East Asian Math. J.
Vol. 36 (2020), No. 3, pp. 417-423
YNMS
http://dx.doi.org/10.7858/eamj.2020.028

REMARKS ON WEAK REVERSIBILITY-OVER-CENTER

Hongying Chen, Yang Lee, and Zhelin Piao*

Abstract

Huang et al. proved that the n by n upper triangular matrix ring over a domain is weakly reversible-over-center by using the property of regular matrices. In this article we provide a concrete proof which is able to be available in the related study of centers. Next we extend an example of weakly reversible-over-center, which was argued by Huang et al., to the general case.

Throughout this note every ring is an associative ring with identity unless otherwise stated. Let R be a ring. We denote the center and the set of all idempotents of R by $Z(R)$ and $I(R)$, respectively. Denote the n by $n(n \geq 2)$ full (resp., upper triangular) matrix ring over R by $M a t_{n}(R)$ (resp., $T_{n}(R)$). I_{n} denotes the identity matrix of both $\operatorname{Mat}_{n}(R)$ and $T_{n}(R)$. Write $D_{n}(R)=$ $\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{11}=\cdots=a_{n n}\right\}$. Use $E_{i j}$ for the matrix with (i, j)-entry 1 and zeros elsewhere. The following definitions are due to the literature. An element u of R is right regular if $u r=0$ implies $r=0$ for $r \in R$. Similarly, left regular elements can be defined. An element is regular if it is both left and right regular (and hence not a zero divisor). R is called Abelian if $I(R) \subseteq Z(R)$, and R is called reduced if $N(R)=0$. Reduced rings are easily shown to be Abelian. R is said to be directly finite if $a b=1$ for $a, b \in R$ implies $b a=1$. Abelian rings are easily shown to be directly finite.

1. Weakly reversible-over-center rings

Following Choi et al. [2], a ring R is called reversible-over-center if $a b \in$ $Z(R)$ for $a, b \in R$ implies $b a \in Z(R)$. Reduced rings are reversible-overcenter and reversible-over-center rings are Abelian by [2, Theorem 1.1] and [2, Proposition 1.3(1)], respectively. In this article, we consider a generalization of reversible-over-center rings, concentrating upon the nonzero case of $a b \in Z(R)$. Following [3], a ring R is called weakly reversible-over-center if $0 \neq a b \in Z(R)$ for $a, b \in R$ implies $b a \in Z(R)$. Every reversible-over-center ring is clearly

[^0]weakly reversible-over-center, but the converse need not hold by [3, Theorem 1.3]. In fact, $T_{n}(R)$, over any domain R, is weakly reversible-over-center by [3, Theorem 1.3] but it is non-Abelian (hence not reversible-over-center) when $n \geq 2$.

It is well-known that $Z\left(\operatorname{Mat}_{n}(R)\right)=\left\{\left(a_{i j}\right) \in \operatorname{Mat}_{n}(R) \mid a_{11}=\cdots=a_{n n} \in\right.$ $Z(R)$ and $a_{i j}=0$ for all i, j with $\left.i \neq j\right\}$, where R is a ring and $n \geq 2$.

Lemma 1.1. (1) [3, Lemma 1.2(1)] Let R be a ring and $n \geq 2$. $Z\left(T_{n}(R)\right)=$ $\left\{\left(a_{i j}\right) \in T_{n}(R) \mid a_{11}=\cdots=a_{n n} \in Z(R)\right.$ and $a_{i j}=0$ for all i, j with $\left.i>j\right\}$.
(2) [2, Theorem 1.1] Let R be a reduced ring. If $a b \in Z(R)$ for $a, b \in R$, then $a b=b a$.

Lemma 1.1 does important roles in the proof of the next result. Huang et al. [3] proved the following theorem by using only the form of regular matrices in $T_{n}(R)$ over a domain R. But one may need the concrete procedure to get the result in the study of centers. So we provide that here.

Theorem 1.2. Let R be a domain. Then, for all $n \geq 1$, if $0 \neq A B \in Z\left(T_{n}(R)\right)$ for $A, B \in T_{n}(R)$ then $A B=B A$.

Proof. We use Lemma 1.1(1) freely.
(1) The case of $n=1$ is proved by Lemma 1.1(2).
(i) Let $n=2$ and $0 \neq A B \in Z\left(T_{2}(R)\right)$ for $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in T_{2}(R)$. Then $A B=\alpha I_{2}$ for some $0 \neq \alpha \in Z(R)$, entailing $a_{11} b_{11}=\alpha=a_{22} b_{22}$ and $a_{11} b_{12}+a_{12} b_{22}=0$. Moreover $b_{11} a_{11}=\alpha=b_{22} a_{22}$ by Lemma 1.1(2).

So, multiplying $a_{11} b_{12}+a_{12} b_{22}=0$ by b_{11} on the left, we obtain $0=\left(b_{11} a_{11}\right) b_{12}+b_{11} a_{12} b_{22}=b_{12}\left(a_{11} b_{11}\right)+b_{11} a_{12} b_{22}=b_{12}\left(a_{22} b_{22}\right)+b_{11} a_{12} b_{22}=$ $\left(b_{12} a_{22}+b_{11} a_{12}\right) b_{22}$. But $b_{22} \neq 0$, and so we have $b_{12} a_{22}+b_{11} a_{12}=0$ because R is a domain. This yields $B A=\alpha I_{2}=A B$.
(ii) Let $n=3$. Suppose that $0 \neq A B \in Z\left(T_{3}(R)\right)$ for $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in$ $T_{3}(R)$. Then $A B=\alpha I_{3}$ for some $0 \neq \alpha \in Z(R)$. This yields $a_{i i} b_{i i}=\alpha$ (hence $b_{i i} a_{i i}=\alpha$ by Lemma 1.1(2)), $a_{11} b_{12}+a_{12} b_{22}=0, a_{22} b_{23}+a_{23} b_{33}=0$, and $a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33}=0$.

Moreover $b_{11} a_{12}+b_{12} a_{22}=0$ and $b_{22} a_{23}+b_{23} a_{33}=0$ by the result of the case of $n=2$ because $A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}=\alpha I_{2} \in Z\left(T_{2}(R)\right)$ (hence $B^{\prime} A^{\prime}=B^{\prime \prime} A^{\prime \prime}=\alpha I_{2}$) for $A^{\prime}=\left(a_{i j}^{\prime}\right), A^{\prime \prime}=\left(a_{s t}^{\prime \prime}\right), B^{\prime}=\left(b_{i j}^{\prime}\right), B^{\prime \prime}=\left(b_{s t}^{\prime \prime}\right) \in T_{2}(R)$, where $a_{i j}^{\prime}=a_{i j}$, $b_{i j}^{\prime}=b_{i j}$ for all $i, j=1,2$, and $a_{s t}^{\prime \prime}=a_{s t}, b_{s t}^{\prime \prime}=b_{s t}$ for all $s, t=2,3$. We will show $b_{11} a_{13}+b_{12} a_{23}+b_{13} a_{33}=0$.

From $b_{11} a_{12}+b_{12} a_{22}=0$ and $a_{22} b_{23}+a_{23} b_{33}=0$, we obtain $\left(b_{11} a_{12}\right) b_{23}=\left(-b_{12} a_{22}\right) b_{23}=-b_{12}\left(a_{22} b_{23}\right)=-b_{12}\left(-a_{23} b_{33}\right)=b_{12} a_{23} b_{33}$.

So, multiplying $a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33}=0$ by b_{11} on the left, we get

$$
\begin{aligned}
0 & =\left(b_{11} a_{11}\right) b_{13}+b_{11} a_{12} b_{23}+b_{11} a_{13} b_{33}=\left(a_{33} b_{33}\right) b_{13}+b_{11} a_{12} b_{23}+b_{11} a_{13} b_{33} \\
& =b_{13}\left(a_{33} b_{33}\right)+b_{11} a_{12} b_{23}+b_{11} a_{13} b_{33}=b_{13} a_{33} b_{33}+b_{12} a_{23} b_{33}+b_{11} a_{13} b_{33} \\
& =\left(b_{11} a_{13}+b_{12} a_{23}+b_{13} a_{33}\right) b_{33} .
\end{aligned}
$$

But $b_{33} \neq 0$ and R is a domain; hence we obtain $b_{13} a_{33}+b_{12} a_{23}+b_{11} a_{13}=0$. Therefore $B A=\alpha I_{3}=A B$.
(iii) Let $n=4$. Suppose that $0 \neq A B \in Z\left(T_{4}(R)\right)$ for $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in$ $T_{4}(R)$. Then $A B=\alpha I_{4}$ for some $0 \neq \alpha \in Z(R)$. This yields $a_{i i} b_{i i}=\alpha$ (hence $b_{i i} a_{i i}=\alpha$ by Lemma 1.1(2)), $a_{11} b_{12}+a_{12} b_{22}=0, a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33}=0$, $a_{22} b_{23}+a_{23} b_{33}=0, a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44}=0, a_{33} b_{34}+a_{34} b_{44}=0$, and $a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44}=0$.

Moreover $b_{11} a_{12}+b_{12} a_{22}=0, b_{11} a_{13}+b_{12} a_{23}+b_{13} a_{33}=0, b_{22} a_{23}+b_{23} a_{33}=0$, $b_{22} a_{24}+b_{23} a_{34}+b_{24} a_{44}=0, b_{33} a_{34}+b_{34} a_{44}=0$ by the result of the case of $n=3$ because $A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}=\alpha I_{3} \in Z\left(T_{3}(R)\right)$ (hence $B^{\prime} A^{\prime}=B^{\prime \prime} A^{\prime \prime}=\alpha I_{3}$) for $A^{\prime}=\left(a_{i j}^{\prime}\right), A^{\prime \prime}=\left(a_{s t}^{\prime \prime}\right), B^{\prime}=\left(b_{i j}^{\prime}\right), B^{\prime \prime}=\left(b_{s t}^{\prime \prime}\right) \in T_{3}(R)$, where $a_{i j}^{\prime}=a_{i j}$, $b_{i j}^{\prime}=b_{i j}$ for all $i, j=1,2,3$, and $a_{s t}^{\prime \prime}=a_{s t}, b_{s t}^{\prime \prime}=b_{s t}$ for all $s, t=2,3,4$. We will show $b_{11} a_{14}+b_{12} a_{24}+b_{13} a_{34}+b_{14} a_{44}=0$.

From $b_{11} a_{12}+b_{12} a_{22}=0, a_{22} b_{24}+a_{23} b_{34}+a_{24} b_{44}=0, b_{11} a_{13}+b_{12} a_{23}+$ $b_{13} a_{33}=0$, and $a_{33} b_{34}+a_{34} b_{44}=0$, we obtain $\left(b_{11} a_{12}\right) b_{24}=\left(-b_{12} a_{22}\right) b_{24}=$ $-b_{12}\left(a_{22} b_{24}\right)=-b_{12}\left(-a_{23} b_{34}-a_{24} b_{44}\right)=b_{12} a_{23} b_{34}+b_{12} a_{24} b_{44}$ and $\left(b_{11} a_{13}\right) b_{34}=$ $\left(-b_{12} a_{23}-b_{13} a_{33}\right) b_{34}=-b_{12} a_{23} b_{34}-b_{13}\left(a_{33} b_{34}\right)=-b_{12} a_{23} b_{34}-b_{13}\left(a_{33} b_{34}\right)=$ $-b_{12} a_{23} b_{34}-b_{13}\left(-a_{34} b_{44}\right)=-b_{12} a_{23} b_{34}+b_{13} a_{34} b_{44}$.

So, multiplying $a_{11} b_{14}+a_{12} b_{24}+a_{13} b_{34}+a_{14} b_{44}=0$ by b_{11} on the left, we obtain

$$
\begin{aligned}
0 & =\left(b_{11} a_{11}\right) b_{14}+b_{11} a_{12} b_{24}+b_{11} a_{13} b_{34}+b_{11} a_{14} b_{44} \\
& =\left(a_{44} b_{44}\right) b_{14}+b_{11} a_{12} b_{24}+b_{11} a_{13} b_{34}+b_{11} a_{14} b_{44} \\
& =b_{14}\left(a_{44} b_{44}\right)+\left(b_{12} a_{23} b_{34}+b_{12} a_{24} b_{44}\right)+\left(-b_{12} a_{23} b_{34}+b_{13} a_{34} b_{44}\right)+b_{11} a_{14} b_{44} \\
& =b_{14} a_{44} b_{44}+b_{12} a_{24} b_{44}+b_{13} a_{34} b_{44}+b_{11} a_{14} b_{44} \\
& =\left(b_{11} a_{14}+b_{12} a_{24}+b_{13} a_{34}+b_{14} a_{44}\right) b_{44} .
\end{aligned}
$$

But $b_{44} \neq 0$ and R is a domain; hence we obtain $b_{11} a_{14}+b_{12} a_{24}+b_{13} a_{34}+$ $b_{14} a_{44}=0$. Therefore $B A=\alpha I_{4}=A B$.
(iv) Next we will proceed by induction on n to show that the preceding result also holds in the case of $n \geq 5$. Suppose that $A B \in Z\left(T_{n}(R)\right)$ for $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in T_{n}(R)$. Then $A B=\alpha I_{n}$ for some $0 \neq \alpha \in Z(R)$. This yields $a_{i i} b_{i i}=\alpha$ (hence $b_{i i} a_{i i}=\alpha$ by Lemma 1.1(2)). Moreover $\sum_{i=1}^{n} a_{1 i} b_{i n}=0$ and $\sum_{u=s}^{t} a_{s u} b_{u t}=0$ for every $t \in\{2,3, \ldots, n-1\}$ with $s<t$, where s runs over $\{1,2, \ldots, n-1\}$.

Note that $A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}=\alpha I_{n-1} \in Z\left(T_{n-1}(R)\right)$ for $A^{\prime}=\left(a_{i j}^{\prime}\right), A^{\prime \prime}=$ $\left(a_{s t}^{\prime \prime}\right), B^{\prime}=\left(b_{i j}^{\prime}\right), B^{\prime \prime}=\left(b_{s t}^{\prime \prime}\right) \in T_{n-1}(R)$, where $a_{i j}^{\prime}=a_{i j}, b_{i j}^{\prime}=b_{i j}$ for all
$i, j=1,2, \ldots, n-1$, and $a_{s t}^{\prime \prime}=a_{s t}, b_{s t}^{\prime \prime}=b_{s t}$ for all $s, t=2,3, n$. Then, by the induction hypothesis, we get $B^{\prime} A^{\prime}=B^{\prime \prime} A^{\prime \prime}=\alpha I_{n-1}$ and this yields $\sum_{u=s}^{t} b_{s u} a_{u t}=0$ for every $t \in\{2,3, \ldots, n-1\}$ with $s<t$, where s runs over $\{1,2, \ldots, n-1\}$, because B. We will show $\sum_{i=1}^{n} b_{1 i} a_{i n}=0$.

Multiplying $\sum_{i=1}^{n} a_{1 i} b_{i n}=0$ by b_{11} on the left, we have

$$
b_{11} a_{11} b_{1 n}+b_{11} a_{12} b_{2 n}+\cdots+b_{11} a_{1 i} b_{i n}+\cdots+b_{11} a_{1(n-1)} b_{(n-1) n}+b_{11} a_{1 n} b_{n n}=0
$$

We observe this equality term by term.
From $a_{i i} b_{i i}=b_{i i} a_{i i}=\alpha$, we get

$$
\left(b_{11} a_{11}\right) b_{1 n}=\left(a_{n n} b_{n n}\right) b_{1 n}=b_{1 n}\left(a_{n n} b_{n n}\right)=b_{1 n} a_{n n} b_{n n}
$$

From $\sum_{i=1}^{2} b_{1 i} a_{i 2}=0$ and $\sum_{i=2}^{n} a_{2 i} b_{i n}=0$, we get

$$
\begin{aligned}
\left(b_{11} a_{12}\right) b_{2 n} & =\left(-b_{12} a_{22}\right) b_{2 n}=-b_{12}\left(a_{22} b_{2 n}\right) \\
& =-b_{12}\left(-a_{23} b_{3 n}-a_{24} b_{4 n}-\cdots-a_{2(n-1)} b_{(n-1) n}-a_{2 n} b_{n n}\right) \\
& =[-0]+\left[b_{12} a_{23} b_{3 n}+b_{12} a_{24} b_{4 n}+\cdots+b_{12} a_{2(n-1)} b_{(n-1) n}\right]+b_{12} a_{2 n} b_{n n} .
\end{aligned}
$$

From $\sum_{i=1}^{3} b_{1 i} a_{i 3}=0$ and $\sum_{i=3}^{n} a_{3 i} b_{i n}=0$, we get

$$
\begin{aligned}
& \left(b_{11} a_{13}\right) b_{3 n}=\left(-b_{12} a_{23}-b_{13} a_{33}\right) b_{3 n}=-b_{12} a_{23} b_{3 n}-b_{13}\left(a_{33} b_{3 n}\right) \\
& =-b_{12} a_{23} b_{3 n}-b_{13}\left(-a_{34} b_{4 n}-a_{35} b_{5 n}-\cdots-a_{3(n-1)} b_{(n-1) n}-a_{3 n} b_{n n}\right) \\
= & {\left[-b_{12} a_{23} b_{3 n}\right]+\left[b_{13} a_{34} b_{4 n}+b_{13} a_{35} b_{5 n}+\cdots+b_{13} a_{3(n-1)} b_{(n-1) n}\right]+b_{13} a_{3 n} b_{n n} . }
\end{aligned}
$$

Next let $3 \leq k \leq n-1$. From $\sum_{i=1}^{k} b_{1 i} a_{i k}=0$ and $\sum_{i=k}^{n} a_{k i} b_{i n}=0$, we get

$$
\begin{aligned}
\left(b_{11} a_{1 k}\right) b_{k n}= & \left(-b_{12} a_{2 k}-b_{13} a_{3 k}-\cdots-b_{1(k-1)} a_{(k-1) k}-b_{1 k} a_{k k}\right) b_{k n} \\
= & -b_{12} a_{2 k} b_{k n}-b_{13} a_{3 k} b_{k n}-\cdots-b_{1(k-1)} a_{(k-1) k} b_{k n}-b_{1 k}\left(a_{k k} b_{k n}\right) \\
= & -b_{12} a_{2 k} b_{k n}-b_{13} a_{3 k} b_{k n}-\cdots-b_{1(k-1)} a_{(k-1) k} b_{k n} \\
& -b_{1 k}\left(-a_{k(k+1)} b_{(k+1) n}-\cdots-a_{k(n-1)} b_{(n-1) n}-a_{k n} b_{n n}\right) \\
= & {\left[-b_{12} a_{2 k} b_{k n}-b_{13} a_{3 k} b_{k n}-\cdots-b_{1(k-1)} a_{(k-1) k} b_{k n}\right] } \\
& +\left[b_{1 k} a_{k(k+1)} b_{(k+1) n}+\cdots+b_{1 k} a_{k(n-1)} b_{(n-1) n}\right]+b_{1 k} a_{k n} b_{n n} .
\end{aligned}
$$

Especially, from $\sum_{i=1}^{n-2} b_{1 i} a_{i(n-2)}=0, \sum_{i=n-2}^{n} a_{(n-2) i} b_{i n}=0$, and $\sum_{i=1}^{n-2} b_{1 i} a_{i(n-2)}=0, \sum_{i=n-2}^{n} a_{(n-2) i} b_{i n}=0$, we get

$$
\begin{aligned}
& \left(b_{11} a_{1(n-2)}\right) b_{(n-2) n}=\left(-b_{12} a_{2(n-2)}-b_{13} a_{3(n-2)}-\cdots-b_{1(n-3)} a_{(n-3)(n-2)}\right. \\
& \left.\quad-b_{1(n-2)} a_{(n-2)(n-2)}\right) b_{(n-2) n} \\
= & -b_{12} a_{2(n-2)} b_{(n-2) n}-b_{13} a_{3(n-2)} b_{(n-2) n}-\cdots-b_{1(n-3)} a_{(n-3)(n-2)} b_{(n-2) n} \\
& -b_{1(n-2)}\left(a_{(n-2)(n-2)} b_{(n-2) n}\right) \\
= & {\left[-b_{12} a_{2(n-2)} b_{(n-2) n}-b_{13} a_{3(n-2)} b_{(n-2) n}-\cdots-b_{1(n-3)} a_{(n-3)(n-2)} b_{(n-2) n}\right] } \\
& \quad-b_{1(n-2)}\left(-a_{(n-2)(n-1)} b_{(n-1) n}-a_{(n-2) n} b_{n n}\right) \\
=[& \left.-b_{12} a_{2(n-2)} b_{(n-2) n}-b_{13} a_{3(n-2)} b_{(n-2) n}-\cdots-b_{1(n-3)} a_{(n-3)(n-2)} b_{(n-2) n}\right] \\
\quad & +\left[b_{1(n-2)} a_{(n-2)(n-1)} b_{(n-1) n}\right]+b_{1(n-2)} a_{(n-2) n} b_{n n} ;
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(b_{11} a_{1(n-1)}\right) b_{(n-1) n}=\left(-b_{12} a_{2(n-1)}-b_{13} a_{3(n-1)}-\cdots-b_{1(n-2)} a_{(n-2)(n-1)}\right. \\
& \left.\quad-b_{1(n-1)} a_{(n-1)(n-1)}\right) b_{(n-1) n} \\
= & -b_{12} a_{2(n-1)} b_{(n-1) n}-b_{13} a_{3(n-1)} b_{(n-1) n}-\cdots-b_{1(n-2)} a_{(n-2)(n-1)} b_{(n-1) n} \\
& -b_{1(n-1)}\left(a_{(n-1)(n-1)} b_{(n-1) n}\right) \\
= & -b_{12} a_{2(n-1)} b_{(n-1) n}-b_{13} a_{3(n-1)} b_{(n-1) n}-\cdots-b_{1(n-2)} a_{(n-2)(n-1)} b_{(n-1) n} \\
& \quad-b_{1(n-1)}\left(-a_{(n-1) n} b_{n n}\right) \\
= & {\left[-b_{12} a_{2(n-1)} b_{(n-1) n}-b_{13} a_{3(n-1)} b_{(n-1) n}-\cdots-b_{1(n-2)} a_{(n-2)(n-1)} b_{(n-1) n}\right] } \\
& \quad+b_{1(n-1)} a_{(n-1) n} b_{n n} .
\end{aligned}
$$

Now summarize the results above. Consider $\left[b_{12} a_{23} b_{3 n}+b_{12} a_{24} b_{4 n}+\cdots+\right.$ $b_{12} a_{2(n-1)} b_{(n-1) n}$] in the right hand side of the equality of $b_{11} a_{12} b_{2 n}$. Every $-b_{12} a_{2 h} b_{h n}(h=3,4, \ldots, n-1)$ occurs as a first term in the first brackets of the equality of $b_{11} a_{1 k} b_{k n}$.

Consider $\left[b_{13} a_{34} b_{4 n}+b_{13} a_{35} b_{5 n}+\cdots+b_{13} a_{3(n-1)} b_{(n-1) n}\right]$ in the right hand side of the equality of $b_{11} a_{13} b_{3 n}$. Every $-b_{13} a_{3 h} b_{h n}(h=4,5, \ldots, n-1)$ occurs as a second term in the first brackets of the equality of $b_{11} a_{1 k} b_{k n}$.

Consider $\left[b_{1 k} a_{k(k+1)} b_{(k+1) n}+\cdots+b_{1 k} a_{k(n-1)} b_{(n-1) n}\right]$ in the right hand side of the equality of $b_{11} a_{1 k} b_{k n}$. Every $-b_{1 k} a_{k l} b_{l n}(l=k+1, \ldots, n-1)$ occurs as a $(k-1)$-th term in the first brackets of the equality of $b_{11} a_{1 m} b_{m n}(m=$ $k+1, \ldots, n-1)$.

Conversely, for every term $-b_{1 w} a_{w k} b_{k n}(w=2,3, \ldots, k-1)$ of the brackets $\left[-b_{12} a_{2 k} b_{k n}-b_{13} a_{3 k} b_{k n}-\cdots-b_{1(k-1)} a_{(k-1) k} b_{k n}\right]$ in the right hand side of the equality of $b_{11} a_{1 k} b_{k n}$, there exists $b_{1 w} a_{w k} b_{k n}$ in the second brackets of the equality of $b_{11} a_{1 w} b_{w n}$.

Consequently we have

$$
\begin{aligned}
0 & =b_{11} a_{11} b_{1 n}+b_{11} a_{12} b_{2 n}+\cdots+b_{11} a_{1 i} b_{i n}+\cdots+b_{11} a_{1(n-1)} b_{(n-1) n} \\
& +b_{11} a_{1 n} b_{n n} \\
= & b_{1 n} a_{n n} b_{n n}+b_{12} a_{2 n} b_{n n}+b_{13} a_{3 n} b_{n n}+\cdots+b_{1 k} a_{k n} b_{n n}+\cdots \\
& \quad+b_{1(n-1)} a_{(n-1) n} b_{n n}+b_{11} a_{1 n} b_{n n} \\
= & \left(b_{1 n} a_{n n}+b_{12} a_{2 n}+b_{13} a_{3 n}+\cdots+b_{1 k} a_{k n}+\cdots+b_{1(n-1)} a_{(n-1) n}+b_{11} a_{1 n}\right) b_{n n} .
\end{aligned}
$$

But $b_{n n} \neq 0$ and R is a domain; hence we obtain $\sum_{i=1}^{n} b_{1 i} a_{i n}=0$. Therefore $B A=\alpha I_{n}=A B$.

As noted above, Huang et al. proved that the n by n upper triangular matrix ring over a domain is weakly reversible-over-center by using the property of regular matrices, in [3, Theorem 1.3]. One can see concrete argument for regular upper triangular matrices in [4, Theorem 1.1].

2. An extended example

In this section we extend the argument in [3, Example 2.1(2)] to the general situation for more application.

Example 2.1. We refer to the construction in [1, Example 4.8]. Let K be a field and $A=K\langle a, b\rangle$ be the free algebra generated by the noncommuting indeterminates a, b over K. Let I be the ideal of A generated by b^{n} and set $R=A / I$, where $n \geq 2$. Identify a, b with their images in R for simplicity. We will show that R is weakly reversible-over-center.

We extend the method in [3, Example 2.1(2)] to get $Z(R)=K$. Every element of R can be expressed by

$$
k_{0}+k_{1} a f(a)+k_{2} b g(b)+h \text { with } f(x), g(x) \in K[x], h \in R, \text { and } k_{i} \in K,
$$

where the degree of $g(x)$ is equal to or less than $n-1$, and every term of h contains a, b when h is nonzero.

Let $F=k_{0}+k_{1} a f(a)+k_{2} b g(b)+h \in Z(R)$. Then $a F-F a=0$ and this yields

$$
k_{2}(a b g(b)-b g(b) a)+(a h-h a)=0 .
$$

Here if $k_{2}(a b g(b)-b g(b) a) \neq 0$ then every term has only one a; and if $a h-h a \neq 0$, then every term has two or more a 's. three or more. So, from $k_{2}(a b g(b)-b g(b) a)=-(a h-h a)$, we must obtain

$$
k_{2}(a b g(b)-b g(b) a)=0 \text { and } a h-h a=0,
$$

i.e., $a k_{2} b g(b)=k_{2} b g(b) a$ and $a h=h a$. Assume $k_{2} b g(b) \neq 0$. Then $a k_{2} b g(b)-$ $k_{2} b g(b) a$ cannot be zero, contrary to $k_{2}(a b g(b)-b g(b) a)=0$. So $k_{2} b g(b)=0$ and we have $F=k_{0}+k_{1} a f(a)+h$.

Consider $b F-F b=0$. Then $k_{1}(b a f(a)-a f(a) b)=-(b h-h b)$. If $k_{1}(b a f(a)-$ $a f(a) b) \neq 0$ then every term has only one b; and if $b h-h b \neq 0$ then every term has two or more b 's. So, from $k_{1}(b a f(a)-a f(a) b)=-(b h-h b)$, we obtain

$$
k_{1}(b a f(a)-a f(a) b)=0 \text { and } b h-h b=0,
$$

i.e., $b k_{1} a f(a)=k_{1} a f(a) b$ and $b h=h b$. Assume $k_{1} a f(a) \neq 0$. Then $b k_{1} a f(a)-$ $k_{1} a f(a) b$ cannot be zero, contrary to $k_{1}(b a f(a)-a f(a) b)=0$. So $k_{1} a f(a)=0$ and therefore we have $F=k_{0}+h$.

Now we get $a h=h a$ and $b h=h b$ from $a F=F a$ and $b F=F b$, respectively.
Next we can express h by $a h_{1}+b h_{2}$ with $h_{i} \in R$, where the constant term of h_{i} is zero. From $a h=h a$, we obtain

$$
a a h_{1}+a b h_{2}=a\left(a h_{1}+b h_{2}\right)=a h=h a=\left(a h_{1}+b h_{2}\right) a=a h_{1} a+b h_{2} a,
$$

entailing

$$
a\left(a h_{1}+b h_{2}-h_{1} a\right)=b h_{2} a .
$$

So we must get

$$
a\left(a h_{1}+b h_{2}-h_{1} a\right)=0 \text { and } b h_{2} a=0 .
$$

Here $b h_{2} a=0$ implies $b h_{2}=0$, and $h=a h_{1}+b h_{2}=a h_{1}$ follows.
Next, from $b h=h b$, we obtain $b a h_{1}=b h=h b=a h_{1} b$; hence we must have $a h_{1} b=0$ and $b a h_{1}=0$. This implies $a h_{1}=0$ and $h=0$ follows.

Therefore $F=k_{0}$, and thus $Z(R)=K$.
Now let $0 \neq F_{1} F_{2} \in Z(R)$ for $F_{i} \in R$. Then $F_{1} F_{2}=k$ for some $k \in K$. Note $k^{-1} F_{1} F_{2}=1$. But R is Abelian and so directly finite; hence $\left(k^{-1} F_{1}\right) F_{2}=1$ implies $F_{2}\left(k^{-1} F_{1}\right)=k^{-1} F_{2} F_{1}=1$. So $F_{2} F_{1}=k=F_{1} F_{2}$. Therefore R is weakly reversible-over-center.

References

[1] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), 3128-3140.
[2] K.J. Choi, T.K. Kwak, Y. Lee, Reversibility and symmetry over centers, J. Korean Math. Soc. 56 (2019), 723-738.
[3] J. Huang, H.-l. Jin, T.K. Kwak, Y. Lee, and Z. Piao, Remarks on centers of rings, Algebra Colloq. (To appear).
[4] T.K Kwak, Y. Lee, Y. Seo, On commutativity of regular products, Bull. Korean Math. Soc. 55 (2018) 1713-1726.

Hongying Chen
Department of Mathematics, Pusan National University, Pusan 46241, Korea
E-mail address: 1058695917@qq.com
Yang Lee
Department of Mathematics, Yanbian University, Yanji 133002, China and Institute of Basic Science, Daejin University, Pocheon 11159, Korea
E-mail address: ylee@pusan.ac.kr
Zhelin Piao
Department of Mathematics, Yanbian University, Yanji 133002, China
E-mail address: zlpiao@ybu.edu.cn

[^0]: Received April 16, 2020; Accepted May 23, 2020.
 2010 Mathematics Subject Classification. 16U80, 16U70, 16S50, 16 U10.
 Key words and phrases. weakly reversible-over-center ring, center, reduced ring, matrix ring.

 * Corresponding author.

