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A NOTE ON NUMERICAL APPROACHES FOR
HEAT-DIFFUSION EQUATION WITH HETEROGENEOUS
MEDIA AND ITS APPLICATIONS

SAT BYUL SEO

ABSTRACT. In this paper, we introduce a numerical approach to solve
heat-diffusion equation with discontinuous diffusion coefficients in the three
dimensional rectangular domain. First, we study the support operator
method and suggest a new method, the continuous velocity method. Fur-
ther, we apply both methods to a diffusion process for neurotransmitter
release in an individual synapse and compare their results.

1. Introduction

The heat-diffusion equation is defined by

%—V-(ﬁVu):f(x,t), >0, x=(2,9,2) €9, (1)

in a cubic shaped domain Q = (a,b) x (a,b) x (¢,d) in R®. Within the region,
suppose diffusion coefficient g is piecewise continuous. Heat-diffusion with dis-
continuous coefficients arises when heat transfer occurs at an interface of two
different materials. We define two sub-regions QF, Q~ separated by an inter-
face T'. Define QT = {(a1,b1) X (a1,b1) X (¢,d)}, with a < a3 < by < b, and
Q- =\ (QTun).

Let 8 be a piecewise constant function in 2 is defined as

_ Bt xeqf,
ﬁ(l'vyaz)_ 6_7 XEQ_.

We assume homegeneous Neumann boundary conditions

ou

il = 2
5| =0 2)

the initial condition at ¢ = 0 is smooth and the boundary conditions on OS2 are
known, the solution is uniquely determined in W11(2) [1].
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Identification of the mechanism and structure in a single synapse has been
challenging in neuroscience. The only heat-diffusion equation is mentioned as
a model of the release process in synapse[2]. Heterogeneous media in the cleft,
for example, a protein guide surrounding around release site can be represented
as different values of diffusion coefficients in two regions in cleft. Thus, the
main goal of this paper is to approximate the solution of heat-diffusion model
with different diffusion coefficients in different regions. Several finite differ-
ence algorithms with discontinuous coefficients for parabolic equations and el-
liptic equations have been seen in the literature[3, 4, 5, 6, 11, 12]. Shashkov
and Steinberg showed a new finite difference algorithm named support-operator
methods to approximate a numerical solution of diffusion problems in heteroge-
neous and nonisotropic media[9, 11]. Li and Shen provided a numerical method
which allows different values of coefficients for each sub-region in two dimensions
and proved its second order accuracy[5]. We construct a model for glutamate
molecules release process in synapse clefts using the numerical methods[9, 5].
The main goal of this paper is to approximate the solution of heat-diffusion
model with piecewise continuous coefficients.

2. Preliminaries

2.1. Conservation Law

Let Q is a finite region, then

4 udV:/de—/ J-ndA, 3)
dt Jo Q o0

where 02 is the boundary of 2 and n is the outward unit normal to the boundary
of Q, f is the local production of u per unit volume, and J represents the flux of
u. If J is sufficiently smooth, we have this equation by the divergence theorem,

/ J-ndA:/v-JdV. (4)
o0 Q

From the conservation law (3), we obtain

d
—/udV:/f—V-JdV. (5)
Then we derive the following from 5
du
- f=Vv-J. (6)

2.2. Fick’s Law

We introduce the simplest description the flux of one chemical species called
Fick’s law. The flux J is proportional to the gradient Vu, but points in the
opposite direction since the flow is from space of higher to lower concentration.

J=—-pVu. (7)
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The scalar 3 is the diffusion coefficient, and u represent the heat content of the
volume. When Fick’s law applies into the Eq.(6), then we obtain the following
equation:

du

=V BV f. ®)

Concentration u is continuous across the interfaces I', and the normal flux is
continuous across the interface I' [4, 9].

[U}F =0, (9)

where, [u|r = (u|o+)r — (u|o-)r. However, the tangential flux may or may not
be continuous across I'.

2.3. Support Operator Method

An approach for a numerical solution of the heat-diffusion solution in hetero-
geneous media is derived using the support operator method, which constructs
discretization of divergence and flux operator [9]. The flux vector J whose form
of diffusion equation is commonly used in the case of discontinuous . The
Eq.(1) can be written as a first-order system:

ou

— =-VJ, J=—-pVu. 11

> 7 BVu (1)
Lemma 2.1. The discretization of V - BVu from Eq.(1) for three dimensional
is as following :

Y(i41,5,k) " (g, k U(ig,k) Y (i—1,4,k
,Bg(i-kl,j‘k) (i+ JA)x (4.3, )7:B£(i‘j,k) (i,5,k) A; .J.k)
T

Wik (g R Uik (i 1k
5"7(i,j+1,k)%y(l“_ﬁn(i,j,k)—“J )A;” Lok)

+ Ay

Y(i,g, —Y(i,4, U(i,5,k) " Y(i,j,k—
( ,J,k+1A)z (i,4,k) —BCei k) (4,5,k) " "(i,5,k—1)

2
Az

+BC(i,j,k+l)

Proof. The heat-diffusion equation is semi-discretized implicitly as following:

un+1 _ un 4
=V- " 12
N V- BVutt (12)

where t, = nAt and u” = u(t,, x,y, 2).
The flux form of the Eq.(11) can be discretized in time as following,.

(un—i-l _ un)

JTL-‘rl — n+1
AVuT At

+ VIt =0, (13)
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We induce the discretization of V - fVu using the form of the support-
operators approaches, which leads to the well-known harmonic average the dif-
fusion coefficients /3 on the interfaces[7, 9].

2B8i—1,5,1) B(ij.k)

ﬁg 1,7, = 9
(k) Bi—1,5,k) + Bijk)
B 28i,—1,6)B(i,5,k)
(k) Bij—1,k) + Bk
28,5, k—1)B((i,j,k
ﬂ((i,j,k) (i,4 )P ((3,5,k)

Bijk—1) + By

Denote u = u(x4, Y, 2k, tn) = U j,k) (1), then the discretization of V - fVu is
as desired. 0

Theorem 2.2. The discretization of operators V - BNVu for discontinuous dif-
fusion coefficients are equivalent to the harmonic averaging procedure and the
truncation error is O(h?).

Proof. The scheme is second-order accurate in truncation errors for the numer-
ical solution of diffusion problems in heterogeneous and nonisotropic materials
constructed in rectangular grids[9]. d

In this model, the number of molecules is assumed to be infinite. It may
or may not be a difference for velocity of concentrations between two different
materials. However, this existing model may or may not perfectly match with
our problem because the number of molecules is limited in our study.

3. Main Results
3.1. Continuous Velocity Method

We introduce a new method, called continuous velocity method, which is
possibly suitable for limited amount of molecules. 4000 glutamate molecules
diffuse out from a single vesicle pore, and it will take a few moments (approxi-
mating 10ms) for molecules to be cleared out of the cleft. The particle velocity
may also be continuous within the time flushing out even if there are different
materials in the cleft. We assume the derivative is continuous at the interface
I' to reflect the scenario of fewer particles moving in a porous medium. Be-
cause the velocity is continuous on the interface, there is no jump of the first
derivative in normal direction. Thus, we do not treat a point on the interface
as a grid point, but the point is located in between two grids points. Li and
Shen provided a numerical method which allows different values of coefficients
for each sub-region in two dimensions and proved its second order accuracy|5].
We expand the numerical method in three dimensional rectangular grids.
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Definition 1. Eq.(1) can be rewritten in the three dimensional rectangular
grids with piecewise continuous diffusion coefficients 8 as following.

up = (Bug)e + (Buy)y + (Bus)- (14)
Definition 2. Define Q = (a,b) x (a,b) x (¢,d) in R3. QF = {(ay,b1) x (a1, b1) x
(c,d)}, witha < a; < by <b,and Q™ = Q\(QTUL). P,y be regular grids points
if Preg = {(xi,y;,21) € Qsign . (Tigs Yjo» Zko) € Q%" jo =i—1lori+ 1,50 =
j—lorj+1,kp=k—1ork+1}.
Definition 3. Let u; ;; be a numerical solution discretized in the z-direction,
y-direction, and z-direction with a mesh of size h as following:

1

Ugpy = ﬁ(uifl,j,k —2u; 5k + ui+1,j,k) = 5acui,j,k, (15)
1

Uyy & 7o (Uig-1k = ik + Uigy1k) = Oyligk, (16)
1

Uoz X 7 (Ui 1 = 200 + Uijgtr) = 0zt e (17)

Theorem 3.1. For a reqular grid point (x,y, z) in Q, The local truncation error
of (15), (16), and (17) from (Bus)s + (Buy)y + (Buz). is O(h?).

Proof. Assume the exact solution u(z,y, z) is smooth then, by Taylor expan-
sions, 0, G ;1 can be denoted by

Oatije = |Uza(Ti, Y55 28) + T12h2u(4)(33z', yj, zi) + O(h*)]. (18)
Therefore,

To = Upg — Oyl j | = —%h%(‘l)(mi, Yi, 2k) + O(h"). (19)

Also uyy — 6yt j i, Uzz — 02U; 5k are similar. O

Definition 4. Define Q = (a,b) x (a,b) x (¢,d) in R3. QF = {(ay,b1) x (a1, b1) x
(c,d)}, with a < a; < by <b,and Q= = Q\ (QT UT). P, be irreqular grids
points if P = {(zi,y;,21) € Q¢ (Tigs Yjo» 2ho) €L yig =1 —Lori+1,jp =
j—lorj+1l,kg=k—1or k+1}U{(@i,yj,2k) € Q™ : (Tigs Yjos 2ky) € QT 0 =
i—lori+1l,jo=j—1lorj+1l,kg=k—1ork+1}.

Remark 1. The interface I' = Q7T is a cubic shape and consists of all points
on surfaces, edges, and corners of a cubic domain.

Remark 2. Let [u] denote the difference of the limits of C' cross the discontinuity
from exterior(27) to interior(2~) along the normal direction.

[u] = (ulo+)r — (ulo-)r =0, (20)
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Theorem 3.2. For a irreqular grid point (x,y,z) in Q, The local truncation

error of (15), (16), and (17) from (Bug)s + (Buy)y + (Bus). is O(h).

Proof. Let (z;,y;,z,) be an irregular point. Then we obtain

] =[] = fuee] = [ % | (22)

We use correction terms in three directions, z-direction, y-direction, and z-
direction. Let (z*,y*, z*) be the actual corner. Then we have
] 7o i, — )2
15} 2h?
+8 Ut Tyo (Yjo gy*)2 +8 Ut Tz (Zko ;Z*)z
I6; 2h I6] 2h
whereig=7—1lori+1,jo=j—1lorj+1, kg=k—1or k+1, and 7, 7y,

T, = 1 or —1.
| = ] 5= ] 5

Now, we have
-l eon

where 3 = 3~ if B =%, f =BT if B =p~. Using (23), we have the following
system of ordinary differential equations

(wij k)t =B(0zijk + Oytijk + 02ui k) + 5[

+ O(h),

This implies

(Ui,j,k)t = F(Uifl,j,kvui,jfl,kvui,j,kflaui,j,kaUi+1,j,kaUi,j+1,kaui,j,k+1)7

where F is equal to

B0z gk + Oytii e + Otk + % Tijk)

; (24)
1— B3] Tijn
“ (= | Ty — ") oo — )
Tao (Tiy — X° Tyo Yjo — Y~ Tao (2o — 27
Tiif = 0 0 Yo \JJo 0 0 25
K 2h? ATy N 2h? (25)
O
Proposition 3.3. The local truncation error for discretizing on t is O(At).
Uk = U

n n n n n n n
+At- F(ui—l,j,lm Ui 5—1,k> Wi k—1 Wi j ks Wit 5.k Wi j4+1,k> ui,j,k+1)'

We discretize time t by choosing At = C - h? for CFL condition where C is
a constant[8]. The local truncation error from the discretization of time is

O(At) = O(h?).

Theorem 3.4. Let F be defined as Eq.(24). At any point (x;,y;, 2) in Q, the
numerical solution has global error to be O(h?).
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Proof: Since the interface is one dimension lower than the solution domain,
we will need the local truncation error at irregular grid points to be O(h) to
obtain second order accuracy globally[3, 5]. From Theorem 3.1, the local trun-
cation error is O(h?) for a regular grid point. At an irregular grid point, the
local truncation error is O(h) by Theorem 3.2. Therefore, All these imply that
the numerical solution has global error O(h?).

4. Applications

In this section, we simulate the process of neurotransmitters release through
a single synapse. In other to solve the heat diffusion equation numerically
to achieve glutamate molecules concentration in the synaptic cleft, we use on
explicit finite difference method that is implemented in MATLAB codes|8].

n+1 _ n . ) n . . n . n
uiie = Uigk T olSiengrui g+ Sic1g kg Sig etk
n n n n
+  Sigorktiio1e  Sigk—1Uik k-1 — (S5 kUi kT Sic15kU5 5k
n n n n
+ Sigriewie + Sijo1kwi g+ Sigkr1u e + Sije—1ui )],
n _ _ At : :
where uj,, = w(xi, Yj, 2k, tn) and a = 591’”@' For our simulation, we

satisfy a condition of a < (1/2)3 known as CFL condition to ensure the scheme
is numerically stable. We take the space step Az = 0.01pm and the time step
At = C - (Az)?, where C is a constant.

_ Zonel

Zone1 Zone2
(Inside) (Outside)

T ‘ 7/;,-‘

T

\\\ »L/’///:/ —_— dlier

(A) Synaptic Cleft in 3-D (B) Top View of Synaptic Cleft

FIGURE 1. (A) The synaptic cleft is divided into two zones.
Diffusion coefficients were taken different values in two re-
gions(inside and outside), which represent slow and fast motion
of neurotransmitters released due to different compositions in
the synaptic cleft. (B) Top view of synaptic cleft dividing into
two parts.

We simulate three different models for releasing glutamates. In the base
model, we take 8 = 0.4 uniformly. In high affinity center, we take 7 = 0.1 in
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Bt and B~ = 0.4 in Q~. Also in high affinity edge model, 3T = 0.4 in Q" and
B~ =0.1in Q™ are taken.

4500 i ——
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= Continous-Veloci
40008 e e e
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FIGURE 2. Total concentration of glutamate molecules as time
spends.

4.1. Comparison of Two Models

We compare our model(continuous velocity model) with the support operator
model. The relative discrepency for the total concentration is 0.2% as shown
in Figure 2, which indicates that there is no significantly difference between
two models for total concentration. However, two models are taken different
modelings on the interfaces, thus we expect that concentrations depending upon
locations might be different. We track glutamate concentrations at the specific
locations beyond 16 NMDA receptors (R1-R16) and estimate the relative errors
between two models as shown in Figure 3b.

We simulate the glutamate release around R6 (Figure 3a), then the glutamate
molecules diffuse out and cross the interface to flush out of the cleft. R4, R13,
and R16 produce the errors large than others. Nevertheless, the maximum
relative error of 16 location is 2.9 x 102, which is not significant for our problem
as we are interested in relative ratio of opening probability. Figure 3b presents
the comparative discrepancy of two models.

As shown in Figure 4, when glutamate molecules release near the center,
then the maximum opening probability of NMDA receptor (R6) is 0.4880. The
range of maximum opening probability of NMDA receptor (R16) near edge
is 0.2557-0.2632. For errors of opening probabilities between two methods do
not make any significantly different outcomes, thus we will use only our new
model(continuous velocity model) for following steps.
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FIGURE 3. (A) 16 NMDA receptors are evenly distributed on
the postsynaptic terminal surface (B) Relative discrepancy be-
tween Support-Operator and Continuous Velocity models of
glutamate concentration over 16 NMDA receptors.
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F1cURE 4. NMDA receptor opening probability

5. Conclusion and Discussion

Identification of the mechanism and structure in a single synapse has been
challenging and still remains a lot more questions. Many mathematical and
computational neuroscientists have been developing for sophisticating model to
solve the questions. We suggested a new method to be applicable for neurotrans-
mission procedures. Our future research would be to validate our theoretical
results with experimental results and estimate errors to be consistent.
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