East Asian Math. J. Vol. 36 (2020), No. 3, pp. 337–347 http://dx.doi.org/10.7858/eamj.2020.022

I-SEMIREGULAR RINGS

JUNCHEOL HAN AND HYO-SEOB SIM*

ABSTRACT. Let R be a ring with unity, and let I be an ideal of R. Then R is called *I*-semiregular if for every $a \in R$ there exists $b \in R$ such that ab is an idempotent of R and $a - aba \in I$. In this paper, basic properties of *I*-semiregularity are investigated, and some equivalent conditions to the primitivity of e are observed for an idempotent e of an *I*-semiregular ring R such that $I \cap eR = (0)$. For an abelian regular ring R with the ascending chain condition on annihilators of idempotents of R, it is shown that R is isomorphic to a direct product of a finite number of division rings, as a consequence of the observations.

1. Introduction

Throughout this paper all rings are associative with unity unless otherwise specified. Let R be a ring and let E(R) be the set of all idempotents of R, let J(R) denote the Jacobson radical of R, and let |S| denote the cardinality of a subset S of R. Denote the ring of integers (modulo n) by $\mathbb{Z}(\mathbb{Z}_n)$. Use \mathbb{Q} to denote the field of rational numbers. A ring R is called *reduced* if R has no nonzero nilpotent. A ring is called *abelian* if every idempotent is central. It is easily checked that every reduced ring is abelian. An element a of a ring R is called *regular* if there exists $b \in R$ such that aba = a. A ring R is called *von Neumann regular* (simply, *regular*) if every element of R is regular. In [9], an element a of a ring R is called *semiregular* if it satisfies the following conditions of Proposition 1.1.

Proposition 1.1. The following are equivalent for an element a of a ring R:

- (1) There exists $e^2 = e \in aR$ such that $(1 e)a \in J(R)$.
- (2) There exists $e^2 = e \in Ra$ such that $a(1-e) \in J(R)$.
- (3) There exists a regular element $b \in R$ such that $a b \in J(R)$.
- (4) There exists $b \in R$ with bab = b and $a aba \in J(R)$.

2010 Mathematics Subject Classification. 16E50, 16S99.

Key words and phrases. (von Neumann) regular rings, I-semiregular rings.

*Corresponding author.

©2020 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received February 13, 2020; Accepted April 9, 2020.

This work was supported by 2-year Research Grant of Pusan National University.

A ring R is semiregular if every element of R is semiregular. Note that R is regular if and only if R is semiregular for a semisimple ring R (i.e., a ring R with J(R) = (0)). We will generalize the concept of semiregularity of a ring. An element a of a ring R is called *I*-semiregular for some ideal I of R if there exists $b \in R$ such that $ab \in E(R)$ and $a - aba \in I$. Obviously, a regular ring is (0)-semiregular and a semiregular ring is J(R)-semiregular. A ring is a *I*semiregular ring if each of its elements is *I*-semiregular. A ring R is called right (resp., left) attaching-idempotent if for $a \in R$ there exists $0 \neq b \in R$ (resp., $0 \neq c \in R$) such that ab (resp., ca) is an idempotent. R is called attachingidempotent if it is both left and right attaching idempotent. It is shown in [6] that the attaching idempotent property is not left-right symmetry, and finite ring rings are attaching idempotent. For any proper ideal I of a ring R, we have the following implications:

R is regular $\Rightarrow R$ is semiregular $\Rightarrow R$ is I-semiregular $\Rightarrow R$ is attachingidempotent and R/I is regular.

The above implications are strict by the following examples:

Example 1.2. (1) \mathbb{Z}_{12} is not regular but is semiregular.

(2) Let $R = \mathbb{Q} \times \mathbb{Z}$ and $I = \{0\} \times \mathbb{Z}$ be an ideal of R. Then J(R) = (0)and R is not regular (equivalently, R is not semiregular). To show that Ris *I*-semiregular, let $a = (x, y) \in R$ be an arbitrary element. if $a \in I$, then clearly, $(0,0) \in aR$ and $a - a(0,0)a = a \in I$. If $a \notin I$, then $x \neq 0$. Take an idempotent $e = (1,0) \in R$. Then $e = (1.0) = (x,y)(x^{-1},0) \in aR$ and $(1-e)a = a - ea = (0, y) \in I$, yielding that a is *I*-semiregular, and so R is *I*-semiregular.

(3) Consider an ideal $K = \{0\} \times 2\mathbb{Z}$ of $R = \mathbb{Q} \times \mathbb{Z}$. Then $R/K \simeq \mathbb{Q} \times \mathbb{Z}_2$ is regular. Clearly, R is attaching-idempotent. Observe that R is not K-semiregular. Indeed, assume that R is K-semiregular. Take $a = (1,3) \in R$. Then there exists $b = (x, y) \in R$ such that $(ab)^2 = ab$ and $a - aba \in K$. By $(ab)^2 = ab$, we have that b = (0,0) or b = (1,0). If b = (0,0), then $a - aba = a \notin K$, a contradiction. If b = (1,0), then $a - aba = (0,3) \notin K$, a contradiction. Hence R is not K-semiregular.

In section 2, the equivalent conditions of *I*-semiregularity are investigated with some basic properties, and it is shown that if *e* is an idempotent of *I*semiregular ring *R* such that $I \cap eR = (0)$, then *e* is primitive if and only if *e* is right (left)irreducible if and only if *eRe* is a division ring if and only if *e* is local; *e* is primitive if and only if \overline{e} is primitive in $\overline{R} = R/I$.

In Section 3, it is shown that for an abelian *I*-semiregular ring *R* if *e* is an idempotent of *R* such that $I \cap eR = (0)$, then *e* is primitive if and only if ann(e) is a maximal ideal of *R* if and only if ann(e) is a prime ideal of *R*. It is also shown that for an abelian *I*-semiregular ring having a nonempty set $E_1 = \{e^2 = e \in R \mid I \cap eR = (0)\}$, if E_1 satisfies the ascending chain condition on annihilators of idempotents in E_1 , then there exists at least one primitive idempotent of *R*, any distinct primitive idempotents in E_1 are orthogonal and

the number of primitive idempotents in E_1 is finite. In particular, for an abelian ring R satisfying the ascending chain condition on annihilators of idempotents of R, as a consequence of the above observations, R is isomorphic to a direct product of a finite number of division rings.

2. *I*-semiregular rings

In this section, we will begin with the following proposition.

Proposition 2.1. Let I be an ideal of a ring R. Then the following are equivalent for an I-semiregular element a of R:

- (1) There exists $e^2 = e \in aR$ such that $(1 e)a \in I$.
- (2) There exists $e^2 = e \in Ra$ such that $a(1-e) \in I$.
- (3) There exists $b \in R$ such that bab = b and $a aba \in I$.
- (4) There exists $b \in R$ such that abab = ab and $a aba \in I$.
- (5) There exists $c \in R$ such that caca = ca and $a aca \in I$.

Proof. $(1) \Rightarrow (3)$: Suppose that there exists $e^2 = e \in aR$ such that $(1-e)a \in I$. Let e = ax for some $x \in R$. Then axax = ax and $(1-e)a = a - axa \in I$. Let b = xax. Then bab = (xax)a(xax) = x(ax) = b. Since $(a - axa)xa = axa - aba \in I$, $a - aba = (a - axa) + (axa - aba) \in I$.

 $(3) \Rightarrow (4)$: It is clear.

 $(4) \Rightarrow (1)$: Suppose that there exists $b \in R$ such that abab = ab and $a - aba \in I$. Let e = ab. Then $e^2 = e \in aR$ and $a - aba = a - ea = (1 - e)a \in I$.

 $(4) \Rightarrow (5)$: Suppose that there exists $b \in R$ such that abab = ab and $a - aba \in I$. I. Let c = bab. Then caca = (baba)(baba) = b(ab)a = ca. Since $a - aba \in I$, $(a - aba)ba = aba - aca \in I$, and so $a - aca = (a - aba) + (aba - aca) \in I$.

 $(5) \Rightarrow (4)$: It follows from the similar argument given in the proof of $(4) \Rightarrow$ (5).

 $(2) \Leftrightarrow (3) \Leftrightarrow (5)$: It follows from the similar argument given in the proof of $(1) \Leftrightarrow (3) \Leftrightarrow (4)$.

A ring is a *I*-semiregular ring if each of its element is *I*-semiregular.

Corollary 2.2. Let I be an ideal of a ring R. Then R is I-semiregular if and only if for any $a \in R \setminus I$, there exists an element $b \in R$ such that $(ab)^2 = ab \neq 0$ and $a - aba \in I$.

Proof. Suppose that R is *I*-semiregular. Since R is *I*-semiregular, for $a \in R \setminus I$, there exists $b \in R$ such that $(ab)^2 = ab$ and $a - aba \in I$. If ab = 0, then $a \in I$, a contradiction, and so $ab \neq 0$. The converse is clear.

Corollary 2.3. Let R be a ring. Then we have the following:

- (1) R is regular if and only if R is (0)-semiregular.
- (2) For any ideals I, K of R such that $I \subseteq K$, I-semiregular is K-semiregular.
- (3) If R is I-semiregular for an ideal I of R, then $I \supseteq J(R)$.
- (4) If R is I-semiregular for an ideal I of R lying in J(R), then I = J(R).
- (5) If R is semiregular, then R is I-semiregular for any ideal $I \supseteq J(R)$ of R.

Proof. (1). It follows from Proposition 2.1.

(2). It is clear.

(3) Since R is I-semiregular, R/I is regular by Proposition 2.1. Hence 0 = J(R/I) = J(R)/I, and then $I \supseteq J(R)$.

- (4) It follows form (3).
- (5) It follows from (2) and (3).

Note that the converse of (2) of Corollary 2.3 may not be true by considering \mathbb{Z}_{12} . We can easily check that \mathbb{Z}_{12} is semiregular, and so \mathbb{Z}_{12} is both *I*-semiregular and *K*-semiregular where $I = 2\mathbb{Z}_{12}, K = 3\mathbb{Z}_{12}$, even though $I \notin K, K \notin I$.

Proposition 2.4. Let I be an ideal of a ring R. Then we have the following. (1) If $a \in R$ is I-semiregular, then there exists a regular element $b \in R$ such that $a - b \in I$.

(2) If $b = b\alpha b \in R$ for some $\alpha \in R$ (i.e., b is regular) such that $a - b \in I$ and $I \cap eR = (0)$ where $e = b\alpha$, then $a \in R$ is I-semiregular.

Proof. (1) Since $a \in R$ is *I*-semiregular, there exists $e^2 = e \in aR$ such that $(1-e)a \in I$ by Proposition 2.1. Let e = ax for some $x \in R$. Let b = ea. Then $a - ea = a - b \in I$ and b = eeb = e(ax)b = bxb, yielding that $b \in R$ is a regular element of R.

(2) Since $e^2 = e = b\alpha$ and $a - b \in I$, $a - ea = (1 - e)(a - b) \in I$. Let $x = e - a\alpha \in R$. Then $x = (b - a)\alpha \in I$. Since $ex \in I \cap eR = (0)$, ex = 0, and so $e = ea\alpha = ea\alpha e$. Let $\beta = a\alpha e$. Then $(\beta)^2 = (a\alpha e)(a\alpha e) = (a\alpha)(ea\alpha e) = a\alpha e = \beta \in aR$. Note that $e - \beta = e - a\alpha e = (1 - a\alpha)e = (1 + x - e)e = xe \in I$. Thus $a - \beta a = (a - ea) + (ea - \beta a) = (a - ea) + (e - \beta)a \in I$, which implies that a is I-semiregular by Proposition 2.1 as desired. \Box

We say that an idempotent $e \ (\neq 0)$ is right (resp., left) irreducible if eR (resp., Re) is a minimal right (resp., left) ideal of R. Recall that an idempotent e of a ring R is local if eRe is a local ring. In [9], Nicholson has shown that in a semiregular ring every primitive idempotent is local.

Proposition 2.5. Let R be an I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap eR = (0)$, then the following are equivalent:

- (1) e is primitive;
- (2) e is right (resp. left) irreducible;
- (3) eRe is a division ring;
- (4) e is local;
- (5) \overline{e} is primitive in $\overline{R} = R/I$.

Proof. $(3) \Rightarrow (4) \Rightarrow (1)$: It is clear.

 $(1) \Rightarrow (2)$: Suppose that *e* is primitive. Let *K* be any nonzero right ideal of *eR*. Take a nonzero element $a \in K$. Since *R* is *I*-semiregular, there exists an element $b \in R$ such that $(ab)^2 = ab$ and $a - aba \in I$ by Proposition 2.1. Let

340

 $e_1 = ab$, which is a nonzero idempotent by assumption that $I \cap eR = (0)$. Thus $e_1 \in eR$, and so $e_1 = ee_1$. Then (e_1e) and $(e - e_1e)$ are idempotents which are orthogonal. Since $e = e_1e + (e - e_1e)$ is a sum of orthogonal idempotents and e is primitive, $e_1e = 0$ or $e - e_1e = 0$. Assume that $e_1e = 0$. Then $e_1 \in e_1K \subseteq e_1eR = 0$, yielding that $e_1 = 0$, a contradiction. Hence we have that $e - e_1e = 0$, i.e., $e = e_1e$. Since $e = e_1e \in e_1R \subseteq K$, $eR \subseteq K$, and so eR = K, which implies that eR is a minimal right ideal of R. Hence e is right irreducible idempotent of R.

 $(2) \Rightarrow (3)$: It follows from [8, Proposition 21.16].

 $(4) \Rightarrow (5)$: Suppose that *e* is local. Then eRe/J(eRe), (which is isomorphic to \overline{eRe}) is a division ring. Thus \overline{e} is primitive in R/I.

 $(5) \Rightarrow (1)$: Suppose that \overline{e} is primitive in R/I. Let $e = e_1 + e_2$ be a sum of two orthogonal idempotents $e_1, e_2 \in R$. Assume that $e_1, e_2 \neq 0$. Then $\overline{e} = \overline{e_1} + \overline{e_2}$ is a sum of two orthogonal idempotents $\overline{e_1}, \overline{e_2}$ of \overline{R} . Since \overline{e} is primitive in $\overline{R}, \overline{e_1} = \overline{0}$ or $\overline{e_2} = \overline{0}$, i.e., $e_1 \in I$ or $e_2 \in I$. Clearly, $e_1R, e_2R \subseteq eR$, and so $I \cap e_1R, I \cap e_2 \subseteq I \cap eR = (0)$, which yields that $e_1, e_2 \notin I$, a contradiction. Hence $e_1 = 0$ or $e_2 = 0$, and so e is primitive in R.

Proposition 2.6. Let I be an ideal of a ring R. Then we have the following:

(1) If R is I-semiregular, then R/I is regular and idempotents can be lifted modulo I.

(2) Let $\overline{a} = a + I \in R/I$ be regular such that $a - aba \in I$ for some $b \in R$. If idempotent $\overline{ab} \in R/I$ can be lifted to an idempotent $e \in R$ modulo I such that $I \cap eR = (0)$, then $a \in R$ is I-semiregular.

Proof. (1) If R is I-semiregular, then R/I is regular by Proposition 2.1. Let $a \in R$ with $a^2 - a \in I$. Since a is I-semiregular, there exists $b \in R$ such that $(ab)^2 = ab$ and $a - aba \in I$. Let e = ab. Then $e^2 = e \in aR$ and $a - ea \in I$. Let $f = e + ea(1 - e) \in R$. Then $f^2 = f$. Since $e - ae = (a - a^2)b \in I$, $f - a = e(e - ae) + (ea - a) \in I$.

(2) Let $x = ab - e \in I$. Since $ex \in I \cap eR = (0)$, ex = 0, and so e = eab = eabe. Let $\beta = abe$. Then $\beta^2 = (abe)(abe) = ab(eabe) = abe = \beta \in aR$. On the other hand, we have that $aba - \beta a = ab(1 - e)a = (x + e)(1 - e)a = x(1 - e)a \in I$, and then $a - \beta a = (a - aba) + (aba - \beta a) \in I$, and so $a \in R$ is *I*-semiregular by Proposition 2.1.

Let I, K be ideals of a ring R such that $I \subseteq K$. An element $a \in K$ is called *I-semiregular* if there exists $e^2 = e \in aK$ such that $(1 - e)a \in I$.

Proposition 2.7. Let I, K be ideals of a ring R such that $I \subseteq K$. Then the following are equivalent for an I-semiregular element a of K:

- (1) There exists $e^2 = e \in aK$ such that $(1 e)a \in I$.
- (2) There exists $e^2 = e \in Ka$ such that $a(1-e) \in I$.
- (3) There exists $b \in K$ such that bab = b and $a aba \in I$.
- (4) There exists $b \in K$ such that abab = ab and $a aba \in I$.
- (5) There exists $c \in K$ such that caca = ca and $a aca \in I$.

Proof. It follows from the similar argument given in the proof of Proposition 2.1. \Box

Proposition 2.8. Let I, J, K be ideals of a ring R such that $I \subseteq J \subseteq K$. If K is I-semiregular, then K/J is regular and J is I-semiregular.

Proof. Let $\overline{a} = a + J \in K/J$ be arbitrary. Since K is I-semiregular, there exists $b \in K$ such that $(ab)^2 = ab$ and $a - aba \in I$. Since $a - aba \in I \subseteq J$, $\overline{a} = \overline{a}\overline{b}\overline{a}$ in K/J, and so K/J is regular. Next, let $c \in J$ be arbitrary. By Proposition2.1, there exists $e^2 = e \in cR$ such that $c - ec \in I$. Then e = cr for some $r \in R$, and so $e = ee = c(rcr) \in cJ$, which implies that J is I-semiregular.

Note that the converse of Proposition 2.8 need not be true, as shown in Example 1.2 (3): Let $K = \{0\} \times 2\mathbb{Z}$ be an ideal of $R = \mathbb{Q} \times \mathbb{Z}$. Then $R/K \simeq \mathbb{Q} \times \mathbb{Z}_2$ is regular and K is clearly K-semiregular. But R is not K-semiregular.

Proposition 2.9. Let R be an I-semiregular ring for some proper ideal I of R. Then the following are equivalent:

(1) R is abelian;

(2) For each $0 \neq x \in R \setminus I$, there exists $y \in R \setminus I$ such that $(xy)^2 = xy = yx \neq 0$;

(3) xy = yx whenever $(xy)^2 = xy$ for $x, y \in R \setminus I$.

Proof. (1) \Rightarrow (2) : Since *R* is *I*-semiregular, for each $0 \neq x \in R \setminus I$ there exists $z \in R$ such that $(xz)^2 = xz \neq 0$ and $x - xzx \in I$ by Corollary 2.2. If $z \in I$, then $x = (x - xzx) + xzx \in I$, a contradiction, and so $z \in R \setminus I$. Let y = zxz. Then xy = x(zxz) = xz and yxyx = (zxz)x(zxz)x = zxzx = yx are idempotents. Since *R* is abelian, xy, yx are central idempotents, and so xy = (xy)(xy) = x(yx)y = (yx)xy = y(xy)x = yx, as desired. Observe that $y \notin I$. Indeed, if $y \in I$, then $xy = xz \in I$, and so $xzx \in I$, and then $x = (x - xzx) + xzx \in I$, a contradiction,

 $(2) \Rightarrow (3)$: Suppose that for each $0 \neq x \in R \setminus I$, there exists $y \in R \setminus I$ such that $(xy)^2 = xy = yx \neq 0$. We observe that R is reduced (i.e., R has no nonzero nilpotent). Indeed, assume that there exists $0 \neq x$ such that $x^2 = 0$. Then there exists $y \in R \setminus I$ such that $(xy)^2 = xy = yx \neq 0$, and then $xy = x^2y^2 = 0$, a contradiction. Let $(xy)^2 = xy$ for $x, y \in R \setminus I$. Since R is reduced, xy(1 - xy) = 0 implies that x(1 - xy)y = yx(1 - xy) = y(1 - xy)x = 0 by [[1], Theorem 1.3], entailing xy = xxyy, yx = yxxy, and $yx = (yx)^2$. Since reduced ring is clearly abelian, xy and yx are central idempotents of R. Thus xy = (xy)(xy) = x(yx)y = (yx)(xy) = yx.

(3) \Rightarrow (1) : Suppose that xy = yx whenever $(xy)^2 = xy$ for $x, y \in R \setminus I$. Let $e \in R$ be any nonzero idempotent of R. If $e \notin I$, then $eu, u^{-1} \in R \setminus I$ for any unit $u \in R$. By assumption, $e^2 = e = (eu)u^{-1} = u^{-1}(eu)$, and so ue = eu, which yields that e is central by [[5], Corollary 2.2]. If $e \in I$, then $1 - e \notin I$. By the above argument, (1 - e)u = u(1 - e), yields that eu = ue, and so e is central.

Corollary 2.10. The following are equivalent for a regular ring R:

- (1) R is abelian;
- (2) For each $0 \neq x \in R$, there exists $y \in R$ such that $(xy)^2 = xy = yx \neq 0$;
- (3) xy = yx whenever $(xy)^2 = xy$ for $x, y \in R$.

Proof. It follows from Proposition 2.9.

Theorem 2.11. Let I be an ideal of a ring R. If R is abelian I-semiregular, then the center of R is I-semiregular.

Proof. Let S be the center of R, and let $x \in S$. Since R is abelian I-semiregular, there exists $y \in R$ such that xyxy = xy = yx and $x - xyx \in I$ by Proposition 2.1 and Proposition 2.9. Let z = yxy. Then xz = x(yxy) = xy = yx = yxyx = zx, and so xzxz = xz = zx. To show $z \in S$, let $r \in R$ be arbitrary. Then rz = r(yxy) = yxry = yrxy = yxyr = zr because xy = yx are central and $x \in S$. Clearly, $x - xzx = x - xyx \in I$, yielding that S is I-semiregular.

We say that a ring $R \ (\neq 0)$ is *indecomposable* if R is not a direct sum of two nonzero ideals. This is the case if and only if R has no nontrivial central idempotents. The following is similar to [3, Corollary 1.15].

Corollary 2.12. Let R be an abelian I-semiregular ring for some proper ideal I of R. Then R is indecomposable (as a ring) if and only if its center is a field.

Proof. Suppose that R is indecomposable. Let S be the center of R and let $0 \neq x \in S$ be arbitrary. By Theorem 2.11, xzxz = xz and $x - xzx \in I$ for some $z \in S$. Note that we can take $z \neq 0$. Indeed, assuming that xz = 0 for all $z \in S$, then $x \in I$, and so $1 \in S \subseteq I$, a contradiction. Thus xz is a nonzero central idempotent of R. Since R is abelian I-semiregular, xz = zx by Proposition 2.9. Since R is indecomposable, xz = 1. Therefore, S is a field. The converse is clear.

3. Idempotents of abelian *I*-semiregular rings

Recall that a prime ideal P of a ring R is an associated prime if P = ann(y) for some $y \in R$. It was well known that for a Noetherian ring, the set of associated primes is finite. In addition, if R is commutative, then any maximal element of the family of ideals $\Lambda = \{ann(x) \mid 0 \neq x \in R\}$ is an associated prime (see [2], IV §1.1 Proposition 2). Since ann(0) = R, an element $x \in R$ whose annihilator is a prime ideal is necessarily $\neq 0$.

Lemma 3.1. Let R be a ring and $e, f \in R$ be idempotents. Then ann(e) = ann(f) if and only if e = f.

Proof. Suppose that ann(e) = ann(f). Since $1 - e \in ann(e) = ann(f)$ (resp., $1 - f \in ann(f) = ann(e)$), f = ef (resp., e = ef), and so e = ef = f. The converse is clear.

 \square

Theorem 3.2. Let R be an abelian I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap eR = (0)$, then the following are equivalent:

- (1) e is primitive;
- (2) ann(e) is a maximal element in $\Lambda = \{ann(x) \mid 0 \neq x \in R\};$
- (3) ann(e) is a maximal ideal of R;
- (4) ann(e) is a prime ideal of R.

Proof. $(1) \Rightarrow (2)$: Suppose that e is primitive. Let $ann(e) \subseteq ann(x)$ for any $ann(x) \in \Lambda$. We observe that $x \notin I$. Indeed, since $1 - e \in ann(e) \subseteq ann(x)$, x = ex = xe, and so if $x \in I$, then $x \in I \cap eR = (0)$ by assumption, i.e., x = 0, a contradiction. Since R is abelian I-semiregular and $x \notin I$, there exists $y \in R \setminus I$ such that $(xy)^2 = xy = yx \neq 0$ by Proposition 2.9. Since xy = yx, we have that $ann(x) \subseteq ann(xy)$. Let f = xy. Since $1 - e \in ann(e) \subseteq ann(f)$, f = ef = fe. Note that e = ef + e(1 - f) is a sum of two orthogonal central idempotents ef and e(1 - f) of R. Assume that ef = 0. Then $f \in ann(e) \subseteq ann(f) \in \Lambda$, and so $f^2 = f = 0$, a contradiction. Thus $ef \neq 0$. Since e is a primitive idempotent of R and $ef \neq 0$, e(1 - f) = 0, i.e., e = ef, yielding that e = f, and so ann(e) = ann(x), which implies that ann(e) is a maximal element in Λ .

 $(2) \Rightarrow (4)$: Suppose that ann(e) is a maximal element in $\Lambda = \{ann(x) \mid 0 \neq x \in R\}$. Since $e \neq 0$, $ann(e) \neq R$. Let b, c be elements of R such that $bc \in ann(e)$ and $c \notin ann(e)$. Then it is clear that $ec = ce \neq 0$, and so $ann(ec) \in \Lambda$. Since e is central, $ann(e) \subseteq ann(ec)$. Since ann(e) is a maximal element in $\Lambda, b \in ann(ec) = ann(e)$, hence ann(e) is a prime ideal of R.

 $(4) \Rightarrow (1)$: Suppose that ann(e) is a prime ideal of R. Let $e = \alpha + \beta$ for some idempotents $\alpha, \beta \in R$ with $\alpha\beta = \beta\alpha = 0$. Since α and β are central, we have that $(\alpha)(\beta) = (\alpha\beta) = (0)$ where (x) is a principal ideal of R generated by $x \in R$. Since ann(e) is prime and $(\alpha)(\beta) = (0) \subseteq ann(e)$, $(\alpha) \subseteq ann(e)$ or $(\beta) \subseteq ann(e)$, and so $\alpha \in ann(e)$ or $\beta \in ann(e)$. Thus $\alpha = \alpha e = 0$ or $\beta = \beta e = 0$, which implies that e is a primitive idempotent of R.

 $(3) \Rightarrow (4)$: It is clear.

 $(4) \Rightarrow (3)$: Suppose that ann(e) is a prime ideal of R. Let K be any ideal of R such that $ann(e) \subsetneq K \subseteq R$. Then there exists some nonzero $x \in K \setminus ann(e)$, i.e., $0 \neq ex \in R$. Note that $ex \notin I$ by assumption $I \cap eR = (0)$. Since R is I-semiregular and $ex \notin I$, there exists some $y \in R$ such that (ex)y is a nonzero idempotent of R. Clearly, $ann(e) \subseteq ann(exy) \in \Lambda$. Since ann(e) is a prime ideal of R (equivalently, ann(e) is a maximal element in Λ by the proof of $(1) \Leftrightarrow (4)$), ann(e) = ann(exy). By Lemma 3.1, e = exy, i.e., e(1 - xy) = 0. Since e is central, $(e)(1 - xy) \subseteq (e(1 - xy)) = (0) \subseteq ann(e)$. Since ann(e) is a prime ideal of R, $(e) \subseteq ann(e)$ or $(1 - xy) \subseteq ann(e)$, and so $e \in ann(e)$ or $1 - xy \in ann(e)$. If $e \in ann(e)$, then $e^2 = e = 0$, a contradiction. Hence $1 - xy \in ann(e) \subsetneq K$, and then $1 = (1 - xy) + xy \in K$, which implies that K = R. Therefore, ann(e) is a maximal ideal of R.

Corollary 3.3. Let R be an abelian I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap eR = (0)$, then the following are equivalent:

- (1) e is primitive;
- (2) e is irreducible;
- (3) eRe is a division ring;
- (4) e is local;
- (5) \overline{e} is primitive in R = R/I;
- (6) ann(e) is a maximal element in $\Lambda = \{ann(x) \mid 0 \neq x \in R\}$;
- (7) ann(e) is a prime ideal of R;
- (8) ann(e) is a maximal ideal of R.

Proof. It follows from Proposition 2.5 and Theorem 3.2.

Corollary 3.4. Let R be an abelian regular ring. If $e \in R$ is a nonzero idempotent, then the following are equivalent:

- (1) e is primitive;
- (2) e is irreducible;
- (3) eRe is a division ring;
- (4) e is local;
- (5) ann(e) is a maximal element in $\Lambda = \{ann(x) \mid 0 \neq x \in R\};$
- (6) ann(e) is a prime ideal of R;
- (7) ann(e) is a maximal ideal of R.

Proof. It follows from Corollary 3.3.

Theorem 3.5. Let R be an abelian I-semiregular ring for some ideal I of R and $E_1 = \{e^2 = e \in R \mid I \cap eR = (0)\}$ be a nonempty set. Suppose that R satisfies the ascending chain condition on annihilators of idempotents in E_1 . Then we have the following:

- (1) There exists at least one primitive idempotent of R.
- (2) Any distinct primitive idempotents in E_1 are orthogonal.
- (3) The number of all primitive idempotents in E_1 is finite.

Proof. (1) Let $\Lambda = \{ann(x) \mid 0 \neq x \in R\}$ and $\Lambda_1 = \{ann(e) \in \Lambda \mid e \in E_1\}$. Clearly, (Λ_1, \subseteq) is a partially ordered set under the set inclusion \subseteq . Take $ann(e_1) \in \Lambda_1$. If $ann(e_1)$ is a maximal element in Λ_1 , then we will show that $ann(e_1)$ is a maximal element in Λ . To show this, let $ann(e_1) \subseteq ann(x) \in \Lambda$ for any nonzero $x \in R$. We observe that $x \notin I$. Indeed, if $x \in I$, then $1 - e_1 \in ann(e_1) \subseteq ann(x)$, yielding that $x = e_1x = xe_1 \in I \cap e_1R = (0)$, i.e., x = 0, a contradiction. Since R is abelian I-semiregular and $x \notin I$, there exists $y \in R \setminus I$ such that $(xy)^2 = xy = yx \neq 0$ by Proposition 2.9. Since xy = yx, $ann(x) \subseteq ann(xy)$. Let f = xy. We will show that $f \in E_1$, (equivalently, $I \cap fR = (0)$). Since $1 - e_1 \in ann(e_1) \subseteq ann(f)$, $f = e_1f = fe_1$. Let $a \in I \cap fR$. Then a = fr for some $r \in R$. Thus $a = fr = e_1fr = e_1a \in I \cap e_1R = (0)$, i.e., a = 0, and so $I \cap fR = (0)$. Since $ann(e_1)$ is a maximal in Λ_1 and

J. HAN AND H.S. SIM

 $ann(e_1) \subseteq ann(f) \in \Lambda_1$, $ann(e_1) = ann(f)$. Therefore $ann(e_1) = ann(x)$, which implies that $ann(e_1)$ is a maximal element in Λ , and so e_1 is primitive by Theorem 3.2 as desired. If $ann(e_1)$ is not a maximal element in Λ_1 , we can take $ann(e_2) \in \Lambda_1$ such that $ann(e_1) \subsetneq ann(e_2)$. If $ann(e_2)$ is a maximal element in Λ_1 , then e_2 is primitive by the similar argument. Continuing in this way, we have the following chain in Λ_1 :

$$ann(e_1) \subsetneq ann(e_2) \subsetneq ann(e_3) \subsetneq \cdots$$

By assumption, there exists a positive integer k such that $ann(e_k) = ann(e_j)$ for all $j \ge k$, and so $ann(e_k)$ is the upper bound of the chain. By Zorn's Lemma, there exists a maximal element ann(e) in Λ_1 , yielding that e is primitive by the previous argument.

(2) Let $e, f \in E_1$ ($e \neq f$) be arbitrary primitive idempotents. By Theorem 3.2, ann(e) and ann(f) are maximal ideals of R. Assume that $ef \neq 0$. Then $ann(e), ann(f) \subseteq ann(ef)$ and clearly $ef \in E_1$. Since ann(e) and ann(f) are maximal ideals of R and $ann(ef) \neq R$, ann(e) = ann(ef) = ann(f), yielding that e = ef = f by Lemma 3.1, a contradiction. Hence any distinct primitive idempotents in E_1 are orthogonal.

(3) Let M_1 be the set of all primitive idempotents of E_1 . Then M_1 is a nonempty set by (1). Assume that M_1 is infinite. Let $f_k = \sum_{i=1}^k a_i \ (k \ge 1)$ for $a_i \in M_1$. Since M_1 is orthogonal by (2), $f_k \in E_1 \ (k \ge 1)$. Define a relation \le on E_1 by $e \le f$ if e = ef = fe for all $e, f \in E_1$. Clearly, (E_1, \le) is a partially ordered set with a partial ordering \le . Consider the following chain in E_1 :

$$f_1 \leq f_2 \leq f_3 \leq \cdots$$
.

Then we also have the following chain of annihilators of idempotents of E_1 :

$$ann(1-f_1) \subseteq ann(1-f_2) \subseteq ann(1-f_3) \subseteq \cdots$$

Since the above chain has an ascending chain condition by assumption, there exists a positive integer n such that $ann(1 - f_n) = ann(1 - f_k)$ for all $k \ge n$, and so $1 - f_n = 1 - f_k$ (i.e., $f_n = f_k$) for all $k \ge n$ by Lemma 3.1, which yields that $a_k = 0$ for all $k \ge n$, a contradiction. Hence M_1 is finite.

Corollary 3.6. Let R be an abelian regular ring. Suppose that R satisfies the ascending chain condition on annihilators of idempotents in R. Then we have the following:

- (1) There exists at least one primitive idempotent of R.
- (2) Any distinct primitive idempotents in R are orthogonal.
- (3) The number of all primitive idempotents in R is finite.

Proof. It follows from Theorem 3.5.

We finally have a consequence of our observation as follows:

Theorem 3.7. Let R be an abelian regular ring with the ascending chain condition on annihilators of idempotents of R. Then we have the following:

(1) The unity 1 of R can be expressed a sum of a finite number primitive idempotents of R.

(2) Every idempotent can be expressed a sum of a finite number primitive idempotents of R.

(3) R is isomorphic to a direct product of a finite number of division rings.

Proof. (1) Let M(R) be the set of all primitive idempotents of R. By Corollary 3.6, M(R) is nonempty, finite and orthogonal. If $1 \in M(R)$, then we are done. Suppose that $1 \notin M(R)$. Then $1 = e_1 + b_1$ for some nontrivial idempotents $e_1, b_1 \in R$. If $e_1, b_1 \in M(R)$, then we are done. Suppose that $e_1 \notin M(R)$ or $b_1 \notin M(R)$ (say, $b_1 \notin M(R)$). Then $b_1 = e_2 + b_2$ some nontrivial idempotents $e_2, b_2 \in R$. Since M(R) is finite, continuing in this way, 1 can be expressed a sum of a finite number of primitive idempotents of R.

(2) By (1), we have that $1 = \sum_{i=1}^{n} e_i$ for some $e_i \in M(R)$. Let $a \in R$ be an arbitrary idempotent. Then $a = \sum_{i=1}^{n} ae_i$. Note that if $ae_i \neq 0$, then $ae_i \in M(R)$ by [4, Corollary 2.11]. Hence a can be expressed as a sum of finite number of primitive idempotents of R.

(3) It follows from (1) and Corollary 3.4.

References

- D. D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847–2852.
- [2] N. Bourbaki, Commutative Algebra, Addison-Wesley, Paris, 1972.
- [3] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- [4] J. Han, S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), 3551– 3557.
- [5] J. Han, Y. Lee, S. Park, Semicentral idempotents in a ring, J. Korean Math. Soc. 51 (2014), 463–472.
- [6] J. Han, Y. Lee, S. Park, On idempotents in relation with regularity, J. Korean Math. Soc. 53 (2016), 217–232.
- [7] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359–368.
- [8] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
- [9] W. K. Nicholson, Semiregular modules and rings, Can. J. Math. XXVIII (1976), 1105– 1120.

JUNCHEOL HAN

Department of Mathematics Education, Pusan National University, Pusan 46277, Korea

E-mail address: jchan@pusan.ac.kr

Hyo-Seob Sim

DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, PUSAN 48513, KOREA

E-mail address: hsim@pknu.ac.kr