂ρ0

∂x

∥∥∥
L2(I)

(3.10)

≤e−2ht‖ρ0‖H1(I).
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Since ∣∣∣ ∫ t

0

e−h(t−s)y(x, s)ds
∣∣∣ ≤(∫ t

0

e−2h(t−s)ds
) 1

2
(∫ t

0

y2(x, s)ds
) 1

2

≤ 1√
2h

(∫ t

0

y2(x, s)ds
) 1

2

,

we obtain∥∥∥∫ t

0

e−h(t−s)y(x, s)ds
∥∥∥2
L2(I)

=

∫ L

0

∣∣∣ ∫ t

0

e−h(t−s)y(x, s)ds
∣∣∣2dx

≤
∫ L

0

1

2h

∫ t

0

y2(x, s)dsdx =
1

2h
‖y‖2L2((0,S;L2(I)). (3.11)

Similarily, we have∥∥∥ ∂
∂x

∫ t

0

e−h(t−s)y(x, s)ds
∥∥∥2
L2(I)

≤ 1

2h

∥∥∥∂y
∂x

∥∥∥2
L2((0,S;L2(I))

. (3.12)

Therefore, we obtain from (3.11) and (3.12) that∥∥∥∫ t

0

e−h(t−s)y(x, s)ds
∥∥∥
H1(I)

≤ 1√
2h
‖y‖L2((0,S;H1(I)). (3.13)

From (3,9), (3.10) and (3.13) we have

‖ρ‖H1(I) ≤ e−2ht‖ρ0‖H1(I) +
f√
2h
‖y‖L2((0,S;H1(I)).

Since ρ0 ∈ H1(I) and H1(I) ⊂ L∞(I), we obtain from (3.8) that

‖ρ‖L∞(I) ≤ C. (3.14)

Step 3. We will estimate the norm ‖y‖L∞(I). Multifly the first equation of

(1.1) by − ∂
2y
∂x2 and integrate the product in I. Then, we have

1

2

d

dt

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx+ d

∫ L

0

∣∣∣∂2y
∂x2

∣∣∣2dx
= f

∫ L

0

y
∂2y

∂x2
dx− g

∫ L

0

ρ
∂2y

∂x2
dx+

∫ L

0

γ(ρ)y
∂2y

∂x2
dx.

Therefore, it follows that

1

2

d

dt

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx+
d

2

∫ L

0

∣∣∣∂2y
∂x2

∣∣∣2dx+ f

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx ≤ C ∫ L

0

(
ρ2 + γ(ρ)2y2

)
dx.

Since∫ L

0

(
ρ2 + γ(ρ)2y2

)
dx ≤ C(‖ρ‖4L∞(I) + ‖ρ‖2L∞(I) + 1)(‖y‖2L2(I) + ‖ρ‖2L2(I)),
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it follows from (3.7) and (3.14) that

1

2

d

dt

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx+
d

2

∫ L

0

∣∣∣∂2y
∂x2

∣∣∣2dx+ f

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx ≤ C.
If we solve the differential inequality

d

dt

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx+ 2f

∫ L

0

∣∣∣∂y
∂x

∣∣∣2dx ≤ C, 0 ≤ t ≤ S.

we have ∥∥∥∂y
∂x

∥∥∥2
L2(I)

≤ C(e−2ft‖y0‖2H1(I) + 1), 0 ≤ t ≤ S. (3.15)

From (3.7) and (3.15). we obtain

‖y‖L∞(I) ≤ C‖y‖H1(I) ≤ C.

Step 2 and Step 3 show that y and ρ are uniformly bounded on (0, S)× I with
respect to S. Hence, y and ρ can be extended as a strong solution beyond the
S. By the standard argument on the extension of the strong solutions, we can
then prove the global exisrence of the strong solution. The estimates (3.1) and
(3.2) can obtain as in [6]. �

Moreover, we obtain the continuous dependence of solution on the control.

Theorem 3.2. For any u1, u2 ∈ Uad, we have

‖y1(t)− y2(t)‖2L2(I) + ‖ρ1(t)− ρ2(t)‖2L2(I)

+

∫ t

0

‖y1(s)− y2(s)‖2H1(I)ds ≤ C‖u1(t)− u2(t)‖2H1(0,T ), 0 ≤ t ≤ T,

where
(
y1, ρ1

)
and

(
y2, ρ2

)
are the solutions of (1.1) with respect to u1 and u2,

respectively.

Proof. Let (y1, ρ1) and (y2, ρ2) be the solutions of (1.1) with respect to u1 and
u2, respectively. Then ỹ = y1 − y2, ρ̃ = ρ1 − ρ2 and ũ = u1 − u2 satisfiy the
equations

∂ỹ

∂t
= d

∂2ỹ

∂x2
− γ(ρ1)ỹ + [2ab− a(ρ1 + ρ2)]y2ρ̃− fỹ + gρ̃ in I × (0, T ],

∂ρ̃

∂t
= fỹ − hρ̃− u1(t)ρ̃− ũ(t)ρ2 in I × (0, T ], (3.16)

∂ỹ

∂x
(0, t) =

∂ỹ

∂x
(L, t) = 0 on (0, T ],

ỹ(x, 0) = 0, ρ̃(x, 0) = 0 in I.
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Multifly the first equation of (3.16) by ỹ and integrate the product in I. Then,
we have

1

2

d

dt

∫ L

0

ỹ2dx+ f

∫ L

0

ỹ2dx+ d

∫ L

0

∣∣∣∂ỹ
∂x

∣∣∣2dx
= g

∫ L

0

ρ̃ỹdx−
∫ L

0

γ(ρ1)ỹ2dx+

∫ L

0

[2ab− a(ρ1 + ρ2)]y2ρ̃ỹdx.

Since ρ1, ρ2, y2 ∈ L∞((0, T )× I), it follows that

d

dt

∫ L

0

ỹ2dx+ 2δ‖ỹ‖2H1(I) ≤ C
∫ L

0

(ỹ2 + ρ̃2)dx, (3.17)

where δ = min{f, d}.
Multifly the second equation of (3.16) by ρ̃ and integrate the product in I.

Then, we have

1

2

d

dt

∫ L

0

ρ̃2dx+ h

∫ L

0

ρ̃2dx = f

∫ L

0

ỹρ̃dx−
∫ L

0

u1(t)ρ̃2dx−
∫ L

0

ũ(t)ρ2ρ̃dx

≤
(h

2
+
h

2

)∫ L

0

ρ̃2dx+ C
(∫ L

0

(
ỹ2 + ρ̃2

)
dx+ ũ2(t)‖ρ2‖2L2(I)

)
.

Therefore, it follows that

d

dt

∫ L

0

ρ̃2dx ≤ C
(∫ L

0

(
ỹ2 + ρ̃2

)
dx+ ũ2(t)‖ρ2‖2L2(I)

)
. (3.18)

Then, we obtain from (3.17) and (3.18) that

d

dt

∫ L

0

(
ỹ2 + ρ̃2

)
dx ≤ C

(∫ L

0

(
ỹ2 + ρ̃2

)
dx+ ũ2(t)‖ρ2‖2L2(I)

)
.

By using Gronwall’s Lemma and (3.2),∫ L

0

(ỹ2 + ρ̃2)dx ≤ C‖ρ2‖2L∞(0,T ;L2(I))‖ũ(t)‖2L2(0,T ) (3.19)

≤ C‖ũ(t)‖2H1(0,T ).

If we use (3.17) and (3.19), we obtain∫ t

0

‖ỹ(s)‖2H1(I)ds ≤ C‖ũ(t)‖2H1(0,T ), 0 ≤ t ≤ T.

�
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