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REMARKS ON WEAK REVERSIBILITY-OVER-CENTER

Hongying Chen, Yang Lee, and Zhelin Piao∗

Abstract. Huang et al. proved that the n by n upper triangular matrix
ring over a domain is weakly reversible-over-center by using the property

of regular matrices. In this article we provide a concrete proof which is

able to be available in the related study of centers. Next we extend an
example of weakly reversible-over-center, which was argued by Huang et

al., to the general case.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. We denote the center and the set of all
idempotents of R by Z(R) and I(R), respectively. Denote the n by n (n ≥ 2)
full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)).
In denotes the identity matrix of both Matn(R) and Tn(R). Write Dn(R) =
{(aij) ∈ Tn(R) | a11 = · · · = ann}. Use Eij for the matrix with (i, j)-entry
1 and zeros elsewhere. The following definitions are due to the literature. An
element u of R is right regular if ur = 0 implies r = 0 for r ∈ R. Similarly, left
regular elements can be defined. An element is regular if it is both left and right
regular (and hence not a zero divisor). R is called Abelian if I(R) ⊆ Z(R), and
R is called reduced if N(R) = 0. Reduced rings are easily shown to be Abelian.
R is said to be directly finite if ab = 1 for a, b ∈ R implies ba = 1. Abelian rings
are easily shown to be directly finite.

1. Weakly reversible-over-center rings

Following Choi et al. [2], a ring R is called reversible-over-center if ab ∈
Z(R) for a, b ∈ R implies ba ∈ Z(R). Reduced rings are reversible-over-
center and reversible-over-center rings are Abelian by [2, Theorem 1.1] and [2,
Proposition 1.3(1)], respectively. In this article, we consider a generalization of
reversible-over-center rings, concentrating upon the nonzero case of ab ∈ Z(R).
Following [3], a ring R is called weakly reversible-over-center if 0 6= ab ∈ Z(R)
for a, b ∈ R implies ba ∈ Z(R). Every reversible-over-center ring is clearly
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weakly reversible-over-center, but the converse need not hold by [3, Theorem
1.3]. In fact, Tn(R), over any domain R, is weakly reversible-over-center by
[3, Theorem 1.3] but it is non-Abelian (hence not reversible-over-center) when
n ≥ 2.

It is well-known that Z(Matn(R)) = {(aij) ∈ Matn(R) | a11 = · · · = ann ∈
Z(R) and aij = 0 for all i, j with i 6= j}, where R is a ring and n ≥ 2.

Lemma 1.1. (1) [3, Lemma 1.2(1)] Let R be a ring and n ≥ 2. Z(Tn(R)) =
{(aij) ∈ Tn(R) | a11 = · · · = ann ∈ Z(R) and aij = 0 for all i, j with i > j}.

(2) [2, Theorem 1.1] Let R be a reduced ring. If ab ∈ Z(R) for a, b ∈ R, then
ab = ba.

Lemma 1.1 does important roles in the proof of the next result. Huang et al.
[3] proved the following theorem by using only the form of regular matrices in
Tn(R) over a domain R. But one may need the concrete procedure to get the
result in the study of centers. So we provide that here.

Theorem 1.2. Let R be a domain. Then, for all n ≥ 1, if 0 6= AB ∈ Z(Tn(R))
for A,B ∈ Tn(R) then AB = BA.

Proof. We use Lemma 1.1(1) freely.

(1) The case of n = 1 is proved by Lemma 1.1(2).

(i) Let n = 2 and 0 6= AB ∈ Z(T2(R)) for A = (aij), B = (bij) ∈ T2(R).
Then AB = αI2 for some 0 6= α ∈ Z(R), entailing a11b11 = α = a22b22 and
a11b12 + a12b22 = 0. Moreover b11a11 = α = b22a22 by Lemma 1.1(2).

So, multiplying a11b12 + a12b22 = 0 by b11 on the left, we obtain
0 = (b11a11)b12+b11a12b22 = b12(a11b11)+b11a12b22 = b12(a22b22)+b11a12b22 =
(b12a22 + b11a12)b22. But b22 6= 0, and so we have b12a22 + b11a12 = 0 because
R is a domain. This yields BA = αI2 = AB.

(ii) Let n = 3. Suppose that 0 6= AB ∈ Z(T3(R)) for A = (aij), B = (bij) ∈
T3(R). Then AB = αI3 for some 0 6= α ∈ Z(R). This yields aiibii = α (hence
biiaii = α by Lemma 1.1(2)), a11b12 + a12b22 = 0, a22b23 + a23b33 = 0, and
a11b13 + a12b23 + a13b33 = 0.

Moreover b11a12+b12a22 = 0 and b22a23+b23a33 = 0 by the result of the case
of n = 2 because A′B′ = A′′B′′ = αI2 ∈ Z(T2(R)) (hence B′A′ = B′′A′′ = αI2)
for A′ = (a′ij), A

′′ = (a′′st), B
′ = (b′ij), B

′′ = (b′′st) ∈ T2(R), where a′ij = aij ,
b′ij = bij for all i, j = 1, 2, and a′′st = ast, b

′′
st = bst for all s, t = 2, 3. We will

show b11a13 + b12a23 + b13a33 = 0.

From b11a12 + b12a22 = 0 and a22b23 + a23b33 = 0, we obtain
(b11a12)b23 = (−b12a22)b23 = −b12(a22b23) = −b12(−a23b33) = b12a23b33.
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So, multiplying a11b13 + a12b23 + a13b33 = 0 by b11 on the left, we get

0 = (b11a11)b13 + b11a12b23 + b11a13b33 = (a33b33)b13 + b11a12b23 + b11a13b33

= b13(a33b33) + b11a12b23 + b11a13b33 = b13a33b33 + b12a23b33 + b11a13b33

= (b11a13 + b12a23 + b13a33)b33.

But b33 6= 0 and R is a domain; hence we obtain b13a33 + b12a23 + b11a13 = 0.
Therefore BA = αI3 = AB.

(iii) Let n = 4. Suppose that 0 6= AB ∈ Z(T4(R)) for A = (aij), B = (bij) ∈
T4(R). Then AB = αI4 for some 0 6= α ∈ Z(R). This yields aiibii = α (hence
biiaii = α by Lemma 1.1(2)), a11b12 + a12b22 = 0, a11b13 + a12b23 + a13b33 = 0,
a22b23 + a23b33 = 0, a22b24 + a23b34 + a24b44 = 0, a33b34 + a34b44 = 0, and
a11b14 + a12b24 + a13b34 + a14b44 = 0.

Moreover b11a12+b12a22 = 0, b11a13+b12a23+b13a33 = 0, b22a23+b23a33 = 0,
b22a24 + b23a34 + b24a44 = 0, b33a34 + b34a44 = 0 by the result of the case of
n = 3 because A′B′ = A′′B′′ = αI3 ∈ Z(T3(R)) (hence B′A′ = B′′A′′ = αI3)
for A′ = (a′ij), A

′′ = (a′′st), B
′ = (b′ij), B

′′ = (b′′st) ∈ T3(R), where a′ij = aij ,
b′ij = bij for all i, j = 1, 2, 3, and a′′st = ast, b

′′
st = bst for all s, t = 2, 3, 4. We will

show b11a14 + b12a24 + b13a34 + b14a44 = 0.
From b11a12 + b12a22 = 0, a22b24 + a23b34 + a24b44 = 0, b11a13 + b12a23 +

b13a33 = 0, and a33b34 + a34b44 = 0, we obtain (b11a12)b24 = (−b12a22)b24 =
−b12(a22b24) = −b12(−a23b34−a24b44) = b12a23b34+b12a24b44 and (b11a13)b34 =
(−b12a23 − b13a33)b34 = −b12a23b34 − b13(a33b34) = −b12a23b34 − b13(a33b34) =
−b12a23b34 − b13(−a34b44) = −b12a23b34 + b13a34b44.

So, multiplying a11b14 + a12b24 + a13b34 + a14b44 = 0 by b11 on the left, we
obtain

0 = (b11a11)b14 + b11a12b24 + b11a13b34 + b11a14b44

= (a44b44)b14 + b11a12b24 + b11a13b34 + b11a14b44

= b14(a44b44) + (b12a23b34 + b12a24b44) + (−b12a23b34 + b13a34b44) + b11a14b44

= b14a44b44 + b12a24b44 + b13a34b44 + b11a14b44

= (b11a14 + b12a24 + b13a34 + b14a44)b44.

But b44 6= 0 and R is a domain; hence we obtain b11a14 + b12a24 + b13a34 +
b14a44 = 0. Therefore BA = αI4 = AB.

(iv) Next we will proceed by induction on n to show that the preceding
result also holds in the case of n ≥ 5. Suppose that AB ∈ Z(Tn(R)) for
A = (aij), B = (bij) ∈ Tn(R). Then AB = αIn for some 0 6= α ∈ Z(R). This
yields aiibii = α (hence biiaii = α by Lemma 1.1(2)). Moreover

∑n
i=1 a1ibin = 0

and
∑t

u=s asubut = 0 for every t ∈ {2, 3, . . . , n − 1} with s < t, where s runs
over {1, 2, . . . , n− 1}.

Note that A′B′ = A′′B′′ = αIn−1 ∈ Z(Tn−1(R)) for A′ = (a′ij), A
′′ =

(a′′st), B
′ = (b′ij), B

′′ = (b′′st) ∈ Tn−1(R), where a′ij = aij , b
′
ij = bij for all
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i, j = 1, 2, . . . , n − 1, and a′′st = ast, b
′′
st = bst for all s, t = 2, 3, n. Then,

by the induction hypothesis, we get B′A′ = B′′A′′ = αIn−1 and this yields∑t
u=s bsuaut = 0 for every t ∈ {2, 3, . . . , n − 1} with s < t, where s runs over

{1, 2, . . . , n− 1}, because B. We will show
∑n

i=1 b1iain = 0.

Multiplying
∑n

i=1 a1ibin = 0 by b11 on the left, we have

b11a11b1n + b11a12b2n + · · ·+ b11a1ibin + · · ·+ b11a1(n−1)b(n−1)n + b11a1nbnn = 0.

We observe this equality term by term.

From aiibii = biiaii = α, we get

(b11a11)b1n = (annbnn)b1n = b1n(annbnn) = b1nannbnn

.

From
∑2

i=1 b1iai2 = 0 and
∑n

i=2 a2ibin = 0, we get

(b11a12)b2n = (−b12a22)b2n = −b12(a22b2n)

= −b12(−a23b3n − a24b4n − · · · − a2(n−1)b(n−1)n − a2nbnn)

=[−0] + [b12a23b3n + b12a24b4n + · · ·+ b12a2(n−1)b(n−1)n] + b12a2nbnn.

From
∑3

i=1 b1iai3 = 0 and
∑n

i=3 a3ibin = 0, we get

(b11a13)b3n = (−b12a23 − b13a33)b3n = −b12a23b3n − b13(a33b3n)

= −b12a23b3n − b13(−a34b4n − a35b5n − · · · − a3(n−1)b(n−1)n − a3nbnn)

=[−b12a23b3n] + [b13a34b4n + b13a35b5n + · · ·+ b13a3(n−1)b(n−1)n] + b13a3nbnn.

Next let 3 ≤ k ≤ n− 1. From
∑k

i=1 b1iaik = 0 and
∑n

i=k akibin = 0, we get

(b11a1k)bkn =(−b12a2k − b13a3k − · · · − b1(k−1)a(k−1)k − b1kakk)bkn

=− b12a2kbkn − b13a3kbkn − · · · − b1(k−1)a(k−1)kbkn − b1k(akkbkn)

=− b12a2kbkn − b13a3kbkn − · · · − b1(k−1)a(k−1)kbkn
− b1k(−ak(k+1)b(k+1)n − · · · − ak(n−1)b(n−1)n − aknbnn)

=[−b12a2kbkn − b13a3kbkn − · · · − b1(k−1)a(k−1)kbkn]

+ [b1kak(k+1)b(k+1)n + · · ·+ b1kak(n−1)b(n−1)n] + b1kaknbnn.
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Especially, from
∑n−2

i=1 b1iai(n−2) = 0,
∑n

i=n−2 a(n−2)ibin = 0, and∑n−2
i=1 b1iai(n−2) = 0,

∑n
i=n−2 a(n−2)ibin = 0, we get

(b11a1(n−2))b(n−2)n = (−b12a2(n−2) − b13a3(n−2) − · · · − b1(n−3)a(n−3)(n−2)
− b1(n−2)a(n−2)(n−2))b(n−2)n

=− b12a2(n−2)b(n−2)n − b13a3(n−2)b(n−2)n − · · · − b1(n−3)a(n−3)(n−2)b(n−2)n
− b1(n−2)(a(n−2)(n−2)b(n−2)n)

=[−b12a2(n−2)b(n−2)n − b13a3(n−2)b(n−2)n − · · · − b1(n−3)a(n−3)(n−2)b(n−2)n]

− b1(n−2)(−a(n−2)(n−1)b(n−1)n − a(n−2)nbnn)

=[−b12a2(n−2)b(n−2)n − b13a3(n−2)b(n−2)n − · · · − b1(n−3)a(n−3)(n−2)b(n−2)n]

+ [b1(n−2)a(n−2)(n−1)b(n−1)n] + b1(n−2)a(n−2)nbnn;

and

(b11a1(n−1))b(n−1)n = (−b12a2(n−1) − b13a3(n−1) − · · · − b1(n−2)a(n−2)(n−1)
− b1(n−1)a(n−1)(n−1))b(n−1)n

=− b12a2(n−1)b(n−1)n − b13a3(n−1)b(n−1)n − · · · − b1(n−2)a(n−2)(n−1)b(n−1)n
− b1(n−1)(a(n−1)(n−1)b(n−1)n)

=− b12a2(n−1)b(n−1)n − b13a3(n−1)b(n−1)n − · · · − b1(n−2)a(n−2)(n−1)b(n−1)n
− b1(n−1)(−a(n−1)nbnn)

=[−b12a2(n−1)b(n−1)n − b13a3(n−1)b(n−1)n − · · · − b1(n−2)a(n−2)(n−1)b(n−1)n]

+ b1(n−1)a(n−1)nbnn.

Now summarize the results above. Consider [b12a23b3n + b12a24b4n + · · · +
b12a2(n−1)b(n−1)n] in the right hand side of the equality of b11a12b2n. Every
−b12a2hbhn (h = 3, 4, . . . , n − 1) occurs as a first term in the first brackets of
the equality of b11a1kbkn.

Consider [b13a34b4n + b13a35b5n + · · · + b13a3(n−1)b(n−1)n] in the right hand
side of the equality of b11a13b3n. Every −b13a3hbhn (h = 4, 5, . . . , n− 1) occurs
as a second term in the first brackets of the equality of b11a1kbkn.

Consider [b1kak(k+1)b(k+1)n + · · ·+ b1kak(n−1)b(n−1)n] in the right hand side
of the equality of b11a1kbkn. Every −b1kaklbln (l = k + 1, . . . , n − 1) occurs
as a (k − 1)-th term in the first brackets of the equality of b11a1mbmn (m =
k + 1, . . . , n− 1).

Conversely, for every term −b1wawkbkn (w = 2, 3, . . . , k − 1) of the brackets
[−b12a2kbkn − b13a3kbkn − · · · − b1(k−1)a(k−1)kbkn] in the right hand side of
the equality of b11a1kbkn, there exists b1wawkbkn in the second brackets of the
equality of b11a1wbwn.
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Consequently we have

0 = b11a11b1n + b11a12b2n + · · ·+ b11a1ibin + · · ·+ b11a1(n−1)b(n−1)n

+ b11a1nbnn

=b1nannbnn + b12a2nbnn + b13a3nbnn + · · ·+ b1kaknbnn + · · ·
+ b1(n−1)a(n−1)nbnn + b11a1nbnn

=(b1nann + b12a2n + b13a3n + · · ·+ b1kakn + · · ·+ b1(n−1)a(n−1)n + b11a1n)bnn.

But bnn 6= 0 and R is a domain; hence we obtain
∑n

i=1 b1iain = 0. Therefore
BA = αIn = AB. �

As noted above, Huang et al. proved that the n by n upper triangular matrix
ring over a domain is weakly reversible-over-center by using the property of
regular matrices, in [3, Theorem 1.3]. One can see concrete argument for regular
upper triangular matrices in [4, Theorem 1.1].

2. An extended example

In this section we extend the argument in [3, Example 2.1(2)] to the general
situation for more application.

Example 2.1. We refer to the construction in [1, Example 4.8]. Let K be
a field and A = K〈a, b〉 be the free algebra generated by the noncommuting
indeterminates a, b over K. Let I be the ideal of A generated by bn and set
R = A/I, where n ≥ 2. Identify a, b with their images in R for simplicity. We
will show that R is weakly reversible-over-center.

We extend the method in [3, Example 2.1(2)] to get Z(R) = K. Every
element of R can be expressed by

k0 + k1af(a) + k2bg(b) + h with f(x), g(x) ∈ K[x], h ∈ R, and ki ∈ K,

where the degree of g(x) is equal to or less than n − 1, and every term of h
contains a, b when h is nonzero.

Let F = k0 + k1af(a) + k2bg(b) + h ∈ Z(R). Then aF − Fa = 0 and this
yields

k2(abg(b)− bg(b)a) + (ah− ha) = 0.

Here if k2(abg(b) − bg(b)a) 6= 0 then every term has only one a; and if
ah − ha 6= 0, then every term has two or more a’s. three or more. So, from
k2(abg(b)− bg(b)a) = −(ah− ha), we must obtain

k2(abg(b)− bg(b)a) = 0 and ah− ha = 0,

i.e., ak2bg(b) = k2bg(b)a and ah = ha. Assume k2bg(b) 6= 0. Then ak2bg(b) −
k2bg(b)a cannot be zero, contrary to k2(abg(b) − bg(b)a) = 0. So k2bg(b) = 0
and we have F = k0 + k1af(a) + h.
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Consider bF−Fb = 0. Then k1(baf(a)−af(a)b) = −(bh−hb). If k1(baf(a)−
af(a)b) 6= 0 then every term has only one b; and if bh− hb 6= 0 then every term
has two or more b’s. So, from k1(baf(a)− af(a)b) = −(bh− hb), we obtain

k1(baf(a)− af(a)b) = 0 and bh− hb = 0,

i.e., bk1af(a) = k1af(a)b and bh = hb. Assume k1af(a) 6= 0. Then bk1af(a)−
k1af(a)b cannot be zero, contrary to k1(baf(a)− af(a)b) = 0. So k1af(a) = 0
and therefore we have F = k0 + h.

Now we get ah = ha and bh = hb from aF = Fa and bF = Fb, respectively.

Next we can express h by ah1 + bh2 with hi ∈ R, where the constant term
of hi is zero. From ah = ha, we obtain

aah1 + abh2 = a(ah1 + bh2) = ah = ha = (ah1 + bh2)a = ah1a+ bh2a,

entailing

a(ah1 + bh2 − h1a) = bh2a.

So we must get

a(ah1 + bh2 − h1a) = 0 and bh2a = 0.

Here bh2a = 0 implies bh2 = 0, and h = ah1 + bh2 = ah1 follows.

Next, from bh = hb, we obtain bah1 = bh = hb = ah1b; hence we must have
ah1b = 0 and bah1 = 0. This implies ah1 = 0 and h = 0 follows.

Therefore F = k0, and thus Z(R) = K.

Now let 0 6= F1F2 ∈ Z(R) for Fi ∈ R. Then F1F2 = k for some k ∈ K. Note
k−1F1F2 = 1. But R is Abelian and so directly finite; hence (k−1F1)F2 = 1
implies F2(k−1F1) = k−1F2F1 = 1. So F2F1 = k = F1F2. Therefore R is
weakly reversible-over-center.
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