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I-SEMIREGULAR RINGS

Juncheol Han and Hyo-Seob Sim∗

Abstract. Let R be a ring with unity, and let I be an ideal of R. Then
R is called I-semiregular if for every a ∈ R there exists b ∈ R such that

ab is an idempotent of R and a− aba ∈ I. In this paper, basic properties

of I-semiregularity are investigated, and some equivalent conditions to the
primitivity of e are observed for an idempotent e of an I-semiregular ring

R such that I∩eR = (0). For an abelian regular ring R with the ascending

chain condition on annihilators of idempotents of R, it is shown that R is
isomorphic to a direct product of a finite number of division rings, as a

consequence of the observations.

1. Introduction

Throughout this paper all rings are associative with unity unless otherwise
specified. Let R be a ring and let E(R) be the set of all idempotents of R, let
J(R) denote the Jacobson radical of R, and let |S | denote the cardinality of
a subset S of R. Denote the ring of integers (modulo n) by Z (Zn). Use Q
to denote the field of rational numbers. A ring R is called reduced if R has no
nonzero nilpotent. A ring is called abelian if every idempotent is central. It is
easily checked that every reduced ring is abelian. An element a of a ring R is
called regular if there exists b ∈ R such that aba = a. A ring R is called von
Neumann regular (simply, regular) if every element of R is regular. In [9], an
element a of a ring R is called semiregular if it satisfies the following conditions
of Proposition 1.1.

Proposition 1.1. The following are equivalent for an element a of a ring R:
(1) There exists e2 = e ∈ aR such that (1− e)a ∈ J(R).
(2) There exists e2 = e ∈ Ra such that a(1− e) ∈ J(R).
(3) There exists a regular element b ∈ R such that a− b ∈ J(R).
(4) There exists b ∈ R with bab = b and a− aba ∈ J(R).
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A ring R is semiregular if every element of R is semiregular. Note that R
is regular if and only if R is semiregular for a semisimple ring R (i.e., a ring R
with J(R) = (0)). We will generalize the concept of semiregularity of a ring.
An element a of a ring R is called I-semiregular for some ideal I of R if there
exists b ∈ R such that ab ∈ E(R) and a − aba ∈ I. Obviously, a regular ring
is (0)-semiregular and a semiregular ring is J(R)-semiregular. A ring is a I-
semiregular ring if each of its elements is I-semiregular. A ring R is called right
(resp., left) attaching-idempotent if for a ∈ R there exists 0 6= b ∈ R (resp.,
0 6= c ∈ R) such that ab (resp., ca) is an idempotent. R is called attaching-
idempotent if it is both left and right attaching idempotent. It is shown in [6]
that the attaching idempotent property is not left-right symmetry, and finite
ring rings are attaching idempotent. For any proper ideal I of a ring R, we have
the following implications:

R is regular ⇒ R is semiregular ⇒ R is I-semiregular ⇒ R is attaching-
idempotent and R/I is regular.

The above implications are strict by the following examples:

Example 1.2. (1) Z12 is not regular but is semiregular.
(2) Let R = Q × Z and I = {0} × Z be an ideal of R. Then J(R) = (0)

and R is not regular (equivalently, R is not semiregular). To show that R
is I-semiregular, let a = (x, y) ∈ R be an arbitrary element. if a ∈ I, then
clearly, (0, 0) ∈ aR and a − a(0, 0)a = a ∈ I. If a /∈ I, then x 6= 0. Take
an idempotent e = (1, 0) ∈ R. Then e = (1.0) = (x, y)(x−1, 0) ∈ aR and
(1 − e)a = a − ea = (0, y) ∈ I, yielding that a is I-semiregular, and so R is
I-semiregular.

(3) Consider an ideal K = {0} × 2Z of R = Q × Z. Then R/K ' Q ×
Z2 is regular. Clearly, R is attaching-idempotent. Observe that R is not K-
semiregular. Indeed, assume that R is K-semiregular. Take a = (1, 3) ∈ R.
Then there exists b = (x, y) ∈ R such that (ab)2 = ab and a − aba ∈ K.
By (ab)2 = ab, we have that b = (0, 0) or b = (1, 0). If b = (0, 0), then
a − aba = a /∈ K, a contradiction. If b = (1, 0), then a − aba = (0, 3) /∈ K, a
contradiction. Hence R is not K-semiregular.

In section 2, the equivalent conditions of I-semiregularity are investigated
with some basic propverties, and it is shown that if e is an idempotent of I-
semiregular ring R such that I ∩ eR = (0), then e is primitive if and only if e
is right (left)irreducible if and only if eRe is a division ring if and only if e is
local; e is primitive if and only if e is primitive in R = R/I.

In Section 3, it is shown that for an abelian I-semiregular ring R if e is
an idempotent of R such that I ∩ eR = (0), then e is primitive if and only
if ann(e) is a maximal ideal of R if and only if ann(e) is a prime ideal of R.
It is also shown that for an abelian I-semiregular ring having a nonempty set
E1 = {e2 = e ∈ R | I ∩ eR = (0)}, if E1 satisfies the ascending chain condition
on annihilators of idempotents in E1, then there exists at least one primitive
idempotent of R, any distinct primitive idempotents in E1 are orthogonal and
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the number of primitive idempotents in E1 is finite. In particular, for an abelian
ring R satisfying the ascending chain condition on annihilators of idempotents
of R, as a consequence of the above observations, R is isomorphic to a direct
product of a finite number of division rings.

2. I-semiregular rings

In this section, we will begin with the following proposition.

Proposition 2.1. Let I be an ideal of a ring R. Then the following are equiv-
alent for an I-semiregular element a of R:

(1) There exists e2 = e ∈ aR such that (1− e)a ∈ I.
(2) There exists e2 = e ∈ Ra such that a(1− e) ∈ I.
(3) There exists b ∈ R such that bab = b and a− aba ∈ I.
(4) There exists b ∈ R such that abab = ab and a− aba ∈ I.
(5) There exists c ∈ R such that caca = ca and a− aca ∈ I.

Proof. (1)⇒ (3) : Suppose that there exists e2 = e ∈ aR such that (1−e)a ∈ I.
Let e = ax for some x ∈ R. Then axax = ax and (1 − e)a = a − axa ∈ I.
Let b = xax. Then bab = (xax)a(xax) = x(ax) = b. Since (a − axa)xa =
axa− aba ∈ I, a− aba = (a− axa) + (axa− aba) ∈ I.

(3) ⇒ (4) : It is clear.
(4) ⇒ (1) : Suppose that there exists b ∈ R such that abab = ab and

a−aba ∈ I. Let e = ab. Then e2 = e ∈ aR and a−aba = a− ea = (1− e)a ∈ I.
(4)⇒ (5): Suppose that there exists b ∈ R such that abab = ab and a−aba ∈

I. Let c = bab. Then caca = (baba)(baba) = b(ab)a = ca. Since a − aba ∈ I,
(a− aba)ba = aba− aca ∈ I, and so a− aca = (a− aba) + (aba− aca) ∈ I.

(5) ⇒ (4) : It follows from the similar argument given in the proof of (4) ⇒
(5).

(2) ⇔ (3) ⇔ (5) : It follows from the similar argument given in the proof of
(1) ⇔ (3) ⇔ (4). �

A ring is a I-semiregular ring if each of its element is I-semiregular.

Corollary 2.2. Let I be an ideal of a ring R. Then R is I-semiregular if and
only if for any a ∈ R\ I, there exists an element b ∈ R such that (ab)2 = ab 6= 0
and a− aba ∈ I.

Proof. Suppose that R is I-semiregular. Since R is I-semiregular, for a ∈ R \ I,
there exists b ∈ R such that (ab)2 = ab and a− aba ∈ I. If ab = 0, then a ∈ I,
a contradiction, and so ab 6= 0. The converse is clear. �

Corollary 2.3. Let R be a ring. Then we have the following:
(1) R is regular if and only if R is (0)-semiregular.
(2) For any ideals I,K of R such that I ⊆ K, I-semiregular is K-semiregular.
(3) If R is I-semiregular for an ideal I of R, then I ⊇ J(R).
(4) If R is I-semiregular for an ideal I of R lying in J(R), then I = J(R).
(5) If R is semiregular, then R is I-semiregular for any ideal I ⊇ J(R) of R.
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Proof. (1). It follows from Proposition 2.1.
(2). It is clear.
(3) Since R is I-semiregular, R/I is regular by Proposition 2.1. Hence 0 =

J(R/I) = J(R)/I, and then I ⊇ J(R).
(4) It follows form (3).
(5) It follows from (2) and (3). �

Note that the converse of (2) of Corollary 2.3 may not be true by consid-
ering Z12. We can easily check that Z12 is semiregular, and so Z12 is both
I-semiregular and K-semiregular where I = 2Z12,K = 3Z12, even though
I * K,K * I.

Proposition 2.4. Let I be an ideal of a ring R. Then we have the following.
(1) If a ∈ R is I-semiregular, then there exists a regular element b ∈ R such

that a− b ∈ I.
(2) If b = bαb ∈ R for some α ∈ R (i.e., b is regular) such that a− b ∈ I and

I ∩ eR = (0) where e = bα, then a ∈ R is I-semiregular.

Proof. (1) Since a ∈ R is I-semiregular, there exists e2 = e ∈ aR such that
(1− e)a ∈ I by Proposition 2.1. Let e = ax for some x ∈ R. Let b = ea. Then
a− ea = a− b ∈ I and b = eeb = e(ax)b = bxb, yielding that b ∈ R is a regular
element of R.

(2) Since e2 = e = bα and a − b ∈ I, a − ea = (1 − e)(a − b) ∈ I. Let
x = e− aα ∈ R. Then x = (b− a)α ∈ I. Since ex ∈ I ∩ eR = (0), ex = 0, and
so e = eaα = eaαe. Let β = aαe. Then (β)2 = (aαe)(aαe) = (aα)(eaαe) =
aαe = β ∈ aR. Note that e− β = e− aαe = (1− aα)e = (1 + x− e)e = xe ∈ I.
Thus a − βa = (a − ea) + (ea − βa) = (a − ea) + (e − β)a ∈ I, which implies
that a is I-semiregular by Proposition 2.1 as desired. �

We say that an idempotent e ( 6= 0) is right (resp., left) irreducible if eR
(resp., Re) is a minimal right (resp., left) ideal of R. Recall that an idempotent
e of a ring R is local if eRe is a local ring. In [9], Nicholson has shown that in
a semiregular ring every primitive idempotent is local.

Proposition 2.5. Let R be an I-semiregular ring for some ideal I of R. If
e ∈ R is a nonzero idempotent such that I ∩ eR = (0), then the following are
equivalent:

(1) e is primitive;
(2) e is right (resp. left) irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) e is primitive in R = R/I.

Proof. (3) ⇒ (4) ⇒ (1) : It is clear.
(1) ⇒ (2) : Suppose that e is primitive. Let K be any nonzero right ideal of

eR. Take a nonzero element a ∈ K. Since R is I-semiregular, there exists an
element b ∈ R such that (ab)2 = ab and a − aba ∈ I by Proposition 2.1. Let
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e1 = ab, which is a nonzero idempotent by assumption that I ∩ eR = (0). Thus
e1 ∈ eR, and so e1 = ee1. Then (e1e) and (e − e1e) are idempotents which
are orthogonal. Since e = e1e + (e − e1e) is a sum of orthogonal idempotents
and e is primitive, e1e = 0 or e − e1e = 0. Assume that e1e = 0. Then
e1 ∈ e1K ⊆ e1eR = 0, yielding that e1 = 0, a contradiction. Hence we have
that e − e1e = 0, i.e., e = e1e. Since e = e1e ∈ e1R ⊆ K, eR ⊆ K, and so
eR = K, which implies that eR is a minimal right ideal of R. Hence e is right
irreducible idempotent of R. Similarly, e is a left irreducible idempotent of R.

(2) ⇒ (3) : It follows from [8, Proposition 21.16].
(4) ⇒ (5) : Suppose that e is local. Then eRe/J(eRe), (which is isomorphic

to eRe) is a division ring. Thus e is primitive in R/I.
(5)⇒ (1) : Suppose that e is primitive in R/I. Let e = e1+e2 be a sum of two

orthogonal idempotents e1, e2 ∈ R. Assume that e1, e2 6= 0. Then e = e1 + e2
is a sum of two orthogonal idempotents e1, e2 of R. Since e is primitive in
R, e1 = 0 or e2 = 0, i.e., e1 ∈ I or e2 ∈ I. Clearly, e1R, e2R ⊆ eR, and so
I ∩ e1R, I ∩ e2 ⊆ I ∩ eR = (0), which yields that e1, e2 /∈ I, a contradiction.
Hence e1 = 0 or e2 = 0, and so e is primitive in R. �

Proposition 2.6. Let I be an ideal of a ring R. Then we have the following:
(1) If R is I-semiregular, then R/I is regular and idempotents can be lifted

modulo I.
(2) Let a = a+ I ∈ R/I be regular such that a− aba ∈ I for some b ∈ R. If

idempotent ab ∈ R/I can be lifted to an idempotent e ∈ R modulo I such that
I ∩ eR = (0), then a ∈ R is I-semiregular.

Proof. (1) If R is I-semiregular, then R/I is regular by Proposition 2.1. Let
a ∈ R with a2 − a ∈ I. Since a is I-semiregular, there exists b ∈ R such that
(ab)2 = ab and a − aba ∈ I. Let e = ab. Then e2 = e ∈ aR and a − ea ∈ I.
Let f = e + ea(1 − e) ∈ R. Then f2 = f . Since e − ae = (a − a2)b ∈ I,
f − a = e(e− ae) + (ea− a) ∈ I.

(2) Let x = ab−e ∈ I. Since ex ∈ I∩eR = (0), ex = 0, and so e = eab = eabe.
Let β = abe. Then β2 = (abe)(abe) = ab(eabe) = abe = β ∈ aR. On the other
hand, we have that aba − βa = ab(1 − e)a = (x + e)(1 − e)a = x(1 − e)a ∈ I,
and then a− βa = (a− aba) + (aba− βa) ∈ I, and so a ∈ R is I-semiregular by
Proposition 2.1. �

Let I,K be ideals of a ring R such that I ⊆ K. An element a ∈ K is called
I-semiregular if there exists e2 = e ∈ aK such that (1− e)a ∈ I.

Proposition 2.7. Let I,K be ideals of a ring R such that I ⊆ K. Then the
following are equivalent for an I-semiregular element a of K:

(1) There exists e2 = e ∈ aK such that (1− e)a ∈ I.
(2) There exists e2 = e ∈ Ka such that a(1− e) ∈ I.
(3) There exists b ∈ K such that bab = b and a− aba ∈ I.
(4) There exists b ∈ K such that abab = ab and a− aba ∈ I.
(5) There exists c ∈ K such that caca = ca and a− aca ∈ I.
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Proof. It follows from the similar argument given in the proof of Proposition
2.1. �

Proposition 2.8. Let I, J,K be ideals of a ring R such that I ⊆ J ⊆ K. If K
is I-semiregular, then K/J is regular and J is I-semiregular.

Proof. Let a = a+J ∈ K/J be arbitrary. Since K is I-semiregular, there exists
b ∈ K such that (ab)2 = ab and a− aba ∈ I. Since a− aba ∈ I ⊆ J , a = aba in
K/J , and so K/J is regular. Next, let c ∈ J be arbitrary. By Proposition2.1,
there exists e2 = e ∈ cR such that c− ec ∈ I. Then e = cr for some r ∈ R, and
so e = ee = c(rcr) ∈ cJ , which implies that J is I-semiregular. �

Note that the converse of Proposition 2.8 need not be true, as shown in
Example 1.2 (3): Let K = {0} × 2Z be an ideal of R = Q × Z. Then R/K '
Q×Z2 is regular and K is clearly K-semiregular. But R is not K-semiregular.

Proposition 2.9. Let R be an I-semiregular ring for some proper ideal I of R.
Then the following are equivalent:

(1) R is abelian;
(2) For each 0 6= x ∈ R \ I, there exists y ∈ R \ I such that (xy)2 = xy =

yx 6= 0;
(3) xy = yx whenever (xy)2 = xy for x, y ∈ R \ I.

Proof. (1) ⇒ (2) : Since R is I-semiregular, for each 0 6= x ∈ R \ I there
exists z ∈ R such that (xz)2 = xz 6= 0 and x − xzx ∈ I by Corollary 2.2. If
z ∈ I, then x = (x − xzx) + xzx ∈ I, a contradiction, and so z ∈ R \ I. Let
y = zxz. Then xy = x(zxz) = xz and yxyx = (zxz)x(zxz)x = zxzx = yx
are idempotents. Since R is abelian, xy, yx are central idempotents, and so
xy = (xy)(xy) = x(yx)y = (yx)xy = y(xy)x = yx, as desired. Observe that
y /∈ I. Indeed, if y ∈ I, then xy = xz ∈ I, and so xzx ∈ I, and then
x = (x− xzx) + xzx ∈ I, a contradiction,

(2) ⇒ (3) : Suppose that for each 0 6= x ∈ R \ I, there exists y ∈ R \ I
such that (xy)2 = xy = yx 6= 0. We observe that R is reduced (i.e., R has no
nonzero nilpotent). Indeed, assume that there exists 0 6= x such that x2 = 0.
Then there exists y ∈ R \ I such that (xy)2 = xy = yx 6= 0, and then xy =
x2y2 = 0, a contradiction. Let (xy)2 = xy for x, y ∈ R \ I. Since R is reduced,
xy(1 − xy) = 0 implies that x(1 − xy)y = yx(1 − xy) = y(1 − xy)x = 0 by
[[1], Theorem 1.3], entailing xy = xxyy, yx = yxxy, and yx = (yx)2. Since
reduced ring is clearly abelian, xy and yx are central idempotents of R. Thus
xy = (xy)(xy) = x(yx)y = (yx)(xy) = yx.

(3) ⇒ (1) : Suppose that xy = yx whenever (xy)2 = xy for x, y ∈ R \ I.
Let e ∈ R be any nonzero idempotent of R. If e /∈ I, then eu, u−1 ∈ R \ I for
any unit u ∈ R. By assumption, e2 = e = (eu)u−1 = u−1(eu), and so ue = eu,
which yields that e is central by [[5], Corollary 2.2]. If e ∈ I, then 1 − e /∈ I.
By the above argument, (1 − e)u = u(1 − e), yields that eu = ue, and so e is
central. �
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Corollary 2.10. The following are equivalent for a regular ring R:
(1) R is abelian;
(2) For each 0 6= x ∈ R, there exists y ∈ R such that (xy)2 = xy = yx 6= 0;
(3) xy = yx whenever (xy)2 = xy for x, y ∈ R.

Proof. It follows from Proposition 2.9. �

Theorem 2.11. Let I be an ideal of a ring R. If R is abelian I-semiregular,
then the center of R is I-semiregular.

Proof. Let S be the center of R, and let x ∈ S. Since R is abelian I-semiregular,
there exists y ∈ R such that xyxy = xy = yx and x−xyx ∈ I by Proposition 2.1
and Proposition 2.9. Let z = yxy. Then xz = x(yxy) = xy = yx = yxyx = zx,
and so xzxz = xz = zx. To show z ∈ S, let r ∈ R be arbitrary. Then
rz = r(yxy) = yxry = yrxy = yxyr = zr because xy = yx are central and
x ∈ S. Clearly, x− xzx = x− xyx ∈ I, yielding that S is I-semiregular. �

We say that a ring R (6= 0) is indecomposable if R is not a direct sum of
two nonzero ideals. This is the case if and only if R has no nontrivial central
idempotents. The following is similar to [3, Corollary 1.15].

Corollary 2.12. Let R be an abelian I-semiregular ring for some proper ideal
I of R. Then R is indecomposable (as a ring) if and only if its center is a field.

Proof. Suppose that R is indecomposable. Let S be the center of R and let
0 6= x ∈ S be arbitrary. By Theorem 2.11, xzxz = xz and x−xzx ∈ I for some
z ∈ S. Note that we can take z 6= 0. Indeed, assuming that xz = 0 for all z ∈ S,
then x ∈ I, and so 1 ∈ S ⊆ I, a contradiction. Thus xz is a nonzero central
idempotent of R. Since R is abelian I-semiregular, xz = zx by Proposition 2.9.
Since R is indecomposable, xz = 1. Therefore, S is a field. The converse is
clear. �

3. Idempotents of abelian I-semiregular rings

Recall that a prime ideal P of a ring R is an associated prime if P = ann(y)
for some y ∈ R. It was well known that for a Noetherian ring, the set of
associated primes is finite. In addition, if R is commutative, then any maximal
element of the family of ideals Λ = {ann(x) | 0 6= x ∈ R} is an associated prime
(see [2], IV §1.1 Proposition 2). Since ann(0) = R, an element x ∈ R whose
annihilator is a prime ideal is necessarily 6= 0.

Lemma 3.1. Let R be a ring and e, f ∈ R be idempotents. Then ann(e) =
ann(f) if and only if e = f .

Proof. Suppose that ann(e) = ann(f). Since 1 − e ∈ ann(e) = ann(f) (resp.,
1 − f ∈ ann(f) = ann(e)), f = ef (resp., e = ef), and so e = ef = f . The
converse is clear. �
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Theorem 3.2. Let R be an abelian I-semiregular ring for some ideal I of R.
If e ∈ R is a nonzero idempotent such that I ∩ eR = (0), then the following are
equivalent:

(1) e is primitive;
(2) ann(e) is a maximal element in Λ = {ann(x) | 0 6= x ∈ R};
(3) ann(e) is a maximal ideal of R;
(4) ann(e) is a prime ideal of R.

Proof. (1) ⇒ (2) : Suppose that e is primitive. Let ann(e) ⊆ ann(x) for any
ann(x) ∈ Λ. We observe that x /∈ I. Indeed, since 1 − e ∈ ann(e) ⊆ ann(x),
x = ex = xe, and so if x ∈ I, then x ∈ I∩eR = (0) by assumption, i.e., x = 0, a
contradiction. Since R is abelian I-semiregular and x /∈ I, there exists y ∈ R\I
such that (xy)2 = xy = yx 6= 0 by Proposition 2.9. Since xy = yx, we have that
ann(x) ⊆ ann(xy). Let f = xy. Since 1− e ∈ ann(e) ⊆ ann(f), f = ef = fe.
Note that e = ef + e(1 − f) is a sum of two orthogonal central idempotents
ef and e(1 − f) of R. Assume that ef = 0. Then f ∈ ann(e) ⊆ ann(f) ∈ Λ,
and so f2 = f = 0, a contradiction. Thus ef 6= 0. Since e is a primitive
idempotent of R and ef 6= 0, e(1− f) = 0, i.e., e = ef , yielding that e = f , and
so ann(e) = ann(x), which implies that ann(e) is a maximal element in Λ.

(2) ⇒ (4) : Suppose that ann(e) is a maximal element in Λ = {ann(x) |
0 6= x ∈ R}. Since e 6= 0, ann(e) 6= R. Let b, c be elements of R such
that bc ∈ ann(e) and c /∈ ann(e). Then it is clear that ec = ce 6= 0, and so
ann(ec) ∈ Λ. Since e is central, ann(e) ⊆ ann(ec). Since ann(e) is a maximal
element in Λ, b ∈ ann(ec) = ann(e), hence ann(e) is a prime ideal of R.

(4) ⇒ (1) : Suppose that ann(e) is a prime ideal of R. Let e = α + β for
some idempotents α, β ∈ R with αβ = βα = 0. Since α and β are central, we
have that (α)(β) = (αβ) = (0) where (x) is a principal ideal of R generated
by x ∈ R. Since ann(e) is prime and (α)(β) = (0) ⊆ ann(e), (α) ⊆ ann(e)
or (β) ⊆ ann(e), and so α ∈ ann(e) or β ∈ ann(e). Thus α = αe = 0 or
β = βe = 0, which implies that e is a primitive idempotent of R.

(3)⇒ (4) : It is clear.
(4)⇒ (3) : Suppose that ann(e) is a prime ideal of R. Let K be any ideal of

R such that ann(e) ( K ⊆ R. Then there exists some nonzero x ∈ K \ ann(e),
i.e., 0 6= ex ∈ R. Note that ex /∈ I by assumption I ∩ eR = (0). Since R is
I-semiregular and ex /∈ I, there exists some y ∈ R such that (ex)y is a nonzero
idempotent of R. Clearly, ann(e) ⊆ ann(exy) ∈ Λ. Since ann(e) is a prime ideal
of R (equivalently, ann(e) is a maximal element in Λ by the proof of (1)⇔ (4)),
ann(e) = ann(exy). By Lemma 3.1, e = exy, i.e., e(1 − xy) = 0. Since e is
central, (e)(1−xy) ⊆ (e(1−xy)) = (0) ⊆ ann(e). Since ann(e) is a prime ideal
of R, (e) ⊆ ann(e) or (1− xy) ⊆ ann(e), and so e ∈ ann(e) or 1− xy ∈ ann(e).
If e ∈ ann(e), then e2 = e = 0, a contradiction. Hence 1 − xy ∈ ann(e) ( K,
and then 1 = (1− xy) + xy ∈ K, which implies that K = R. Therefore, ann(e)
is a maximal ideal of R. �
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Corollary 3.3. Let R be an abelian I-semiregular ring for some ideal I of R.
If e ∈ R is a nonzero idempotent such that I ∩ eR = (0), then the following are
equivalent:

(1) e is primitive;
(2) e is irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) e is primitive in R = R/I;
(6) ann(e) is a maximal element in Λ = {ann(x) | 0 6= x ∈ R};
(7) ann(e) is a prime ideal of R;
(8) ann(e) is a maximal ideal of R.

Proof. It follows from Proposition 2.5 and Theorem 3.2. �

Corollary 3.4. Let R be an abelian regular ring. If e ∈ R is a nonzero idem-
potent, then the following are equivalent:

(1) e is primitive;
(2) e is irreducible;
(3) eRe is a division ring;
(4) e is local;
(5) ann(e) is a maximal element in Λ = {ann(x) | 0 6= x ∈ R};
(6) ann(e) is a prime ideal of R;
(7) ann(e) is a maximal ideal of R.

Proof. It follows from Corollary 3.3. �

Theorem 3.5. Let R be an abelian I-semiregular ring for some ideal I of R
and E1 = {e2 = e ∈ R | I ∩ eR = (0)} be a nonempty set. Suppose that R
satisfies the ascending chain condition on annihilators of idempotents in E1.
Then we have the following:

(1) There exists at least one primitive idempotent of R.
(2) Any distinct primitive idempotents in E1 are orthogonal.
(3) The number of all primitive idempotents in E1 is finite.

Proof. (1) Let Λ = {ann(x) | 0 6= x ∈ R} and Λ1 = {ann(e) ∈ Λ | e ∈ E1}.
Clearly, (Λ1,⊆) is a partially ordered set under the set inclusion ⊆. Take
ann(e1) ∈ Λ1. If ann(e1) is a maximal element in Λ1, then we will show that
ann(e1) is a maximal element in Λ. To show this, let ann(e1) ⊆ ann(x) ∈ Λ
for any nonzero x ∈ R. We observe that x /∈ I. Indeed, if x ∈ I, then
1 − e1 ∈ ann(e1) ⊆ ann(x), yielding that x = e1x = xe1 ∈ I ∩ e1R = (0), i.e.,
x = 0, a contradiction. Since R is abelian I-semiregular and x /∈ I, there exists
y ∈ R \ I such that (xy)2 = xy = yx 6= 0 by Proposition 2.9. Since xy = yx,
ann(x) ⊆ ann(xy). Let f = xy. We will show that f ∈ E1, (equivalently,
I∩fR = (0)). Since 1−e1 ∈ ann(e1) ⊆ ann(f), f = e1f = fe1. Let a ∈ I∩fR.
Then a = fr for some r ∈ R. Thus a = fr = e1fr = e1a ∈ I ∩ e1R = (0),
i.e., a = 0, and so I ∩ fR = (0). Since ann(e1) is a maximal in Λ1 and
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ann(e1) ⊆ ann(f) ∈ Λ1, ann(e1) = ann(f). Therefore ann(e1) = ann(x),
which implies that ann(e1) is a maximal element in Λ, and so e1 is primitive by
Theorem 3.2 as desired. If ann(e1) is not a maximal element in Λ1, we can take
ann(e2) ∈ Λ1 such that ann(e1) ( ann(e2). If ann(e2) is a maximal element
in Λ1, then e2 is primitive by the similar argument. Continuing in this way, we
have the following chain in Λ1:

ann(e1) ( ann(e2) ( ann(e3) ( · · ·

By assumption, there exists a positive integer k such that ann(ek) = ann(ej)
for all j ≥ k, and so ann(ek) is the upper bound of the chain. By Zorn’s Lemma,
there exists a maximal element ann(e) in Λ1, yielding that e is primitive by the
previous argument.

(2) Let e, f ∈ E1 (e 6= f) be arbitrary primitive idempotents. By Theorem
3.2, ann(e) and ann(f) are maximal ideals of R. Assume that ef 6= 0. Then
ann(e), ann(f) ⊆ ann(ef) and clearly ef ∈ E1. Since ann(e) and ann(f) are
maximal ideals of R and ann(ef) 6= R, ann(e) = ann(ef) = ann(f), yielding
that e = ef = f by Lemma 3.1, a contradiction. Hence any distinct primitive
idempotents in E1 are orthogonal.

(3) Let M1 be the set of all primitive idempotents of E1. Then M1 is a

nonempty set by (1). Assume that M1 is infinite. Let fk =
∑k

i=1 ai (k ≥ 1) for
ai ∈ M1. Since M1 is orthogonal by (2), fk ∈ E1 (k ≥ 1). Define a relation ≤
on E1 by e ≤ f if e = ef = fe for all e, f ∈ E1. Clearly, (E1,≤) is a partially
ordered set with a partial ordering ≤. Consider the following chain in E1:

f1 ≤ f2 ≤ f3 ≤ · · · .

Then we also have the following chain of annihilators of idempotents of E1:

ann(1− f1) ⊆ ann(1− f2) ⊆ ann(1− f3) ⊆ · · · .

Since the above chain has an ascending chain condition by assumption, there
exists a positive integer n such that ann(1 − fn) = ann(1 − fk) for all k ≥ n,
and so 1− fn = 1− fk (i.e., fn = fk) for all k ≥ n by Lemma 3.1, which yields
that ak = 0 for all k ≥ n, a contradiction. Hence M1 is finite. �

Corollary 3.6. Let R be an abelian regular ring. Suppose that R satisfies the
ascending chain condition on annihilators of idempotents in R. Then we have
the following:

(1) There exists at least one primitive idempotent of R.
(2) Any distinct primitive idempotents in R are orthogonal.
(3) The number of all primitive idempotents in R is finite.

Proof. It follows from Theorem 3.5. �

We finally have a consequence of our observation as follows:

Theorem 3.7. Let R be an abelian regular ring with the ascending chain con-
dition on annihilators of idempotents of R. Then we have the following:
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(1) The unity 1 of R can be expressed a sum of a finite number primitive
idempotents of R.

(2) Every idempotent can be expressed a sum of a finite number primitive
idempotents of R.

(3) R is isomorphic to a direct product of a finite number of division rings.

Proof. (1) Let M(R) be the set of all primitive idempotents of R. By Corollary
3.6, M(R) is nonempty, finite and orthogonal. If 1 ∈M(R), then we are done.
Suppose that 1 /∈ M(R). Then 1 = e1 + b1 for some nontrivial idempotents
e1, b1 ∈ R. If e1, b1 ∈ M(R), then we are done. Suppose that e1 /∈ M(R) or
b1 /∈ M(R) (say, b1 /∈ M(R)). Then b1 = e2 + b2 some nontrivial idempotents
e2, b2 ∈ R. Since M(R) is finite, continuing in this way, 1 can be expressed a
sum of a finite number of primitive idempotents of R.

(2) By (1), we have that 1 =
∑n

i=1 ei for some ei ∈ M(R). Let a ∈ R
be an arbitrary idempotent. Then a =

∑n
i=1 aei. Note that if aei 6= 0, then

aei ∈M(R) by [4, Corollary 2.11]. Hence a can be expressed as a sum of finite
number of primitive idempotents of R.

(3) It follows from (1) and Corollary 3.4. �
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