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CONJUGATING AUTOMORPHISMS OF CERTAIN HNN
EXTENSIONS

WEI ZHOU ! AND GOANSU Kim 2

ABSTRACT. We consider HNN extensions (B,t : t "1 Ht = K, where H, K
are in the center of B. We show that conjugating automorphisms of those
HNN extensions are inner if B satisfies certain conditions.

1. Introduction

An automorphism « of a group G is called a conjugating (or class-preserving,
or point-wise inner) automorphism if, for each g € G, a(g) and ¢ are conjugate
in G. Clearly inner automorphisms are conjugating automorphisms. But there
exist some groups admitting conjugating automorphisms which are not inner
(see [3, 10, 11]).

Definition 1 (Grossman [5]). A group G has Property A if, for each conjugating
automorphism « of G, there exists a single element k € G such that a(g) =
k=lgk for all g € G.

For example, Grossman [5] proved that free groups and fundamental groups
of compact orientable surfaces have Property A. She also proved that outer
automorphism groups of finitely generated conjugacy separable groups with
Property A are residually finite. Hence outer automorphism groups of free or
surface groups are residually finite. In this direction, it was shown that outer
automorphism groups of some Fuchsian groups [1, 9], most of Seifert 3-manifold
groups [2] and certain 1-relator groups [6, 7] are residually finite.

In this paper we show that certain HNN extension

G=(B,t:t"'Ht = K)
has Property A (Theorem 2.4), when H, K are in the center of B.
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Throughout this paper we use standard notation and terminology.
If g € G, Inny denotes the inner automorphism of G induced by g.
T ~¢ y means that x and y are conjugate in G, otherwise z %¢g y.
We use Z(G) to denote the center of G.

We shall make extensive use of the following result by D. J. Collins.

Theorem 1.1 (Collins [4]). Let x and y be cyclically reduced elements of the
HNN-eatension G = (B,t:t"'Ht = K). Suppose that x ~gy. Then |z| =
llyll, and one of the following holds.

(1) |zl = llyll = 0 and there is a finite sequence z1, 22, ..., 2m of elements in
H UK such that x ~B 21 ~B+ 22 ~Byt= *** ~B,t* Zm ~B Y, where u ~p 4= v
means one of: (i) u~pg v, or (ii) u € H and v =t~ tut(€ K), or (iii) u € K
and v = tut~(€ H).

2) N1zl = llyll = 1 and y ~gur =* where £* is a cyclic permutation of x.

2. Main results

Remark 1. [12] Let G = (B,t:t"'Ht = K) be an HNN eatension of a base
group B. Then every element g € G can be expressed as a normal form ([8],
p.181),
g =aopt%ay---t"a,, where ¢, = £1 and a; € B,
satisfying the following:
(i) an is an arbitrary element of the base group B,
(i1) if ¢, = —1, then a;—1 is a represntative of a coset of K in B,
(iii) if €, = 1, then a;—1 is a represnetative of a coset of H in B, and
(iv) there is no consecutive subsequence t 1 t~¢.

In this note, we mean that a cyclically reduced element g € G is either g € B
or g =t%aq ---t"a,, where ta; - - -t a,tay - - - t1a;_1 is reduced for each
i.

If x =t“aq---ta, is cyclically reduced, then a cyclic permutation z* of x
is either

¥ =t%a; -t aptTay -t ta;_q or
¥ =a;_1t%a; - trapt®ag -t
for some i. As mentioned in [12, Remark 2.2], if y = t%1b; - - - t97b,, is cyclically
reduced and y = ¢~ 'z*c for c € H UK in Theorem 1.1 (2), then it is enough to
consider only the cyclic permutations x* = t%a; - - - t*"a,t ay - - - t“1a;_1 of x.
We shall consider the HNN extension

G = (B,t:t"'Ht = K),

satisfying the following conditions:

(Cl) If hy ~p hy for h17h2 € H then h; = ho and if ki ~p ko for kl,kg e K
then kl = kQ.

(C2) There exists an element z € B such that z #%p = for any z € H U K.
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For example, if H, K C Z(B), then (C1) holds. Also if H, K C Z(B) and if
there is a element z € B\H U K, then (C2) holds.
The proof of the following is quite similar to that of Lemma 2.3 in [12].

Lemma 2.1. Let G = (B,t : t 'Ht = K) and let B satisfy (C2) above. Suppose
a is a conjugating automorphism of G such that a(z) = z, where z € B in (C2).
Then there exists an element a € B such that a(t) = a~ta.

Lemma 2.2. Let G = (B,t:t"'Ht = K) and let B satisfy (C1) and (C2)
above. Suppose « is a conjugating automorphism of G such that a(t) =t and
a(z) = a='za, where 2 € B in (C2) and a € B. If H,K C Z(B), then
a(z) =a"'za = zc and t~'ct = c for somec € HNK.

Proof. Let a € B and a(z) = a~'za = ag, where z € B in (C2). Then ag €
B\(HUK). Note t 2t~ 271 is cyclically reduced of length 2 and t 2t =1 271 ~¢
altzt™rz7Y) =tagt ' ay’. By Theorem 1.1 (2) we have

tagt tagt = a7tz )

for some x € H U K, where (t 2zt~ 271)* is a cyclic permutation of ¢t z¢~1 271

Hence we have tagt 'ay' = 271 (t2¢t7' 27 1)z for some z € H U K. Thus
tz~ 1t latagt™' = 27 1zay. We have

r=hy € H, t~ hit = k1, 2 Ykiag € K, and z lzag € H.

Since H, K C Z(B), we have 2~ !ag € K and 2z~ 'ag € H. Hence ag = zc where
c € HN K. Therefore, tz7‘kyzct™! = 27 1hyzc. Since H, K C Z(B), we get
tkict™ = hic, and tet ™! = c. O

Lemma 2.3. Let G = (B,t:t"'Ht = K) and let B satisfy (C1) and (C2)
above. Suppose « is a conjugating automorphism of G such that «(t) =t and
a(z) = a='za, where z € B in (C2) and a € B. Let H,K < Z(B).

(1) For each b € B\H, a(b) = bc, where c€ HN K and t~'ct = ¢, and

(2) for each b € B\K, a(b) = bc, where c € HN K and t~ct = c.

Proof. By Lemma 2.2, a(z) = a~'za = zc and t!ct = ¢ for some c € HN K.
Let b € B and a(b) = kb_lb ky and let k, = agtaq - - -t a,, where ¢, = &1 and
a; € B, be in its normal form, as Remark 1. Since
bz ~g albz) = alb)a(z) =a, 't a7ty bagteay - - -t ay, ze,

we have

bz ~gt™ - a T Y ag thagt@ay -t ayzean (1)
By (C2), we have a,zca,' ¢ HUK. In (1) above, if

tr e ar 't ag thagt ay -t & B,

then the R.H.S. of (1) is cyclically reduced of even length > 1, contrary to

Theorem 1.1. Hence a(b) = a;'(t~---a] 't~ ay 'bagt“ay - --t*) a, € B.
Let a(b) =u € B.
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(1) Let b € B\H. Consider tz71t71b ~g a(tz71t"1b) = tzct " tu. By
Theorem 1.1 (2), we have tct2 1t 1y = 27 1(t2z71t71b)*z for some z €
H UK, where (tz=1t71b)* is a cyclic permutation of tz=1¢~1b. Hence we
have

te 'tz ity =27t e )
for some € HU K. Thus tzt 'ztc '271¢7! = bru~!. From this, we have
x=hy € H, t 7 'hit = k1 and t(zkic 127 1)t = bau~?. Since H, K < Z(B),
we have zkic 127! = kye™!. Hence thkic 't™! = bzu~!. Since ky = t1hit =
t~1lat, we have atc™t™! = bxu~! = 2bu~!. Therefore tc~1t~1 = bu~!. Since
t~let = ¢ from the beginning of this proof, we have a(b) = u = bc.

(2) Let b € B\K. Consider t 1 271tb ~g a(t™1271tb) = t71e 271 tu.
As above, we have a(b) = u = be. O

Now we can apply these above lemmas to get our criterion for certain HNN
extensions having Property A.

Theorem 2.4. Let G = (B,t:t " 'Ht = K) and let H,K C Z(B). Suppose
there exists ay € B\HUK and suppose there exists ay € B\H such that ajas &
H or there exists ag € B\K such that ayas € K. Then G has Property A.

Proof. Clearly (C1) and (C2) hold. Here we consider z = a; in (C2). Let «
be a conjugating automorphism of G. Without loss of generality, we assume
a(z) = z, where z € B in (C2). By Lemma 2.1, there exists a € B such
that a(t) = a~'ta. Considering Inn, o o, we may assume that a(t) = ¢t and
a(z) = aza™! = a9 € B. By Lemma 2.2, ag = zc where ¢ € HN K. By
Lemma 2.3, a(b) = be for each b € B\H. Hence, for h € H, we have a(zh) = zhe
and a(zh) = a(z)a(h) = zca(h). Thus a(h) = hfor h € H. Similarly, a(k) = k
for k € K.

Let ay € B\H such that ajag ¢ H. By Lemma 2.3, a(ajas) = ajaze. Also
a(araz) = ala)a(as) = ajcasc = ajazc?. Hence ¢ = 1 and a(b) = b for each
b € B\(H U K). Therefore « is the identity map. This follows that G has
Property A. O

Theorem 2.5. Let G = (B,t:t 'Ht=K) and let H,K C Z(B). Suppose
there exists z € B\H U K and suppose there exists no element of order 2 in
HN K. Then G has Property A.

Proof. Clearly (C1) and (C2) hold. Let a be a conjugating automorphism of
G. As before, we can assume «(t) = t and a(z) = aza™! for some a € B. By
Lemma 2.2, a(z) = zc and t~1ct = ¢ for some ¢ € HN K. Hence ¢ € Z(G)
and a(c) = c. Note that 27'¢c ¢ HU K. By Lemma 2.3, a(z7!c) = 2712

Thus ¢ = alc) = a(zz7lc) = a(z)a(z7tc) = zcz71c? = ¢3. Since H N K has
no element of order 2, we have ¢ = 1. Then, as above, we know that « is the
identity map, and G has Property A. (|

Corollary 2.6. Let B be a finitely generated nilpotent group and h € Z(B) of
infinite order. Then G = (B,t:t"1h®t = h®) has Property A if |a| # 1 # |8].
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particular, the Baumslag-Solitar group G = (h,t : t~*h?*t = h3) has Property
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