East Asian Math. J. Vol. 36 (2020), No. 3, pp. 331–335 http://dx.doi.org/10.7858/eamj.2020.021



## CONJUGATING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS

Wei Zhou  $^1$  and Goansu Kim  $^2$ 

ABSTRACT. We consider HNN extensions  $\langle B, t: t^{-1}Ht = K \rangle$ , where H, K are in the center of B. We show that conjugating automorphisms of those HNN extensions are inner if B satisfies certain conditions.

## 1. Introduction

An automorphism  $\alpha$  of a group G is called a *conjugating* (or class-preserving, or point-wise inner) *automorphism* if, for each  $g \in G$ ,  $\alpha(g)$  and g are conjugate in G. Clearly inner automorphisms are conjugating automorphisms. But there exist some groups admitting conjugating automorphisms which are not inner (see [3, 10, 11]).

**Definition 1** (Grossman [5]). A group G has Property A if, for each conjugating automorphism  $\alpha$  of G, there exists a single element  $k \in G$  such that  $\alpha(g) = k^{-1}gk$  for all  $g \in G$ .

For example, Grossman [5] proved that free groups and fundamental groups of compact orientable surfaces have Property A. She also proved that outer automorphism groups of finitely generated conjugacy separable groups with Property A are residually finite. Hence outer automorphism groups of free or surface groups are residually finite. In this direction, it was shown that outer automorphism groups of some Fuchsian groups [1, 9], most of Seifert 3-manifold groups [2] and certain 1-relator groups [6, 7] are residually finite.

In this paper we show that certain HNN extension

$$G = \langle B, t : t^{-1}Ht = K \rangle$$

has Property A (Theorem 2.4), when H, K are in the center of B.

©2020 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received Jaunary 9, 2020; Accepted March 18, 2020.

<sup>2010</sup> Mathematics Subject Classification. 20E26, 20E06, 20E36, 20F10.

Key words and phrases. HNN extensions, class-preserving automorphisms, residually finite, conjugacy separable, nilpotent groups.

<sup>&</sup>lt;sup>1</sup>The first author gratefully acknowledges the support by National Natural Science Foundation of China (Grant No. 11971391).

<sup>&</sup>lt;sup>2</sup>This work was supported by the 2018 Yeungnam University Research Grant.

<sup>&</sup>lt;sup>2</sup>Corresponding author.

Throughout this paper we use standard notation and terminology. If  $g \in G$ ,  $\operatorname{Inn}_g$  denotes the inner automorphism of G induced by g.  $x \sim_G y$  means that x and y are conjugate in G, otherwise  $x \not\sim_G y$ . We use Z(G) to denote the center of G.

We shall make extensive use of the following result by D. J. Collins.

**Theorem 1.1** (Collins [4]). Let x and y be cyclically reduced elements of the HNN-extension  $G = \langle B, t : t^{-1}Ht = K \rangle$ . Suppose that  $x \sim_G y$ . Then ||x|| = ||y||, and one of the following holds.

(1) ||x|| = ||y|| = 0 and there is a finite sequence  $z_1, z_2, \ldots, z_m$  of elements in  $H \cup K$  such that  $x \sim_B z_1 \sim_{B,t^*} z_2 \sim_{B,t^*} \cdots \sim_{B,t^*} z_m \sim_B y$ , where  $u \sim_{B,t^*} v$  means one of: (i)  $u \sim_B v$ , or (ii)  $u \in H$  and  $v = t^{-1}ut(\in K)$ , or (iii)  $u \in K$  and  $v = tut^{-1}(\in H)$ .

(2)  $||x|| = ||y|| \ge 1$  and  $y \sim_{H \cup K} x^*$  where  $x^*$  is a cyclic permutation of x.

## 2. Main results

Remark 1. [12] Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  be an HNN extension of a base group B. Then every element  $g \in G$  can be expressed as a normal form ([8], p.181),

$$g = a_0 t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} a_n$$
, where  $\epsilon_i = \pm 1$  and  $a_i \in B$ ,

satisfying the following:

(i)  $a_n$  is an arbitrary element of the base group B,

(ii) if  $\epsilon_i = -1$ , then  $a_{i-1}$  is a representative of a coset of K in B,

(iii) if  $\epsilon_i = 1$ , then  $a_{i-1}$  is a representative of a coset of H in B, and

(iv) there is no consecutive subsequence  $t^{\epsilon} \ 1 \ t^{-\epsilon}$ .

In this note, we mean that a cyclically reduced element  $g \in G$  is either  $g \in B$ or  $g = t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} a_n$ , where  $t^{\epsilon_i} a_i \cdots t^{\epsilon_n} a_n t^{\epsilon_1} a_1 \cdots t^{\epsilon_{i-1}} a_{i-1}$  is reduced for each *i*.

If  $x = t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} a_n$  is cyclically reduced, then a cyclic permutation  $x^*$  of x is either

$$x^* = t^{\epsilon_i} a_i \cdots t^{\epsilon_n} a_n t^{\epsilon_1} a_1 \cdots t^{\epsilon_{i-1}} a_{i-1} \text{ or}$$
  
$$x^* = a_{i-1} t^{\epsilon_i} a_i \cdots t^{\epsilon_n} a_n t^{\epsilon_1} a_1 \cdots t^{\epsilon_{i-1}}$$

for some *i*. As mentioned in [12, Remark 2.2], if  $y = t^{\delta_1} b_1 \cdots t^{\delta_n} b_n$  is cyclically reduced and  $y = c^{-1} x^* c$  for  $c \in H \cup K$  in Theorem 1.1 (2), then it is enough to consider only the cyclic permutations  $x^* = t^{\epsilon_i} a_i \cdots t^{\epsilon_n} a_n t^{\epsilon_1} a_1 \cdots t^{\epsilon_{i-1}} a_{i-1}$  of *x*.

We shall consider the HNN extension

$$G = \langle B, t : t^{-1}Ht = K \rangle,$$

satisfying the following conditions:

(C1) If  $h_1 \sim_B h_2$  for  $h_1, h_2 \in H$  then  $h_1 = h_2$  and if  $k_1 \sim_B k_2$  for  $k_1, k_2 \in K$  then  $k_1 = k_2$ .

(C2) There exists an element  $z \in B$  such that  $z \not\sim_B x$  for any  $x \in H \cup K$ .

332

For example, if  $H, K \subset Z(B)$ , then (C1) holds. Also if  $H, K \subset Z(B)$  and if there is a element  $z \in B \setminus H \cup K$ , then (C2) holds.

The proof of the following is quite similar to that of Lemma 2.3 in [12].

**Lemma 2.1.** Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  and let B satisfy (C2) above. Suppose  $\alpha$  is a conjugating automorphism of G such that  $\alpha(z) = z$ , where  $z \in B$  in (C2). Then there exists an element  $a \in B$  such that  $\alpha(t) = a^{-1}ta$ .

**Lemma 2.2.** Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  and let B satisfy (C1) and (C2) above. Suppose  $\alpha$  is a conjugating automorphism of G such that  $\alpha(t) = t$  and  $\alpha(z) = a^{-1}za$ , where  $z \in B$  in (C2) and  $a \in B$ . If  $H, K \subset Z(B)$ , then  $\alpha(z) = a^{-1}za = zc$  and  $t^{-1}ct = c$  for some  $c \in H \cap K$ .

*Proof.* Let  $a \in B$  and  $\alpha(z) = a^{-1}za = a_0$ , where  $z \in B$  in (C2). Then  $a_0 \in B \setminus (H \cup K)$ . Note  $t z t^{-1} z^{-1}$  is cyclically reduced of length 2 and  $t z t^{-1} z^{-1} \sim_G \alpha(t z t^{-1} z^{-1}) = t a_0 t^{-1} a_0^{-1}$ . By Theorem 1.1 (2) we have

$$t a_0 t^{-1} a_0^{-1} = x^{-1} (t z t^{-1} z^{-1})^* x$$

for some  $x \in H \cup K$ , where  $(t z t^{-1} z^{-1})^*$  is a cyclic permutation of  $t z t^{-1} z^{-1}$ . Hence we have  $t a_0 t^{-1} a_0^{-1} = x^{-1} (t z t^{-1} z^{-1}) x$  for some  $x \in H \cup K$ . Thus  $t z^{-1} t^{-1} x t a_0 t^{-1} = z^{-1} x a_0$ . We have

$$x = h_1 \in H, \ t^{-1}h_1t = k_1, \ z^{-1}k_1a_0 \in K, \ \text{and} \ z^{-1}xa_0 \in H.$$

Since  $H, K \subset Z(B)$ , we have  $z^{-1}a_0 \in K$  and  $z^{-1}a_0 \in H$ . Hence  $a_0 = zc$  where  $c \in H \cap K$ . Therefore,  $tz^{-1}k_1zct^{-1} = z^{-1}h_1zc$ . Since  $H, K \subset Z(B)$ , we get  $tk_1ct^{-1} = h_1c$ , and  $tct^{-1} = c$ .

**Lemma 2.3.** Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  and let B satisfy (C1) and (C2) above. Suppose  $\alpha$  is a conjugating automorphism of G such that  $\alpha(t) = t$  and  $\alpha(z) = a^{-1}za$ , where  $z \in B$  in (C2) and  $a \in B$ . Let  $H, K \leq Z(B)$ . (1) For each  $b \in B \setminus H$ ,  $\alpha(b) = bc$ , where  $c \in H \cap K$  and  $t^{-1}ct = c$ , and (2) for each  $b \in B \setminus K$ ,  $\alpha(b) = bc$ , where  $c \in H \cap K$  and  $t^{-1}ct = c$ .

*Proof.* By Lemma 2.2,  $\alpha(z) = a^{-1}za = zc$  and  $t^{-1}ct = c$  for some  $c \in H \cap K$ . Let  $b \in B$  and  $\alpha(b) = k_b^{-1}b k_b$  and let  $k_b = a_0t^{\epsilon_1}a_1 \cdots t^{\epsilon_n}a_n$ , where  $\epsilon_i = \pm 1$  and  $a_i \in B$ , be in its normal form, as Remark 1. Since

$$b z \sim_G \alpha(b z) = \alpha(b)\alpha(z) = a_n^{-1} t^{-\epsilon_n} \cdots a_1^{-1} t^{-\epsilon_1} a_0^{-1} b a_0 t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} a_n zc,$$

we have

$$b z \sim_G t^{-\epsilon_n} \cdots a_1^{-1} t^{-\epsilon_1} a_0^{-1} b a_0 t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} a_n z c a_n^{-1}.$$
(1)

By (C2), we have  $a_n z c a_n^{-1} \notin H \cup K$ . In (1) above, if

$$t^{-\epsilon_n} \cdots a_1^{-1} t^{-\epsilon_1} a_0^{-1} b a_0 t^{\epsilon_1} a_1 \cdots t^{\epsilon_n} \notin B$$

then the R.H.S. of (1) is cyclically reduced of even length  $\geq 1$ , contrary to Theorem 1.1. Hence  $\alpha(b) = a_n^{-1}(t^{-\epsilon_n} \cdots a_1^{-1}t^{-\epsilon_1}a_0^{-1}ba_0t^{\epsilon_1}a_1 \cdots t^{\epsilon_n})a_n \in B$ . Let  $\alpha(b) = u \in B$ . (1) Let  $b \in B \setminus H$ . Consider  $t z^{-1} t^{-1} b \sim_G \alpha(t z^{-1} t^{-1} b) = t z c t^{-1} u$ . By Theorem 1.1 (2), we have  $t c^{-1} z^{-1} t^{-1} u = x^{-1} (t z^{-1} t^{-1} b)^* x$  for some  $x \in H \cup K$ , where  $(t z^{-1} t^{-1} b)^*$  is a cyclic permutation of  $t z^{-1} t^{-1} b$ . Hence we have

$$t c^{-1} z^{-1} t^{-1} u = x^{-1} (t z^{-1} t^{-1} b) x$$

for some  $x \in H \cup K$ . Thus  $tzt^{-1}xt c^{-1}z^{-1}t^{-1} = bxu^{-1}$ . From this, we have  $x = h_1 \in H$ ,  $t^{-1}h_1t = k_1$  and  $t(zk_1c^{-1}z^{-1})t^{-1} = bxu^{-1}$ . Since  $H, K \leq Z(B)$ , we have  $zk_1c^{-1}z^{-1} = k_1c^{-1}$ . Hence  $tk_1c^{-1}t^{-1} = bxu^{-1}$ . Since  $k_1 = t^{-1}h_1t = t^{-1}xt$ , we have  $xtc^{-1}t^{-1} = bxu^{-1} = xbu^{-1}$ . Therefore  $tc^{-1}t^{-1} = bu^{-1}$ . Since  $t^{-1}ct = c$  from the beginning of this proof, we have  $\alpha(b) = u = bc$ .

(2) Let  $b \in B \setminus K$ . Consider  $t^{-1} \overline{z^{-1}} t \overline{b} \sim_G \alpha(t^{-1} \overline{z^{-1}} t \overline{b}) = t^{-1} c^{-1} z^{-1} t u$ . As above, we have  $\alpha(b) = u = bc$ .

Now we can apply these above lemmas to get our criterion for certain HNN extensions having Property A.

**Theorem 2.4.** Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  and let  $H, K \subset Z(B)$ . Suppose there exists  $a_1 \in B \setminus H \cup K$  and suppose there exists  $a_2 \in B \setminus H$  such that  $a_1a_2 \notin H$  or there exists  $a_2 \in B \setminus K$  such that  $a_1a_2 \notin K$ . Then G has Property A.

Proof. Clearly (C1) and (C2) hold. Here we consider  $z = a_1$  in (C2). Let  $\alpha$  be a conjugating automorphism of G. Without loss of generality, we assume  $\alpha(z) = z$ , where  $z \in B$  in (C2). By Lemma 2.1, there exists  $a \in B$  such that  $\alpha(t) = a^{-1}ta$ . Considering  $Inn_a \circ \alpha$ , we may assume that  $\alpha(t) = t$  and  $\alpha(z) = aza^{-1} = a_0 \in B$ . By Lemma 2.2,  $a_0 = zc$  where  $c \in H \cap K$ . By Lemma 2.3,  $\alpha(b) = bc$  for each  $b \in B \setminus H$ . Hence, for  $h \in H$ , we have  $\alpha(zh) = zhc$  and  $\alpha(zh) = \alpha(z)\alpha(h) = zc\alpha(h)$ . Thus  $\alpha(h) = h$  for  $h \in H$ . Similarly,  $\alpha(k) = k$  for  $k \in K$ .

Let  $a_2 \in B \setminus H$  such that  $a_1a_2 \notin H$ . By Lemma 2.3,  $\alpha(a_1a_2) = a_1a_2c$ . Also  $\alpha(a_1a_2) = \alpha(a_1)\alpha(a_2) = a_1ca_2c = a_1a_2c^2$ . Hence c = 1 and  $\alpha(b) = b$  for each  $b \in B \setminus (H \cup K)$ . Therefore  $\alpha$  is the identity map. This follows that G has Property A.

**Theorem 2.5.** Let  $G = \langle B, t : t^{-1}Ht = K \rangle$  and let  $H, K \subset Z(B)$ . Suppose there exists  $z \in B \setminus H \cup K$  and suppose there exists no element of order 2 in  $H \cap K$ . Then G has Property A.

Proof. Clearly (C1) and (C2) hold. Let  $\alpha$  be a conjugating automorphism of G. As before, we can assume  $\alpha(t) = t$  and  $\alpha(z) = aza^{-1}$  for some  $a \in B$ . By Lemma 2.2,  $\alpha(z) = zc$  and  $t^{-1}ct = c$  for some  $c \in H \cap K$ . Hence  $c \in Z(G)$  and  $\alpha(c) = c$ . Note that  $z^{-1}c \notin H \cup K$ . By Lemma 2.3,  $\alpha(z^{-1}c) = z^{-1}c^2$ . Thus  $c = \alpha(c) = \alpha(zz^{-1}c) = \alpha(z)\alpha(z^{-1}c) = zcz^{-1}c^2 = c^3$ . Since  $H \cap K$  has no element of order 2, we have c = 1. Then, as above, we know that  $\alpha$  is the identity map, and G has Property A.

**Corollary 2.6.** Let B be a finitely generated nilpotent group and  $h \in Z(B)$  of infinite order. Then  $G = \langle B, t: t^{-1}h^{\alpha}t = h^{\beta} \rangle$  has Property A if  $|\alpha| \neq 1 \neq |\beta|$ .

In particular, the Baumslag-Solitar group  $G = \langle h, t : t^{-1}h^2t = h^3 \rangle$  has Property A.

**Acknowledgements** The authors would like to thank the anonymous referee for his or her careful reading of this paper and giving generous advice.

## References

- R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of finitely generated non-triangle Fuchsian groups Internat. J. Algebra Comput., 15(1), 59–72, 2005.
- [2] R. B. J. T. Allenby, G. Kim, and C. Y. Tang. Outer automorphism groups of Seifert 3-manifold groups over non-orientable surfaces. J. Algebra, 322(4), 957–968, 2009.
- [3] W. Burnside. On the outer automorphisms of a group. Proc. London Math. Soc., 11 40-42, 1913.
- [4] D. J. Collins. Recursively enumerable degrees and the conjugacy problem. Acta Math., 122, 115–160, 1969.
- [5] E. K. Grossman. On the residual finiteness of certain mapping class groups. J. London Math. Soc. (2), 9, 160–164, 1974.
- [6] G. Kim and C. Y. Tang. Residual finiteness of outer automorphism groups of certain 1-relator groups. Science in China Series A: Mathematics, 52(2), 287–292, 2009.
- [7] G. Kim and C. Y. Tang. Outer automorphism groups of certain 1-relator groups. Science China Mathematics, 53(6), 1635–1641, 2010.
- [8] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Ergebnisse der Mathematik Bd. 89 Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [9] V. Metaftsis and M. Sykiotis. On the residual finiteness of outer automorphisms of hyperbolic groups. Geom. Dedicata, 117, 125–131, 2006.
- [10] D. Segal. On the outer automorphism group of a polycyclic group. Proc. of the Second International Group Theory Conference (Bressanone, 1989), 23, 265–278. Rend. Circ. Mat. Palermo (2) Suppl., 1990.
- [11] G. E. Wall. Finite groups with class-preserving outer automorphisms. J. London Math. Soc., 22, 315–320, 1947.
- [12] W. Zhou and G. Kim. Class-preserving automorphisms of certain HNN extensions. J. Algebra, 431, 127–137, 2015.

Wei Zhou

School of Mathematics and Statistics, Southwest University, Chongqing 400715, P. R. CHINA

E-mail address: zh\_great@swu.edu.cn

GOANSU KIM YEUNGNAM UNIVERSITY, KYONGSAN, 712-749, KOREA *E-mail address*: gskim@yu.ac.kr