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ON THE EQUATIONS DEFINING SOME CURVES OF

MAXIMAL REGULARITY IN P4

Wanseok LEE∗ and Wooyoung Jang

Abstract. For a nondegenerate irreducible projective variety, it is a clas-

sical problem to describe its defining equations. In this paper we precisely

determine the defining equations of some rational curves of maximal reg-
ularity in P4 according to their rational parameterizations.

1. Introduction

Let Pr be the projective r-space over an algebraically closed field K of arbitrary
characteristic and R = K[X0, X1, . . . , Xr] be the homogeneous coordinate ring
of Pr. Let X ⊂ Pr be a nondegenerate irreducible variety and let IX be the
homogeneous ideal of X in R. In projective algebraic geometry, it is a basic
problem to describe the defining equations of X and its ideal IX for a given
embedding. This problem is well understood for Veronese varieties, rational
normal scrolls and Segre varieties. For example, see [3]. Also this problem for
non-normal del Pezzo varieties were completely solved in [4], [6] and [7].

Along this line, we continue the study of the problem to describe the equa-
tions defining rational curves begun in [8]. Let T := K[s, t] be the homogeneous
coordinate ring of P1. For each k ≥ 1, we denote by Tk the k-th graded com-

ponent of T . Then the rational normal curve C̃ ⊂ Pd of degree d is defined to
be the image of the embedding νd : P1 → Pd parameterized by

C̃ = {[sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] | P ∈ P1}. (1)

As is well-known, C̃ is defined by the common zero locus of the polynomials
Fi,j = XiXj − Xi−1Xj+1 for 1 ≤ i ≤ j ≤ d − 1. Indeed the defining ideal IC̃
is minimally generated by the set {Fi,j | 1 ≤ i ≤ j ≤ d − 1} in the sense of
Definition 2.1. Let C ⊂ Pr be a nondegenerate rational curve of degree d ≥ r.

Since the normalization of C is the rational normal curve C̃, it follows that C
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is given by a linear projection of C̃ ⊂ Pd from a linear subspace Λ ∼= Pd−r−1

of Pd. In other words, there exists a subset {f0, f1, . . . , fr} ⊂ Td of K-linearly
independent forms of degree d such that C is a curve parameterized as

C = {[f0(P ) : f1(P ) : · · · : fr(P )] | P ∈ P1}.
The main purpose of this article is to determine a minimal generating set of
the defining ideal IC of C. In [8], the authors provide a complete description of
defining equations for the case where r = 3. The result is

Theorem 1.1 (Theorem 1.1 in [8]). Let Cd ⊂ P3 be a rational curve defined as
the parametrization

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}
where d ≥ 3. Then the defining ideal ICd

of Cd is minimally generated as
following:

ICd
= 〈X0X3 −X1X2, F1, F2, . . . , Fd−1〉

where Fi = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3 for 1 ≤ i ≤ d− 1.

As a next case, we study the set of minimal generators of an ideal defining
rational curves in P4 parameterized by

Cd = {[sd(P ) : sd−1t(P ) : s2td−2(P ) : std−1(P ) : td(P )] | P ∈ P1}.
First we show that Cd is a smooth rational curve of degree d which is contained
in the rational normal surface scroll S(1, 2) as a divisor H + (d− 3)F . Here H
and F are respectively the hyperplane divisor and a ruling line (see Lemma 3.3
and Proposition 3.4). This observation enables us to obtain the exact number
of minimal generators of ICd

thanks to [5, Theorem 1.2]. We also compute
several examples by means of the Computer Algebra System SINGULAR [1](see
Example 3.1) which pose the concrete expressions of the generators of ICd

. In
our main result, Theorem 3.2 provides an explicit description of a set of minimal
generators of the ideal ICd

according to the degree d = 2n and d = 2n + 1 for
n ≥ 2.

2. preliminaries

We begin with the concept of a minimal generating set of the defining ideal
IX for a nondegenerate irreducible projective variety X ⊂ Pr. Let

M = {Fi,j ∈ K[X0, X1, . . . , Xr] | Fi,j ∈ IX for 1 ≤ i ≤ m and 1 ≤ j ≤ `i}
be the set of homogeneous polynomials Fi,j of degree deg(Fi,j) = i. Let (IX)≤t
be the ideal generated by the homogeneous polynomials in IX of degree at most
t.

Definition 2.1. M is a minimal set of generators of IX if the following three
conditions hold:

(i) IX is generated by the polynomials in M (i.e., IX = 〈M〉).
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(ii) Fi,1, Fi,2, . . . , Fi,`i are K-linearly independent forms of degree i for each
1 ≤ i ≤ m.

(iii) Fi,j /∈ 〈(IX)≤i−1, Fi,1, . . . , Fi,j−1〉 for each 1 ≤ i ≤ m and 1 ≤ j ≤ `i.

Notation and Remarks 2.2. (a) Let E = OP1(a1) ⊕ OP1(a2) be a vector
bundle on P1 where 0 < a1 ≤ a2. Then the smooth rational normal surface
scroll S(a1, a2) is the image of the map defined by the tautological line bundle
OP(E)(1) of P(E).
(b) The divisor class group of S(a1, a2) is freely generated by the hyperplane
divisor H and a ruling line F of S(a1, a2). That is, a divisor of S(a1, a2) is
written by aH + bF for a, b ∈ Z.
(c) The rational normal surface scroll S := S(1, 2) ⊂ P4 of degree 3 can be
described as

S = {[su : tu : s2v : stv : t2v] | (s, t), (u, v) ∈ K2 \ (0, 0)} ⊂ P4. (2)

Then S is defined by (2× 2)-minors of the matrix[
X0 X2 X3

X1 X3 X4

]
.

Thus the ideal IS of S is generated by X0X3 − X1X2, X0X4 − X1X3 and
X2X4 −X2

3 .

(d) Let C̃ ⊂ P4 be a rational normal curve of degree 4 parameterized as in

(1). Then the ideal IC̃ of C̃ is minimally generated by the set of six quadratic
equations:

{X0X3−X1X2, X0X4−X1X3, X2X4−X2
3 , X0X2−X2

1 , X1X3−X2
2 , X1X4−X2X3}.

Thus C̃ is contained the rational normal surface scroll S(1, 2). Furthermore, C̃
is linearly equivalent to a divisor H + F . (For details, see [10, Theorem 5.10]).
(e) For a smooth curve Z ⊂ Pr and an integer s ≥ 2, we defined the closure Zs,
say the s-th join of Z with itself, of the set of points lying in (s−1)-dimensional
linear subspaces spanned by general collections of s points in Z. Then there is
a strictly ascending filtration

Z $ Z2 $ Z3 $ · · · $ Zd
d+1
2 e−1 $ Zd

d+1
2 e = Pr

Then it is well known that the linear projection map πΛ : Z → Pr−n−1 of Z
from an n-dimensional linear subspace Λ of Pr with the condition Λ ∩ C2 = ∅
is an isomorphism. For details, we refer to the reader to [11].
(f) Let Z ⊂ Pr be a nondegenerate irreducible projective curve of degree d. Z
is said to be m-regular if its sheaf of ideal IZ satisfies the vanishing

Hi(Pr, IZ(m− i)) = 0 for all i ≥ 1.

The Castelnuovo-Mumford regularity (or simply the regularity) of Z, denoted
by reg(Z), is defined as the least integer m such that Z is m-regular(cf. [9]).
Another interest of this notion stems partly from the fact that Z is m-regular
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if and only if for every j ≥ 0 the minimal generators of the j-th syzygy module
of the homogeneous ideal I(Z) of Z occur in degree ≤ m + j. In particular,
I(Z) is generated by forms of degree ≤ m. Thus the existence of an `-secant
line guarantees that reg(Z) ≥ `. By a well-known result of Gruson-Lazarsfeld-
Peskine [2], reg(Z) is bounded by reg(Z) ≤ d−r+2. They further classified the
extremal curves which fail to be (d− r + 1)-regular, showing in particular that
if d ≥ r + 2 then Z is a smooth rational curve with a unique (d− r + 2)-secant
line.

3. Main Theorem

In this section, we provide a complete description of equations which generate
the defining ideals of some rational curves of maximal regularity in P4. Let
Cd ⊂ P4 be a curve parameterized as

Cd = {[sd(P ) : sd−1t(P ) : s2td−2(P ) : std−1(P ) : td(P )] | P ∈ P1} (3)

for d ≥ 4. Let R := K[X0, X1, X2, X3, X4] be the homogeneous coordinate ring
of P4. First we fix some notations for n ≥ 2,

(∗) d = 2n and{
G[n,i] = X1X

i−1
3 Xn−i

4 −Xn+i−2
2 X2−i

3 for i = 1, 2

Hn+j−1 = X2j−1
0 Xn−j

2 −X2j
1 Xn−j−1

4 for 1 ≤ j ≤ n− 1
, and

(∗∗) d = 2n+ 1 and

Fn+i−1 = X2i−2
0 Xn−i+1

2 −X2i−1
1 Xn−i

4 for 1 ≤ i ≤ n.
Note that the following three quadratic polynomials

Q[2,1] = X0X3 −X1X2, Q[2,2] = X0X4 −X1X3 and Q[2,3] = X2X4 −X2
3

are the minimal generators of the defining ideal IS(1,2) of the rational normal
surface scroll S(1, 2). Then the Computer Algebra System SINGULAR provides

Example 3.1. For d = 5, 6, 7, 8, 9, 10, let Cd ⊂ P4 be rational curves defined
as above. Then the minimal sets of generators defining the ideal ICd

are

(i) IC5 = 〈Q[2,1], Q[2,2], Q[2,3], F2, F3〉,

(ii) IC6
= 〈Q[2,1], Q[2,2], Q[2,3], G[3,1], G[3,2], H3, H4〉,

(iii) IC7
= 〈Q[2,1], Q[2,2], Q[2,3], F3, F4, F5〉,

(iv) IC8 = 〈Q[2,1], Q[2,2], Q[2,3], G[4,1], G[4,2], H4, H5, H6〉,

(v) IC9
= 〈Q[2,1], Q[2,2], Q[2,3], F4, F5, F6, F7〉 and

(vi) IC10
= 〈Q[2,1], Q[2,2], Q[2,3], G[5,1], G[5,2], H5, H6, H7, H8〉.

This example enables us to pose the theorem:
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Theorem 3.2. Let Cd ⊂ P4, d ≥ 4 be a curve stated as in (3). Then Cd is a
smooth rational curve of degree d and of maximal regularity d−2. In particular,
the defining ideal ICd

of Cd is minimally generated as followings: For n ≥ 2,

(1) If d = 2n, then

ICd
= 〈Q[2,1], Q[2,2], Q[2,3], G[n,1], G[n,2], Hn, Hn+1, · · · , H2n−2〉.

(2) If d = 2n+ 1, then

ICd
= 〈Q[2,1], Q[2,2], Q[2,3], Fn, Fn+1, · · · , F2n−1〉.

Before proving this theorem, we investigate several properties of the curve
Cd.

Lemma 3.3. Let Cd be as in Theorem 3.2. Then Cd is smooth rational and of
degree d.

Proof. The case where d = 4 follows immediate from (1). Suppose that d > 4.
Let Λ be a (d−5)-dimensional linear subspace of Pd spanned by (d−4) standard
coordinate points

{[0, 0, 1, 0, . . . , 0, 0], [0, 0, 0, 1, 0, . . . , 0, 0], . . . , [0, 0, · · · , 0, 1, 0, 0, 0]}.

Then we can see that the curve Cd is obtained by the linear projection map

πΛ : C̃ → P4 of the rational normal curve C̃ in(1) from the center Λ. Since
Λ ⊂ Pd \ C2

d , the map πΛ is an isomorphism by Notation and Remarks 2.2.(e).
This competes the proof. �

Proposition 3.4. Let Cd be as in Theorem 3.2. Then,

(1) The curve Cd is contained in the rational normal surface scroll S(1, 2)
as a divisor linearly equivalent to H + (d − 3)F where H and F are
respectively the hyperplane divisor and a ruling line.

(2) The curve Cd is of maximal regularity d − 2 and the minimal section
S(1) of S(1, 2) is a unique d− 2 secant line to Cd.

Proof. (1) We denote S the rational normal surface scroll S(1, 2). Then it is
easy to see that the curve Cd satisfies the three quadratic equations

{X0X3 −X1X2, X0X4 −X1X3, X2X4 −X2
3}

which are generators of the defining ideal IS of S (see Notation and Remarks
2.2.(c)). Thus Cd is linearly equivalent to a divisor aH + bF of S for some
integers a and b. Indeed, we may assume that a ≥ 1 since Cd is an irreducible
and effective divisor. Now suppose that a ≥ 2 and consider the exact sequence

0→ IS → ICd
→ OS(−aH − bF )→ 0.

Then we have the following long exact sequence

→ H1(Pr, IS(1))→ H1(Pr, ICd
(1))→ H1(S,OS((1−a)H−bF ))→ H2(Pr, IS(1))→ · · · .
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Since S is arithmetically Cohen-Macaulay (i.e., Hi(Pr, IS(j)) = 0 for 1 ≤ i ≤ 3
and j ∈ Z), we get an isomorphism

H1(Pr, ICd
(1)) ∼= H1(S,OS((1− a)H − bF )). (4)

Remind that the curve Cd is not linearly normal because it is the image of an
isomorphic projection of a rational normal curve of degree d by Lemma 3.3.
Thus we have a contradiction by applying the vanishing H1(S,OS((1− a)H −
bF )) = 0 for a ≥ 2 to the isomophism (4). It can be easily shown that b = d−2
by degree calculation of the divisor H + bF .
(2) First note that the regularity of Cd is bounded by d − 2 by Notation and
Remarks 2.2.(f). Also every `-secant line for ` ≥ 3 should be contained in S
since S is cut out by quadratic equations. Now we consider the lines contained
in S. They are precisely the minimal section S(1) ≡ H − 2F and the ruling
lines F . Then the intersection numbers of Cd with those lines are given by{

](Cd ∩ S(1)) = (H + (d− 3)F ).(H − 2F ) = d− 2

](Cd ∩ F ) = (H + (d− 3)F ).F = 1
.

Thus the minimal section S(1) is a unique (d− 2)-secant line to Cd and hence
Cd attains the maximal regularity d− 2. �

Proof of Theorem 3.2. First we have our assertions by Lemma 3.3 and
Proposition 3.4. In the remaining parts of the proof, we will describe the min-
imal set of generators defining the ideal ICd

for d = 2n and d = 2n + 1 with
n ≥ 2, in turn. We denote by M2n and M2n+1 respectively the sets

M2n = {Q[2,1], Q[2,2], Q[2,3], G[n,1], G[n,2], Hn, Hn+1, · · · , H2n−2} and

M2n+1 = {Q[2,1], Q[2,2], Q[2,3], Fn, Fn+1, · · · , F2n−1}.
And we also denote IMd

:= 〈Md〉 as an ideal generated by the set Md. Then it
is easy to see that the equations in Md satisfy Cd in (3) for each case. That is,
IMd
⊆ ICd

. To show the equality IMd
= ICd

, it suffices to verify that

1. Md is a minimal set generating the ideal IMd
and

2. the number of elements in Md is equal to that of the minimal set of
generator of ICd

.

Remind that IM4
= IC4

since M4 is just the minimal set of generators of a
rational normal curve of degree 4 (see Notation and Remarks 2.2.(d)). To
prove statement 1, we show the three conditions in Definition 2.1. (i) It is
clear by the definition of IMd

. (ii) It follows that Q[2,1], Q[2,2] and Q[2,3] are K-
linearly independent quadratic equations since those are the minimal generators
of IS(1,2). Now suppose that d = 2n for n ≥ 3. Then the degrees of G[n,1], G[n,2],
Hn, . . . ,H2n−2 are at least 3 and the degree of Hn+j−1 is strictly increasing.
Thus it is enough to show that G[n,0], G[n,1] and Hn are K-linearly independent.
This comes immediately from the exclusive monomials of each polynomials.
Suppose that d = 2n+1. By the similar argument, it is enough to show that n =
2 and Q[2,1], Q[2,2], Q[2,3] and F2 are K-linearly independent which follows from
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the exclusive monomials. (iii) First we can see that G[n,i], Fj , Hk for all i, j, k
are not contained in the ideal 〈Q[2,1], Q[2,2], Q[2,3]〉 by using the parametrization
of S(1, 2) in (2). Suppose that d = 2n and consider a combination

(X1X3X
n−2
4 −Xn

2 ) = A[n−2,1](X0X3 −X1X2) +A[n−2,2](X0X4 −X1X3)
+A[n−2,3](X2X4 −X2

3 ) + b(X1X
n−1
4 −Xn−1

2 X3)
(5)

of Q[2,1], Q[2,2], Q[2,3], G[n,1] and G[n,2] where A[n−2,i] for i = 1, 2, 3 are the
homogeneous polynomials of degree n − 2 in R and b is a constant. On the
other hand, the equality in (5) fails to hold at the points p = [0, 0, 1, 0, 0] ∈ P4.
This guarantees that (iii) holds for the polynomials

Q[2,1], Q[2,2], Q[2,3], G[n,1], and G[n,2].

Similarly for 1 ≤ ` ≤ n− 1, consider a combination

Hn+`−1 =

3∑
i=1

A[n+`−3,i]Q[2,i] +

2∑
j=1

B[`−1,j]G[n,j] +

`−1∑
k=1

C`−kHn+k−1 (6)

where A[n+`−3,i], B[`−1,j] and C`−k are respectively the homogeneous polyno-
mials of degree n + ` − 3, ` − 1 and ` − k in R. Then the combination (6) is
written by

Xn−`
2 = −B[`−1,2](p)X

n
2 +

`−1∑
k=1

C`−k(p)Xn−k
2

on the set of points {p = [1, 0, X2, 0, 0]} ⊂ P4 which can not occur. This finishes
the proof of (iii) for d = 2n. Suppose that d = 2n+ 1 and write

Fn+`−1 =

3∑
i=1

A[n+`−3,i]Q[2,i] +

`−1∑
k=1

B`−kFn+k−1 (7)

for 1 ≤ ` ≤ n where A[n+`−3,i] and B`−k are respectively the homogeneous poly-
nomials of degree n+`−3, `−k in R. On the set of points {p = [1, 0, X2, 0, 0]} ⊂

P4, (7) is represented as Xn−`+1
2 =

`−1∑
k=1

B`−k(p)Xn−k+1
2 which also can not hap-

pen.
For the proof of statement 2, we apply [5, Theorem1.2] to the curve Cd. In-
deed Cd is contained in the rational normal surface scroll S(1, 2) as a divisor
H+(d−3)F by Proposition 3.4.(1). Thus for δ = dd−4

2 e, the number of minimal
generators of the ideal ICd

is n+ 4 if d = 2n(≥ 6) and n+ 3 if d = 2n+ 1(≥ 5).
This finishes the proof. �

References

[1] M. Decker, G.M. Greuel and H. Schönemann, Singular 3 − 1 − 2 – A computer algebra
system for polynomial computations. http://www.singular.uni-kl.de (2011).

[2] L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnovo, and the equations
defining space curves . Inventiones mathematicae 72 (1983), 491-506.



58 W. LEE AND W. JANG

[3] J. Harris, Algebraic geometry. A First course. Corrected reprint of the 1992 original.
Graduate Texts in Mathematics, 133. Springer-Verlag, New York, 1995. xx+328 pp.

ISBN: 0-387-97716-3 14-01

[4] W. Lee and E. Park, On non-normal del Pezzo varieties. J. Algebra 387 (2013), 11-28
[5] W. Lee and E. Park, On curves lying on a rational normal surface scroll. arXiv:1808.03038

[6] W. Lee, E. Park and P. Schenzel, On the classification of non-normal cubic hypersurfaces.

J. Pure Appl. Algebra 215 (2011), 2034-2042.
[7] W. Lee, E. Park and P. Schenzel, On the classification of non-normal complete intersec-

tion of two quadrics. J. Pure Appl. Algebra 216 (2012), no. 5, 1222-1234.

[8] W. Lee, S. Yang, Defining equations of rational curves in a smooth quadric surface. East
Asian Math. J 34 (2018), no. 1, 19-26.

[9] D. Mumford, Lectures on curves on an algebraic surface. With a section by G. M.

Bergman. Annals of Mathematics Studies, No. 59 Princeton University Press, Prince-
ton, N.J. 1966 xi+200 pp.

[10] U. Nagel, Arithmetically Buchsbaum divisors on varieties of minimal degree. Transactions
of the American Mathematical Society 351, 4381-4409 (1999)

[11] Z. Fyodor, Determinants of projective varieties and their degrees. Algebraic transforma-

tion groups and algebraic varieties, 207–238, Encyclopaedia Math. Sci., 132, Springer,
Berlin, 2004.

Wanseok LEE

Pukyong National University, Department of applied Mathematics, Daeyeon Cam-

pus 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea
E-mail address: wslee@pknu.ac.kr

Wooyoung Jang
Pukyong National University, Department of applied Mathematics, Daeyeon Cam-

pus 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea

E-mail address: heymyym@gmail.com


