East Asian Math. J.
Vol. 36 (2020), No. 3, pp. 337-347
YNMS
http://dx.doi.org/10.7858/eamj.2020.022

I-SEMIREGULAR RINGS

Juncheol Han and Hyo-Seob Sim*

Abstract

Let R be a ring with unity, and let I be an ideal of R. Then R is called I-semiregular if for every $a \in R$ there exists $b \in R$ such that $a b$ is an idempotent of R and $a-a b a \in I$. In this paper, basic properties of I-semiregularity are investigated, and some equivalent conditions to the primitivity of e are observed for an idempotent e of an I-semiregular ring R such that $I \cap e R=(0)$. For an abelian regular ring R with the ascending chain condition on annihilators of idempotents of R, it is shown that R is isomorphic to a direct product of a finite number of division rings, as a consequence of the observations.

1. Introduction

Throughout this paper all rings are associative with unity unless otherwise specified. Let R be a ring and let $E(R)$ be the set of all idempotents of R, let $J(R)$ denote the Jacobson radical of R, and let $|S|$ denote the cardinality of a subset S of R. Denote the ring of integers (modulo n) by $\mathbb{Z}\left(\mathbb{Z}_{n}\right)$. Use \mathbb{Q} to denote the field of rational numbers. A ring R is called reduced if R has no nonzero nilpotent. A ring is called abelian if every idempotent is central. It is easily checked that every reduced ring is abelian. An element a of a ring R is called regular if there exists $b \in R$ such that $a b a=a$. A ring R is called von Neumann regular (simply, regular) if every element of R is regular. In [9], an element a of a ring R is called semiregular if it satisfies the following conditions of Proposition 1.1.

Proposition 1.1. The following are equivalent for an element a of a ring R :
(1) There exists $e^{2}=e \in a R$ such that $(1-e) a \in J(R)$.
(2) There exists $e^{2}=e \in R a$ such that $a(1-e) \in J(R)$.
(3) There exists a regular element $b \in R$ such that $a-b \in J(R)$.
(4) There exists $b \in R$ with $b a b=b$ and $a-a b a \in J(R)$.

Received February 13, 2020; Accepted April 9, 2020. 2010 Mathematics Subject Classification. 16E50, 16S99.
Key words and phrases. (von Neumann) regular rings, I-semiregular rings. This work was supported by 2-year Research Grant of Pusan National University.
*Corresponding author.

A ring R is semiregular if every element of R is semiregular. Note that R is regular if and only if R is semiregular for a semisimple ring R (i.e., a ring R with $J(R)=(0))$. We will generalize the concept of semiregularity of a ring. An element a of a ring R is called I-semiregular for some ideal I of R if there exists $b \in R$ such that $a b \in E(R)$ and $a-a b a \in I$. Obviously, a regular ring is (0)-semiregular and a semiregular ring is $J(R)$-semiregular. A ring is a I semiregular ring if each of its elements is I-semiregular. A ring R is called right (resp., left) attaching-idempotent if for $a \in R$ there exists $0 \neq b \in R$ (resp., $0 \neq c \in R$) such that $a b$ (resp., $c a$) is an idempotent. R is called attachingidempotent if it is both left and right attaching idempotent. It is shown in [6] that the attaching idempotent property is not left-right symmetry, and finite ring rings are attaching idempotent. For any proper ideal I of a ring R, we have the following implications:
R is regular $\Rightarrow R$ is semiregular $\Rightarrow R$ is I-semiregular $\Rightarrow R$ is attachingidempotent and R / I is regular.

The above implications are strict by the following examples:
Example 1.2. (1) \mathbb{Z}_{12} is not regular but is semiregular.
(2) Let $R=\mathbb{Q} \times \mathbb{Z}$ and $I=\{0\} \times \mathbb{Z}$ be an ideal of R. Then $J(R)=(0)$ and R is not regular (equivalently, R is not semiregular). To show that R is I-semiregular, let $a=(x, y) \in R$ be an arbitrary element. if $a \in I$, then clearly, $(0,0) \in a R$ and $a-a(0,0) a=a \in I$. If $a \notin I$, then $x \neq 0$. Take an idempotent $e=(1,0) \in R$. Then $e=(1.0)=(x, y)\left(x^{-1}, 0\right) \in a R$ and $(1-e) a=a-e a=(0, y) \in I$, yielding that a is I-semiregular, and so R is I-semiregular.
(3) Consider an ideal $K=\{0\} \times 2 \mathbb{Z}$ of $R=\mathbb{Q} \times \mathbb{Z}$. Then $R / K \simeq \mathbb{Q} \times$ \mathbb{Z}_{2} is regular. Clearly, R is attaching-idempotent. Observe that R is not K semiregular. Indeed, assume that R is K-semiregular. Take $a=(1,3) \in R$. Then there exists $b=(x, y) \in R$ such that $(a b)^{2}=a b$ and $a-a b a \in K$. By $(a b)^{2}=a b$, we have that $b=(0,0)$ or $b=(1,0)$. If $b=(0,0)$, then $a-a b a=a \notin K$, a contradiction. If $b=(1,0)$, then $a-a b a=(0,3) \notin K$, a contradiction. Hence R is not K-semiregular.

In section 2, the equivalent conditions of I-semiregularity are investigated with some basic propverties, and it is shown that if e is an idempotent of I semiregular ring R such that $I \cap e R=(0)$, then e is primitive if and only if e is right (left)irreducible if and only if $e R e$ is a division ring if and only if e is local; e is primitive if and only if \bar{e} is primitive in $\bar{R}=R / I$.

In Section 3, it is shown that for an abelian I-semiregular ring R if e is an idempotent of R such that $I \cap e R=(0)$, then e is primitive if and only if $\operatorname{ann}(e)$ is a maximal ideal of R if and only if $\operatorname{ann}(e)$ is a prime ideal of R. It is also shown that for an abelian I-semiregular ring having a nonempty set $E_{1}=\left\{e^{2}=e \in R \mid I \cap e R=(0)\right\}$, if E_{1} satisfies the ascending chain condition on annihilators of idempotents in E_{1}, then there exists at least one primitive idempotent of R, any distinct primitive idempotents in E_{1} are orthogonal and
the number of primitive idempotents in E_{1} is finite. In particular, for an abelian ring R satisfying the ascending chain condition on annihilators of idempotents of R, as a consequence of the above observations, R is isomorphic to a direct product of a finite number of division rings.

2. I-semiregular rings

In this section, we will begin with the following proposition.
Proposition 2.1. Let I be an ideal of a ring R. Then the following are equivalent for an I-semiregular element a of R :
(1) There exists $e^{2}=e \in a R$ such that $(1-e) a \in I$.
(2) There exists $e^{2}=e \in R a$ such that $a(1-e) \in I$.
(3) There exists $b \in R$ such that $b a b=b$ and $a-a b a \in I$.
(4) There exists $b \in R$ such that $a b a b=a b$ and $a-a b a \in I$.
(5) There exists $c \in R$ such that $c a c a=c a$ and $a-a c a \in I$.

Proof. (1) $\Rightarrow(3)$: Suppose that there exists $e^{2}=e \in a R$ such that $(1-e) a \in I$. Let $e=a x$ for some $x \in R$. Then $a x a x=a x$ and $(1-e) a=a-a x a \in I$. Let $b=x a x$. Then $b a b=(x a x) a(x a x)=x(a x)=b$. Since $(a-a x a) x a=$ $a x a-a b a \in I, a-a b a=(a-a x a)+(a x a-a b a) \in I$.
$(3) \Rightarrow(4):$ It is clear.
$(4) \Rightarrow(1):$ Suppose that there exists $b \in R$ such that $a b a b=a b$ and $a-a b a \in I$. Let $e=a b$. Then $e^{2}=e \in a R$ and $a-a b a=a-e a=(1-e) a \in I$.
$(4) \Rightarrow(5)$: Suppose that there exists $b \in R$ such that $a b a b=a b$ and $a-a b a \in$ I. Let $c=b a b$. Then $c a c a=(b a b a)(b a b a)=b(a b) a=c a$. Since $a-a b a \in I$, $(a-a b a) b a=a b a-a c a \in I$, and so $a-a c a=(a-a b a)+(a b a-a c a) \in I$.
$(5) \Rightarrow(4)$: It follows from the similar argument given in the proof of $(4) \Rightarrow$ (5).
$(2) \Leftrightarrow(3) \Leftrightarrow(5)$: It follows from the similar argument given in the proof of $(1) \Leftrightarrow(3) \Leftrightarrow(4)$.

A ring is a I-semiregular ring if each of its element is I-semiregular.
Corollary 2.2. Let I be an ideal of a ring R. Then R is I-semiregular if and only if for any $a \in R \backslash I$, there exists an element $b \in R$ such that $(a b)^{2}=a b \neq 0$ and $a-a b a \in I$.

Proof. Suppose that R is I-semiregular. Since R is I-semiregular, for $a \in R \backslash I$, there exists $b \in R$ such that $(a b)^{2}=a b$ and $a-a b a \in I$. If $a b=0$, then $a \in I$, a contradiction, and so $a b \neq 0$. The converse is clear.
Corollary 2.3. Let R be a ring. Then we have the following:
(1) R is regular if and only if R is (0)-semiregular.
(2) For any ideals I, K of R such that $I \subseteq K, I$-semiregular is K-semiregular.
(3) If R is I-semiregular for an ideal I of R, then $I \supseteq J(R)$.
(4) If R is I-semiregular for an ideal I of R lying in $J(R)$, then $I=J(R)$.
(5) If R is semiregular, then R is I-semiregular for any ideal $I \supseteq J(R)$ of R.

Proof. (1). It follows from Proposition 2.1.
(2). It is clear.
(3) Since R is I-semiregular, R / I is regular by Proposition 2.1. Hence $0=$ $J(R / I)=J(R) / I$, and then $I \supseteq J(R)$.
(4) It follows form (3).
(5) It follows from (2) and (3).

Note that the converse of (2) of Corollary 2.3 may not be true by considering \mathbb{Z}_{12}. We can easily check that \mathbb{Z}_{12} is semiregular, and so \mathbb{Z}_{12} is both I-semiregular and K-semiregular where $I=2 \mathbb{Z}_{12}, K=3 \mathbb{Z}_{12}$, even though $I \nsubseteq K, K \nsubseteq I$.

Proposition 2.4. Let I be an ideal of a ring R. Then we have the following.
(1) If $a \in R$ is I-semiregular, then there exists a regular element $b \in R$ such that $a-b \in I$.
(2) If $b=b \alpha b \in R$ for some $\alpha \in R$ (i.e., b is regular) such that $a-b \in I$ and $I \cap e R=(0)$ where $e=b \alpha$, then $a \in R$ is I-semiregular.
Proof. (1) Since $a \in R$ is I-semiregular, there exists $e^{2}=e \in a R$ such that $(1-e) a \in I$ by Proposition 2.1. Let $e=a x$ for some $x \in R$. Let $b=e a$. Then $a-e a=a-b \in I$ and $b=e e b=e(a x) b=b x b$, yielding that $b \in R$ is a regular element of R.
(2) Since $e^{2}=e=b \alpha$ and $a-b \in I, a-e a=(1-e)(a-b) \in I$. Let $x=e-a \alpha \in R$. Then $x=(b-a) \alpha \in I$. Since $e x \in I \cap e R=(0), e x=0$, and so $e=e a \alpha=e a \alpha e$. Let $\beta=a \alpha e$. Then $(\beta)^{2}=($ a $e)(a \alpha e)=(a \alpha)(e a \alpha e)=$ $a \alpha e=\beta \in a R$. Note that $e-\beta=e-a \alpha e=(1-a \alpha) e=(1+x-e) e=x e \in I$. Thus $a-\beta a=(a-e a)+(e a-\beta a)=(a-e a)+(e-\beta) a \in I$, which implies that a is I-semiregular by Proposition 2.1 as desired.

We say that an idempotent $e(\neq 0)$ is right (resp., left) irreducible if $e R$ (resp., $R e$) is a minimal right (resp., left) ideal of R. Recall that an idempotent e of a ring R is local if $e R e$ is a local ring. In [9], Nicholson has shown that in a semiregular ring every primitive idempotent is local.
Proposition 2.5. Let R be an I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap e R=(0)$, then the following are equivalent:
(1) e is primitive;
(2) e is right (resp. left) irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) \bar{e} is primitive in $\bar{R}=R / I$.

Proof. (3) $\Rightarrow(4) \Rightarrow(1)$: It is clear.
$(1) \Rightarrow(2)$: Suppose that e is primitive. Let K be any nonzero right ideal of $e R$. Take a nonzero element $a \in K$. Since R is I-semiregular, there exists an element $b \in R$ such that $(a b)^{2}=a b$ and $a-a b a \in I$ by Proposition 2.1. Let
$e_{1}=a b$, which is a nonzero idempotent by assumption that $I \cap e R=(0)$. Thus $e_{1} \in e R$, and so $e_{1}=e e_{1}$. Then $\left(e_{1} e\right)$ and $\left(e-e_{1} e\right)$ are idempotents which are orthogonal. Since $e=e_{1} e+\left(e-e_{1} e\right)$ is a sum of orthogonal idempotents and e is primitive, $e_{1} e=0$ or $e-e_{1} e=0$. Assume that $e_{1} e=0$. Then $e_{1} \in e_{1} K \subseteq e_{1} e R=0$, yielding that $e_{1}=0$, a contradiction. Hence we have that $e-e_{1} e=0$, i.e., $e=e_{1} e$. Since $e=e_{1} e \in e_{1} R \subseteq K, e R \subseteq K$, and so $e R=K$, which implies that $e R$ is a minimal right ideal of R. Hence e is right irreducible idempotent of R. Similarly, e is a left irreducible idempotent of R.
$(2) \Rightarrow(3):$ It follows from [8, Proposition 21.16].
$(4) \Rightarrow(5)$: Suppose that e is local. Then $e R e / J(e R e)$, (which is isomorphic to $\bar{e} \bar{R} \bar{e})$ is a division ring. Thus \bar{e} is primitive in R / I.
$(5) \Rightarrow(1)$: Suppose that \bar{e} is primitive in R / I. Let $e=e_{1}+e_{2}$ be a sum of two orthogonal idempotents $e_{1}, e_{2} \in R$. Assume that $e_{1}, e_{2} \neq 0$. Then $\bar{e}=\overline{e_{1}}+\overline{e_{2}}$ is a sum of two orthogonal idempotents $\overline{e_{1}}, \overline{e_{2}}$ of \bar{R}. Since \bar{e} is primitive in $\bar{R}, \overline{e_{1}}=\overline{0}$ or $\overline{e_{2}}=\overline{0}$, i.e., $e_{1} \in I$ or $e_{2} \in I$. Clearly, $e_{1} R, e_{2} R \subseteq e R$, and so $I \cap e_{1} R, I \cap e_{2} \subseteq I \cap e R=(0)$, which yields that $e_{1}, e_{2} \notin I$, a contradiction. Hence $e_{1}=0$ or $e_{2}=0$, and so e is primitive in R.

Proposition 2.6. Let I be an ideal of a ring R. Then we have the following:
(1) If R is I-semiregular, then R / I is regular and idempotents can be lifted modulo I.
(2) Let $\bar{a}=a+I \in R / I$ be regular such that $a-a b a \in I$ for some $b \in R$. If idempotent $\overline{a b} \in R / I$ can be lifted to an idempotent $e \in R$ modulo I such that $I \cap e R=(0)$, then $a \in R$ is I-semiregular.

Proof. (1) If R is I-semiregular, then R / I is regular by Proposition 2.1. Let $a \in R$ with $a^{2}-a \in I$. Since a is I-semiregular, there exists $b \in R$ such that $(a b)^{2}=a b$ and $a-a b a \in I$. Let $e=a b$. Then $e^{2}=e \in a R$ and $a-e a \in I$. Let $f=e+e a(1-e) \in R$. Then $f^{2}=f$. Since $e-a e=\left(a-a^{2}\right) b \in I$, $f-a=e(e-a e)+(e a-a) \in I$.
(2) Let $x=a b-e \in I$. Since $e x \in I \cap e R=(0), e x=0$, and so $e=e a b=e a b e$. Let $\beta=a b e$. Then $\beta^{2}=(a b e)(a b e)=a b(e a b e)=a b e=\beta \in a R$. On the other hand, we have that $a b a-\beta a=a b(1-e) a=(x+e)(1-e) a=x(1-e) a \in I$, and then $a-\beta a=(a-a b a)+(a b a-\beta a) \in I$, and so $a \in R$ is I-semiregular by Proposition 2.1.

Let I, K be ideals of a ring R such that $I \subseteq K$. An element $a \in K$ is called I-semiregular if there exists $e^{2}=e \in a K$ such that $(1-e) a \in I$.

Proposition 2.7. Let I, K be ideals of a ring R such that $I \subseteq K$. Then the following are equivalent for an I-semiregular element a of K :
(1) There exists $e^{2}=e \in a K$ such that $(1-e) a \in I$.
(2) There exists $e^{2}=e \in K a$ such that $a(1-e) \in I$.
(3) There exists $b \in K$ such that $b a b=b$ and $a-a b a \in I$.
(4) There exists $b \in K$ such that $a b a b=a b$ and $a-a b a \in I$.
(5) There exists $c \in K$ such that caca $=c a$ and $a-a c a \in I$.

Proof. It follows from the similar argument given in the proof of Proposition 2.1.

Proposition 2.8. Let I, J, K be ideals of a ring R such that $I \subseteq J \subseteq K$. If K is I-semiregular, then K / J is regular and J is I-semiregular.

Proof. Let $\bar{a}=a+J \in K / J$ be arbitrary. Since K is I-semiregular, there exists $b \in K$ such that $(a b)^{2}=a b$ and $a-a b a \in I$. Since $a-a b a \in I \subseteq J, \bar{a}=\bar{a} \bar{b} \bar{a}$ in K / J, and so K / J is regular. Next, let $c \in J$ be arbitrary. By Proposition2.1, there exists $e^{2}=e \in c R$ such that $c-e c \in I$. Then $e=c r$ for some $r \in R$, and so $e=e e=c(r c r) \in c J$, which implies that J is I-semiregular.

Note that the converse of Proposition 2.8 need not be true, as shown in Example 1.2 (3): Let $K=\{0\} \times 2 \mathbb{Z}$ be an ideal of $R=\mathbb{Q} \times \mathbb{Z}$. Then $R / K \simeq$ $\mathbb{Q} \times \mathbb{Z}_{2}$ is regular and K is clearly K-semiregular. But R is not K-semiregular.

Proposition 2.9. Let R be an I-semiregular ring for some proper ideal I of R. Then the following are equivalent:
(1) R is abelian;
(2) For each $0 \neq x \in R \backslash I$, there exists $y \in R \backslash I$ such that $(x y)^{2}=x y=$ $y x \neq 0$;
(3) $x y=y x$ whenever $(x y)^{2}=x y$ for $x, y \in R \backslash I$.

Proof. (1) $\Rightarrow(2):$ Since R is I-semiregular, for each $0 \neq x \in R \backslash I$ there exists $z \in R$ such that $(x z)^{2}=x z \neq 0$ and $x-x z x \in I$ by Corollary 2.2. If $z \in I$, then $x=(x-x z x)+x z x \in I$, a contradiction, and so $z \in R \backslash I$. Let $y=z x z$. Then $x y=x(z x z)=x z$ and $y x y x=(z x z) x(z x z) x=z x z x=y x$ are idempotents. Since R is abelian, $x y, y x$ are central idempotents, and so $x y=(x y)(x y)=x(y x) y=(y x) x y=y(x y) x=y x$, as desired. Observe that $y \notin I$. Indeed, if $y \in I$, then $x y=x z \in I$, and so $x z x \in I$, and then $x=(x-x z x)+x z x \in I$, a contradiction,
$(2) \Rightarrow(3)$: Suppose that for each $0 \neq x \in R \backslash I$, there exists $y \in R \backslash I$ such that $(x y)^{2}=x y=y x \neq 0$. We observe that R is reduced (i.e., R has no nonzero nilpotent). Indeed, assume that there exists $0 \neq x$ such that $x^{2}=0$. Then there exists $y \in R \backslash I$ such that $(x y)^{2}=x y=y x \neq 0$, and then $x y=$ $x^{2} y^{2}=0$, a contradiction. Let $(x y)^{2}=x y$ for $x, y \in R \backslash I$. Since R is reduced, $x y(1-x y)=0$ implies that $x(1-x y) y=y x(1-x y)=y(1-x y) x=0$ by [[1], Theorem 1.3], entailing $x y=x x y y, y x=y x x y$, and $y x=(y x)^{2}$. Since reduced ring is clearly abelian, $x y$ and $y x$ are central idempotents of R. Thus $x y=(x y)(x y)=x(y x) y=(y x)(x y)=y x$.
$(3) \Rightarrow(1)$: Suppose that $x y=y x$ whenever $(x y)^{2}=x y$ for $x, y \in R \backslash I$. Let $e \in R$ be any nonzero idempotent of R. If $e \notin I$, then $e u, u^{-1} \in R \backslash I$ for any unit $u \in R$. By assumption, $e^{2}=e=(e u) u^{-1}=u^{-1}(e u)$, and so $u e=e u$, which yields that e is central by [[5], Corollary 2.2]. If $e \in I$, then $1-e \notin I$. By the above argument, $(1-e) u=u(1-e)$, yields that $e u=u e$, and so e is central.

Corollary 2.10. The following are equivalent for a regular ring R :
(1) R is abelian;
(2) For each $0 \neq x \in R$, there exists $y \in R$ such that $(x y)^{2}=x y=y x \neq 0$;
(3) $x y=y x$ whenever $(x y)^{2}=x y$ for $x, y \in R$.

Proof. It follows from Proposition 2.9.
Theorem 2.11. Let I be an ideal of a ring R. If R is abelian I-semiregular, then the center of R is I-semiregular.

Proof. Let S be the center of R, and let $x \in S$. Since R is abelian I-semiregular, there exists $y \in R$ such that $x y x y=x y=y x$ and $x-x y x \in I$ by Proposition 2.1 and Proposition 2.9. Let $z=y x y$. Then $x z=x(y x y)=x y=y x=y x y x=z x$, and so $x z x z=x z=z x$. To show $z \in S$, let $r \in R$ be arbitrary. Then $r z=r(y x y)=y x r y=y r x y=y x y r=z r$ because $x y=y x$ are central and $x \in S$. Clearly, $x-x z x=x-x y x \in I$, yielding that S is I-semiregular.

We say that a ring $R(\neq 0)$ is indecomposable if R is not a direct sum of two nonzero ideals. This is the case if and only if R has no nontrivial central idempotents. The following is similar to [3, Corollary 1.15].

Corollary 2.12. Let R be an abelian I-semiregular ring for some proper ideal I of R. Then R is indecomposable (as a ring) if and only if its center is a field.

Proof. Suppose that R is indecomposable. Let S be the center of R and let $0 \neq x \in S$ be arbitrary. By Theorem 2.11, $x z x z=x z$ and $x-x z x \in I$ for some $z \in S$. Note that we can take $z \neq 0$. Indeed, assuming that $x z=0$ for all $z \in S$, then $x \in I$, and so $1 \in S \subseteq I$, a contradiction. Thus $x z$ is a nonzero central idempotent of R. Since R is abelian I-semiregular, $x z=z x$ by Proposition 2.9. Since R is indecomposable, $x z=1$. Therefore, S is a field. The converse is clear.

3. Idempotents of abelian I-semiregular rings

Recall that a prime ideal P of a ring R is an associated prime if $P=\operatorname{ann}(y)$ for some $y \in R$. It was well known that for a Noetherian ring, the set of associated primes is finite. In addition, if R is commutative, then any maximal element of the family of ideals $\Lambda=\{\operatorname{ann}(x) \mid 0 \neq x \in R\}$ is an associated prime (see [2], IV §1.1 Proposition 2). Since $\operatorname{ann}(0)=R$, an element $x \in R$ whose annihilator is a prime ideal is necessarily $\neq 0$.

Lemma 3.1. Let R be a ring and $e, f \in R$ be idempotents. Then ann $(e)=$ ann (f) if and only if $e=f$.
Proof. Suppose that $\operatorname{ann}(e)=\operatorname{ann}(f)$. Since $1-e \in \operatorname{ann}(e)=\operatorname{ann}(f)$ (resp., $1-f \in \operatorname{ann}(f)=\operatorname{ann}(e)), f=e f$ (resp., $e=e f$), and so $e=e f=f$. The converse is clear.

Theorem 3.2. Let R be an abelian I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap e R=(0)$, then the following are equivalent:
(1) e is primitive;
(2) $\operatorname{ann}(e)$ is a maximal element in $\Lambda=\{\operatorname{ann}(x) \mid 0 \neq x \in R\}$;
(3) ann(e) is a maximal ideal of R;
(4) ann(e) is a prime ideal of R.

Proof. (1) $\Rightarrow(2)$: Suppose that e is primitive. Let $\operatorname{ann}(e) \subseteq \operatorname{ann}(x)$ for any $\operatorname{ann}(x) \in \Lambda$. We observe that $x \notin I$. Indeed, since $1-e \in \operatorname{ann}(e) \subseteq \operatorname{ann}(x)$, $x=e x=x e$, and so if $x \in I$, then $x \in I \cap e R=(0)$ by assumption, i.e., $x=0$, a contradiction. Since R is abelian I-semiregular and $x \notin I$, there exists $y \in R \backslash I$ such that $(x y)^{2}=x y=y x \neq 0$ by Proposition 2.9. Since $x y=y x$, we have that $\operatorname{ann}(x) \subseteq \operatorname{ann}(x y)$. Let $f=x y$. Since $1-e \in \operatorname{ann}(e) \subseteq \operatorname{ann}(f), f=e f=f e$. Note that $e=e f+e(1-f)$ is a sum of two orthogonal central idempotents $e f$ and $e(1-f)$ of R. Assume that $e f=0$. Then $f \in \operatorname{ann}(e) \subseteq \operatorname{ann}(f) \in \Lambda$, and so $f^{2}=f=0$, a contradiction. Thus ef $\neq 0$. Since e is a primitive idempotent of R and $e f \neq 0, e(1-f)=0$, i.e., $e=e f$, yielding that $e=f$, and so $\operatorname{ann}(e)=\operatorname{ann}(x)$, which implies that $\operatorname{ann}(e)$ is a maximal element in Λ.
$(2) \Rightarrow(4)$: Suppose that $\operatorname{ann}(e)$ is a maximal element in $\Lambda=\{\operatorname{ann}(x) \mid$ $0 \neq x \in R\}$. Since $e \neq 0$, ann $(e) \neq R$. Let b, c be elements of R such that $b c \in \operatorname{ann}(e)$ and $c \notin \operatorname{ann}(e)$. Then it is clear that $e c=c e \neq 0$, and so $\operatorname{ann}(e c) \in \Lambda$. Since e is central, $\operatorname{ann}(e) \subseteq \operatorname{ann}(e c)$. Since $\operatorname{ann}(e)$ is a maximal element in $\Lambda, b \in \operatorname{ann}(e c)=\operatorname{ann}(e)$, hence $\operatorname{ann}(e)$ is a prime ideal of R.
$(4) \Rightarrow(1)$: Suppose that $\operatorname{ann}(e)$ is a prime ideal of R. Let $e=\alpha+\beta$ for some idempotents $\alpha, \beta \in R$ with $\alpha \beta=\beta \alpha=0$. Since α and β are central, we have that $(\alpha)(\beta)=(\alpha \beta)=(0)$ where (x) is a principal ideal of R generated by $x \in R$. Since $\operatorname{ann}(e)$ is prime and $(\alpha)(\beta)=(0) \subseteq \operatorname{ann}(e),(\alpha) \subseteq \operatorname{ann}(e)$ or $(\beta) \subseteq \operatorname{ann}(e)$, and so $\alpha \in \operatorname{ann}(e)$ or $\beta \in \operatorname{ann}(e)$. Thus $\alpha=\alpha e=0$ or $\beta=\beta e=0$, which implies that e is a primitive idempotent of R.
$(3) \Rightarrow(4):$ It is clear.
$(4) \Rightarrow(3)$: Suppose that $\operatorname{ann}(e)$ is a prime ideal of R. Let K be any ideal of R such that $\operatorname{ann}(e) \subsetneq K \subseteq R$. Then there exists some nonzero $x \in K \backslash a n n(e)$, i.e., $0 \neq e x \in R$. Note that $e x \notin I$ by assumption $I \cap e R=(0)$. Since R is I-semiregular and ex $\notin I$, there exists some $y \in R$ such that $(e x) y$ is a nonzero idempotent of R. Clearly, $\operatorname{ann}(e) \subseteq \operatorname{ann}(e x y) \in \Lambda$. Since $\operatorname{ann}(e)$ is a prime ideal of R (equivalently, $\operatorname{ann}(e)$ is a maximal element in Λ by the proof of $(1) \Leftrightarrow(4)$), $\operatorname{ann}(e)=\operatorname{ann}(e x y)$. By Lemma 3.1, $e=e x y$, i.e., $e(1-x y)=0$. Since e is central, $(e)(1-x y) \subseteq(e(1-x y))=(0) \subseteq \operatorname{ann}(e)$. Since $\operatorname{ann}(e)$ is a prime ideal of $R,(e) \subseteq \operatorname{ann}(e)$ or $(1-x y) \subseteq \operatorname{ann}(e)$, and so $e \in \operatorname{ann}(e)$ or $1-x y \in \operatorname{ann}(e)$. If $e \in \operatorname{ann}(e)$, then $e^{2}=e=0$, a contradiction. Hence $1-x y \in \operatorname{ann}(e) \subsetneq K$, and then $1=(1-x y)+x y \in K$, which implies that $K=R$. Therefore, $\operatorname{ann}(e)$ is a maximal ideal of R.

Corollary 3.3. Let R be an abelian I-semiregular ring for some ideal I of R. If $e \in R$ is a nonzero idempotent such that $I \cap e R=(0)$, then the following are equivalent:
(1) e is primitive;
(2) e is irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) \bar{e} is primitive in $\bar{R}=R / I$;
(6) ann(e) is a maximal element in $\Lambda=\{\operatorname{ann}(x) \mid 0 \neq x \in R\}$;
(7) ann(e) is a prime ideal of R;
(8) ann(e) is a maximal ideal of R.

Proof. It follows from Proposition 2.5 and Theorem 3.2.
Corollary 3.4. Let R be an abelian regular ring. If $e \in R$ is a nonzero idempotent, then the following are equivalent:
(1) e is primitive;
(2) e is irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) ann(e) is a maximal element in $\Lambda=\{\operatorname{ann}(x) \mid 0 \neq x \in R\}$;
(6) ann(e) is a prime ideal of R;
(7) ann(e) is a maximal ideal of R.

Proof. It follows from Corollary 3.3.
Theorem 3.5. Let R be an abelian I-semiregular ring for some ideal I of R and $E_{1}=\left\{e^{2}=e \in R \mid I \cap e R=(0)\right\}$ be a nonempty set. Suppose that R satisfies the ascending chain condition on annihilators of idempotents in E_{1}. Then we have the following:
(1) There exists at least one primitive idempotent of R.
(2) Any distinct primitive idempotents in E_{1} are orthogonal.
(3) The number of all primitive idempotents in E_{1} is finite.

Proof. (1) Let $\Lambda=\{\operatorname{ann}(x) \mid 0 \neq x \in R\}$ and $\Lambda_{1}=\left\{\operatorname{ann}(e) \in \Lambda \mid e \in E_{1}\right\}$. Clearly, $\left(\Lambda_{1}, \subseteq\right)$ is a partially ordered set under the set inclusion \subseteq. Take $\operatorname{ann}\left(e_{1}\right) \in \Lambda_{1}$. If $\operatorname{ann}\left(e_{1}\right)$ is a maximal element in Λ_{1}, then we will show that $\operatorname{ann}\left(e_{1}\right)$ is a maximal element in Λ. To show this, let $\operatorname{ann}\left(e_{1}\right) \subseteq \operatorname{ann}(x) \in \Lambda$ for any nonzero $x \in R$. We observe that $x \notin I$. Indeed, if $x \in I$, then $1-e_{1} \in \operatorname{ann}\left(e_{1}\right) \subseteq \operatorname{ann}(x)$, yielding that $x=e_{1} x=x e_{1} \in I \cap e_{1} R=(0)$, i.e., $x=0$, a contradiction. Since R is abelian I-semiregular and $x \notin I$, there exists $y \in R \backslash I$ such that $(x y)^{2}=x y=y x \neq 0$ by Proposition 2.9. Since $x y=y x$, $\operatorname{ann}(x) \subseteq \operatorname{ann}(x y)$. Let $f=x y$. We will show that $f \in E_{1}$, (equivalently, $I \cap f R=(0))$. Since $1-e_{1} \in \operatorname{ann}\left(e_{1}\right) \subseteq \operatorname{ann}(f), f=e_{1} f=f e_{1}$. Let $a \in I \cap f R$. Then $a=f r$ for some $r \in R$. Thus $a=f r=e_{1} f r=e_{1} a \in I \cap e_{1} R=(0)$, i.e., $a=0$, and so $I \cap f R=(0)$. Since $\operatorname{ann}\left(e_{1}\right)$ is a maximal in Λ_{1} and
$\operatorname{ann}\left(e_{1}\right) \subseteq \operatorname{ann}(f) \in \Lambda_{1}, \operatorname{ann}\left(e_{1}\right)=\operatorname{ann}(f)$. Therefore $\operatorname{ann}\left(e_{1}\right)=\operatorname{ann}(x)$, which implies that $\operatorname{ann}\left(e_{1}\right)$ is a maximal element in Λ, and so e_{1} is primitive by Theorem 3.2 as desired. If $\operatorname{ann}\left(e_{1}\right)$ is not a maximal element in Λ_{1}, we can take $\operatorname{ann}\left(e_{2}\right) \in \Lambda_{1}$ such that $\operatorname{ann}\left(e_{1}\right) \subsetneq \operatorname{ann}\left(e_{2}\right)$. If $\operatorname{ann}\left(e_{2}\right)$ is a maximal element in Λ_{1}, then e_{2} is primitive by the similar argument. Continuing in this way, we have the following chain in Λ_{1} :

$$
\operatorname{ann}\left(e_{1}\right) \subsetneq \operatorname{ann}\left(e_{2}\right) \subsetneq \operatorname{ann}\left(e_{3}\right) \subsetneq \cdots
$$

By assumption, there exists a positive integer k such that $\operatorname{ann}\left(e_{k}\right)=\operatorname{ann}\left(e_{j}\right)$ for all $j \geq k$, and so $a n n\left(e_{k}\right)$ is the upper bound of the chain. By Zorn's Lemma, there exists a maximal element $\operatorname{ann}(e)$ in Λ_{1}, yielding that e is primitive by the previous argument.
(2) Let $e, f \in E_{1}(e \neq f)$ be arbitrary primitive idempotents. By Theorem 3.2, ann (e) and $\operatorname{ann}(f)$ are maximal ideals of R. Assume that $e f \neq 0$. Then $\operatorname{ann}(e), \operatorname{ann}(f) \subseteq \operatorname{ann}(e f)$ and clearly $e f \in E_{1}$. Since $\operatorname{ann}(e)$ and $\operatorname{ann}(f)$ are maximal ideals of R and $\operatorname{ann}(e f) \neq R$, $\operatorname{ann}(e)=\operatorname{ann}(e f)=\operatorname{ann}(f)$, yielding that $e=e f=f$ by Lemma 3.1, a contradiction. Hence any distinct primitive idempotents in E_{1} are orthogonal.
(3) Let M_{1} be the set of all primitive idempotents of E_{1}. Then M_{1} is a nonempty set by (1). Assume that M_{1} is infinite. Let $f_{k}=\sum_{i=1}^{k} a_{i}(k \geq 1)$ for $a_{i} \in M_{1}$. Since M_{1} is orthogonal by (2), $f_{k} \in E_{1}(k \geq 1)$. Define a relation \leq on E_{1} by $e \leq f$ if $e=e f=f e$ for all $e, f \in E_{1}$. Clearly, $\left(E_{1}, \leq\right)$ is a partially ordered set with a partial ordering \leq. Consider the following chain in E_{1} :

$$
f_{1} \leq f_{2} \leq f_{3} \leq \cdots
$$

Then we also have the following chain of annihilators of idempotents of E_{1} :

$$
\operatorname{ann}\left(1-f_{1}\right) \subseteq \operatorname{ann}\left(1-f_{2}\right) \subseteq \operatorname{ann}\left(1-f_{3}\right) \subseteq \cdots
$$

Since the above chain has an ascending chain condition by assumption, there exists a positive integer n such that $\operatorname{ann}\left(1-f_{n}\right)=\operatorname{ann}\left(1-f_{k}\right)$ for all $k \geq n$, and so $1-f_{n}=1-f_{k}$ (i.e., $f_{n}=f_{k}$) for all $k \geq n$ by Lemma 3.1, which yields that $a_{k}=0$ for all $k \geq n$, a contradiction. Hence M_{1} is finite.

Corollary 3.6. Let R be an abelian regular ring. Suppose that R satisfies the ascending chain condition on annihilators of idempotents in R. Then we have the following:
(1) There exists at least one primitive idempotent of R.
(2) Any distinct primitive idempotents in R are orthogonal.
(3) The number of all primitive idempotents in R is finite.

Proof. It follows from Theorem 3.5.
We finally have a consequence of our observation as follows:
Theorem 3.7. Let R be an abelian regular ring with the ascending chain condition on annihilators of idempotents of R. Then we have the following:
(1) The unity 1 of R can be expressed a sum of a finite number primitive idempotents of R.
(2) Every idempotent can be expressed a sum of a finite number primitive idempotents of R.
(3) R is isomorphic to a direct product of a finite number of division rings.

Proof. (1) Let $M(R)$ be the set of all primitive idempotents of R. By Corollary 3.6, $M(R)$ is nonempty, finite and orthogonal. If $1 \in M(R)$, then we are done. Suppose that $1 \notin M(R)$. Then $1=e_{1}+b_{1}$ for some nontrivial idempotents $e_{1}, b_{1} \in R$. If $e_{1}, b_{1} \in M(R)$, then we are done. Suppose that $e_{1} \notin M(R)$ or $b_{1} \notin M(R)$ (say, $b_{1} \notin M(R)$). Then $b_{1}=e_{2}+b_{2}$ some nontrivial idempotents $e_{2}, b_{2} \in R$. Since $M(R)$ is finite, continuing in this way, 1 can be expressed a sum of a finite number of primitive idempotents of R.
(2) By (1), we have that $1=\sum_{i=1}^{n} e_{i}$ for some $e_{i} \in M(R)$. Let $a \in R$ be an arbitrary idempotent. Then $a=\sum_{i=1}^{n} a e_{i}$. Note that if $a e_{i} \neq 0$, then $a e_{i} \in M(R)$ by [4, Corollary 2.11]. Hence a can be expressed as a sum of finite number of primitive idempotents of R.
(3) It follows from (1) and Corollary 3.4.

References

[1] D. D. Anderson, V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), 2847-2852.
[2] N. Bourbaki, Commutative Algebra, Addison-Wesley, Paris, 1972.
[3] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
[4] J. Han, S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), 35513557.
[5] J. Han, Y. Lee, S. Park, Semicentral idempotents in a ring, J. Korean Math. Soc. 51 (2014), 463-472.
[6] J. Han, Y. Lee, S. Park, On idempotents in relation with regularity, J. Korean Math. Soc. 53 (2016), 217-232.
[7] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359-368.
[8] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
[9] W. K. Nicholson, Semiregular modules and rings, Can. J. Math. XXVIII (1976), 11051120.

Juncheol Han
Department of Mathematics Education, Pusan National University, Pusan 46277, Korea

E-mail address: jchan@pusan.ac.kr
Hyo-Seob Sim
Department of Applied Mathematics, Pukyong National University, Pusan 48513, Korea

E-mail address: hsim@pknu.ac.kr

