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EFFECT OF NEGATIVE FEEDBACK LOOP WITH NRF1

AND MIR-378 OF NONALCOHOLIC FATTY LIVER DISEASE:

A MATHEMATICAL MODELING APPROACH

SiEun Lee and Kiyeon Shin∗

Abstract. Nonalcoholic fatty liver is a type of fatty liver in which fat

accumulates in the liver without alcohol. In the accumulation, Nrf1 and
miR-378 genes play very important role, so called negative feedback loop,

in which the two genes suppress the other’s production. In other words,

Nrf1 activates fatty acid oxidation which promotes fat consumption in the
liver, while miR-378 deactivates fatty acid oxidation. Thus, both genes

regulate nonalcoholic fatty liver.

In this paper, the negative feedback loop of Nrf1 and miR-378 are ex-
pressed by a system of ordinary differential equations. And, bifurcation

simulation shows the change in the amount of each gene with significant

parameter range changes. Bifurcation simulation has also used to deter-
mine the thresholds for transit between disease and steady state.

1. Introduction

Nonalcoholic fatty liver disease(NAFLD) is a disease in which liver triglyc-
eride accumulates regardless of alcohol consumption. NAFLD includes various
diseases of liver pathologies ranging from simple steatosis to inflammation of
varying degrees, hepatocyte injury and fibrosis [3]. Without intervention, it can
progress to end-stage liver disease and hepatocellular cancer. Risk of hepato-
cellular cancer is, in fact, significantly higher in NAFLD patients than in the
general clinical population [12].

A number of studies have proposed mathematical models that focus on the
genetic factors in various severe diseases, including cancer [13, 14, 15]. These
studies establish their mathematical models using experimental data. The ad-
vantage of the modelling is that they can provide predictions and potential
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insights beyond limited experimental data, generate new hypotheses, and sug-
gest disease treatment strategies for future testing. Thus, in this study, NAFLD
caused by genetic factors is approached using mathematical models.

Recent researches on the pathogenesis of NAFLD have considered small non-
coding RNAs, called microRNAs(miRNAs). They have been shown to be im-
portant regulators of lipids [8]. In particular, miR-378 is an upregulated target
of nuclear respiratory factor 1(Nrf1) in the liver [7]. The relation between Nrf1
and miR-378 is as follows; Nrf1 plays a role in mediating the activation of the
fatty acid oxidation(FAO) process [10] and the expression of miR-378 is neg-
atively regulated by Nrf1 and acts as a transcriptional inhibitor that forms
a negative feedback loop in which there is overexpression of miR-378-impaired
FAO, which is regulated via the suppression of Nrf1. Hence, a negative feedback
loop between miR-378 and Nrf1 regulates the NAFLD. According to the exper-
imental paper, the reduction of miR-378 is assumed to be a potential treatment
for NAFLD.

Figure 1. Negative feedback loop circuit between miR-378
and Nrf1[7]

Since this negative feedback loop can be established a mathematical model
for NAFLD, we would like to confirm the hypothesis about the possibility of
NAFLD treatment by regulating the amount of miR-378. Even though the
relevant experimental data have not yet collected, in our knowledge, on this
hypothesis, a mathematical model provides the possibility of confirming or re-
futing on the hypothesis.
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2. Gene regulatory network

All cellular functions are driven by proteins. Protein production occurs
through a gene expression process that involves the reading of information en-
coded in DNA. The cellular abundance of each protein is controlled primar-
ily by its production rate which is in turn controlled by specialized proteins
called transcription factors. A set of genes whose protein products regulate one
another expression rates is referred to as a gene regulatory network. In this
section, we will address gene regulatory networks that implement switch-like
responses. Gene expression is a two-step process. The first step, which is called
transcription, occurs when the coding region of a gene is rewritten in the form
of a complementary RNA strand called a messenger RNA(mRNA). Transcrip-
tion is carried out by a protein complex called RNA polymerase that binds the
promoter region of the gene and then walks along the DNA, catalyzing the for-
mation of the mRNA strand from nucleotide precursors. The second step of gene
expression is translation, in which the mRNA molecule binds a protein RNA
complex called a ribosome that reads the nucleotide sequence and produces a
corresponding polypeptide chain. Translation, like transcription, involves in-
formation transfer that the ribosome reads along the mRNA and catalyzes the
formation of a protein from amino acids building blocks. We will use the law of
mass action and a formalism on the basis of the Hill equation to develop models
of gene regulatory networks [6].

Definition 1. (Law of mass action) The law of mass action states that the rate
of any given chemical reaction is proportional to the product of concentrations
of the reactants.

For more specific explanation, we consider the case in which reactants R1

and R2 react together to give products P1 and P2,

aR1 + bR2 � cP1 + dP2,

where a,b,c and d are the number of moles of the corresponding reactants and
products. Then, according to the law of mass action,

Rate of forward reaction ∝ [R1]a[R2]b

=⇒ Rate of forward reaction = Kf [R1]a[R2]b,

Rate of backward reaction ∝ [P1]c[P2]d

=⇒ Rate of backward reaction = Kb[P1]c[R2]d,

where Kf and Kb are the rate constants for forward and backward reaction,
respectively. At equilibrium state, the rate of forward reaction becomes equal
to the rate of backward reaction. i.e.,

Kf [R1]a[R2]b = Kb[P1]c[R2]d or
Kf

Kb
=

[P1]c[P2]d

[R1]a[R2]b
.

Therefore, K = Kf/Kb is called as the equilibrium constant or more specifically
the dissociation constant. Dissociation constant measure the tendency of a
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larger object to fall apart into its separate subunits or components. Its value
is determined by experimental data and gives an indication on the degree to
which dissociation occurs. If the dissociation constant is small, then there is a
high affinity between the components [9].

Definition 2. (Hill equation) The Hill equation, which was derived from the
Michaelis-Menten kinetics, describes the enzyme reaction mechanism based on
the law of mass-action. The general Hill equation form is

nL+R� LnR, [Ln] = [R0]
[L]n

[L]n +Kd
= [R0]

[L]n

[L]n + (KA)n

where L is the ligand that can be present in variable concentration; R is the re-
ceptor, amount of which is constant and is significantly exceeded by the amount
of the ligand; [LnR] is the concentration of the ligand-receptor complex; [R0] is
the total receptor concentration(receptor number); [L] is the concentration of
the free ligand; k1 and k2 are the rate constants of association and dissociation,
respectively; Kd = k2/k1 is the equilibrium dissociation constant of the ligand-
receptor complex; KA is the ligand concentration, at which half the receptors
are ligand-bound(if n = 1, it equals the Kd); n is originally, the number of
binding sites for the given ligand in one receptor [11].

We note that we obtain a model which is modeled by Michaelis-Menten
kinetics when n = 1.

We introduce the modelling process of gene input functions using Hill equa-
tion. First, we consider the following reaction to focus on the binding of repres-
sor;

X +D
Kf−−⇀↽−−
Kb

[XD].

Here, in the forward reaction, the transcription factor protein, X binds to the
binding site, D of the promoter to form the complex XD at the rate Kf .
In the backward reaction XD is dissociating into X and D at the rate Kb.
Transcription of the gene occurs only when X is not bound or when D is free.
In fact, most transcription factors are composed of multiple subunits and in
order to achieve maximum activity these multiple subunits cooperatively bind
the binding site.

Next, we suppose there are n subunits. Then the Hill equation of input
function of the gene bound with repressor is

Promoter activity =
β

1 + ([X]/Kd)n

and n is called as the Hill coefficient [2]. Promoter activity is defined as the
number of RNA polymerase molecules that pass by the final base pair of the
promoter and continue along the DNA as an elongation complex. In general,
measuring gene products like mRNA and protein has been the approach used
to measure promoter activity [18].
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3. Mathematical Modeling

3.1. Double-negative feedback loop model

Negative feedback occurs when a cause produces an effect and the result
suppresses the cause. In biology, it appears in the regulation of hormone levels,
body temperature control, and reactions between various enzymes. Double-
negative feedback loops mean that the two elements eventually suppress each
other. In [17], miR-378 and Nrf1 produce a double-negative feedback loop
because they constrain each others output. In general, double-negative feedback
loops have included a ‘transition’ that controls results and can be represented
through a mathematical model [17].

3.2. NAFLD model description

The negative feedback loop between miR-378 and Nrf1 controlling NAFLD
is briefly depicted in Figure 2. As a result of the experiments previously men-
tioned, miR-378 upregulates NAFLD by decreasing FAO through the inhibition
of Nrf1 expression. Meanwhile, Nrf1 downregulates NAFLD by increasing FAO
through its inhibition of miR-378 expression.

N Concentration of Nrf1
m Concentration of miR-378
k1 Maximal transcription rate of Nrf1
k2 Michaelis constant for Nrf1 production catalase by miR-378
γ Degradation rate of Nrf1
k3 Maximal transcription rate of miR-378
k4 Michaelis constant for miR-378 production catalase by Nrf1
δ Degradation rate of miR-378

Table 1. Variables and parameters used in NAFLD model.

Here, we focus on the model of the feedback loop between miR-378 and Nrf1,
which controls the phenotype with NAFLD or the normal phenotype :

dN

dt
=

k1
1 + k2m

− γN (1)

dm

dt
=

k3
1 + k4N2

− δm (2)

The scheme of the NAFLD model is illustrated in Figure 2. The first term
of (1) represents the promoter activity of Nrf1 under the inhibition of miR-378.
Similarly, the first term of (2) reveals the promoter activity of miR-378 under
the inhibition of Nrf1. Both of the first terms consider the reaction :

N +m
e−−⇀↽−−
f

[Nm], (3)

m+N
g−−⇀↽−−
h

[mN ]. (4)
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Figure 2. Schematic diagram of negative feedback loop be-
tween miR-378 and Nrf1

[Nm] and [mN ] are not equal since, even Nrf1 and miR-378 inhibit and regulate
each other, the react to inhibit sites are different. Therefore, according to
reactions (3) and (4), the promoter activities of Nrf1 and miR are

k1

1 +
e

f
m

=
k1

1 + k2m
and

k3

1 +
g

h
N2

=
k3

1 + k4N2
,

respectively. The rate of synthesis of Nrf1 is indicated by the first term in the
equation (1). k1 represents maximal constitutive protein expression, where the
denominator (1 + k2m) indicates miR-378 dependent downregulation of Nrf1
expression. Similarly, the repression of Nrf1 by miR-378 is performed equation
(2). The rate of synthesis of miR-378 repressed by Nrf1 represents the first
term. k3 is a parameter that describes the maximal miR-378 production rate.
The denominator of that term performed Nrf1 dependent downregulation of
miR-378 expression, where Hill coefficient 2 can arise binding of Nrf1 to two
sites in the region of miR-378.

4. Mathematical Analysis

In this section, the qualitative behavior of the NAFLD model is discussed.
In particular, we investigated the existence of the positive equilibrium point
of the model and its local asymptotic stability. Moreover, the bifurcation dia-
grams demonstrated qualitative changes. First, however, we explored whether
the model implied biological significance, equilibrium solutions, and stability
analysis.
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4.1. Equilibrium solutions and stability analysis

Since the NAFLD model describes biological phenomena, it is very important
to prove that all of the states, variables, and parameters are nonnegative with
respect to time. In other words, we had to prove that solution of the model
with positive initial values remains positive at all times t ≥ 0.

Theorem 4.1. The region D = {(N,m) |N ≥ 0,m ≥ 0, k1

1+k2m
≥ 0, k3

1+k4N2 ≥
0} is positively invariant for the NAFLD model.

Proof. The state variables (N,m) that remain in the biologically meaningful
region {(N,m) | N ≥ 0,m ≥ 0} is positively invariant for NAFLD model.
In addition, all of the model parameters are supposed to be strictly positive
constants. We calculated the model as follows ;

dN

dt

∣∣∣∣
N=0

=
k1

1 + k2m
≥ 0,

dm

dt

∣∣∣∣
m=0

=
k3

1 + k4N2
≥ 0. (5)

Equations in (5) indicate that
dN

dt
and

dm

dt
are always non-negative at all times

t > 0. Therefore, the positive invariant for the model region is D, which is
biologically valid. �

Theorem 4.2. Let the system (1)–(2) has the NAFLD-free equilibrium E0 =
(N0, 0). Then the E0 is locally asymptotically stable if C1 > 0 and it is unstable

if C1 < 0 where C1 = γδ − 2k1k2k3k4√
1 + k4N2

0

√
1 + k2

.

Proof. Suppose E0 = (N0, 0) is equilibrium point. Then we get

0 = k1 − γN0 (6)

0 =
k3

1 + k4N2
0

(7)

Taking m = 0 in (2), we have k1−γN = 0. Since the equilibrium of our system

(2) leads to N0 =
k1
γ

, we get E0 = (
k1
γ
, 0). Before computing the Jacobian

matrix at E0, it is useful to choose a suitable order for the components, N and
m. The Jacobian matrix evaluated at E0 is the form

J(E0) =

 −γ −k1k2√
1 + k2

−2k3k4N0√
1 + k4N2

0

−δ


The characteristic equation of E0 is

f(λ) = λ2 + (γ + δ)λ+ γδ − 2k1k2k3k4√
1 + k4N2

0

√
1 + k2

= λ2 + (γ + δ)λ+ C1 = 0
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Hence, we get Tr(J) = −(γ + δ) and det(J) = C1. Since every parameters
are non-negative, clearly Tr(J) < 0. By the Routh-Hurwitz criterion [1], E0 =
(N0, 0) is locally asymptotically stable if C1 > 0 and it is unstable if C1 < 0. �

Biologically miR-378-ASO(anti-sense oligonucleotide) treatment significantly
reduces miR-378 in hepatocytes[7]. We assumed this state as E0. In conclusion,
this local asymptotic stability says that solutions having initial values near E0

move to the point E0 eventually. This fact indicates that if m is not present, it
converges to E0.

Theorem 4.3. Let the system (2)–(3) has infected NAFLD equilibrium E1 =
(N1,m1) with m1 > 0. Then E1 is locally asymptotically stable if C2 > 0 and

it is unstable if C2 < 0 where C2 = γδ − 2k1k2k3k4N1√
1 + k4N2

1

√
1 + k2m1

.

Proof. Suppose E1 = (N1,m1) is equilibrium point. Then we get

0 =
k1

1 + k2m1
− γN2

1 , (8)

0 =
k3

1 + k4N2
1

− δm1. (9)

we have m1 =
k3

δ(1 + k4N2
1 )

. Substituting (9) into the first equation of (8),

we obtain
γδk4N

3
1 − δk1k4N2

1 + (γδ + γk2k3)N1 − δk1 = 0 (10)

The cubic equation of N1 may have up three solutions. There are two complex
solutions and one non-negative solutions such as

Na =
k1
3γ
− A

3γδk4
− B

3γδk4
,

Nb =
k1
3γ

+
(1 + i

√
3)A

6γδk4
+

(1− i
√

3)B

6γδk4
,

Nc =
k1
3γ

+
(1− i

√
3)A

6γδk4
+

(1 + i
√

3)B

6γδk4
.

Here, A3 =
C3 +

√
C4

2
and B3 =

C3 −
√
C4

2
where

C3 = −2δ3k31k
3
4 + 9γδ2k1k

2
4(γδ + γk2k3)− 27γ2δ3k1k

2
4,

C4 = C3 − 4(δ2k21k
2
4 − 3γδk4(γδ + γk2k3))3.

Since only the non-negative solution is biologically relevant, we can choose N1 =

Na =
k1
3γ
− A

3γδk4
− B

3γδk4
. Putting Na in (6), m1 =

2δk1k4 +A+B

k2(δk1k4 −A−B)
.

Therefore, we get

E1 = (N1,m1) = (
δk1k4−A−B

3γδk4
,

2δk1k4 +A+B

k2(δk1k4 −A−B)
).
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If δk1k4 − A − B > 0, then E1 is always a non-negative equilibrium point.
Computing the Jacobian matrix at E∗ for (6), we have

J(E∗) =

 −γ −k1k2√
1 + k2m1

−2k3k4N1√
1 + k4N2

1

−δ


The characteristic polynomial of E1 is

f(λ) = λ2 + (γ + δ)λ+ γδ − 2k1k2k3k4N1√
1 + k4N2

1

√
1 + k2m1

= λ2 − Tr(J)λ+ det(J).

Since every parameter is positive, clearly Tr(J) < 0. Therefore, if C2 > 0 then
E1 is locally asymptotically stable and it is unstable if C2 < 0 where

C2 = γδ − 2k1k2k3k4N1√
1 + k4N2

1

√
1 + k2m1

.

�

4.2. Numerical results

In this section, we simulated the effect of the Nrf1 and miR-378 negative
feedback loop on NAFLD. Figure 3 and Figure 4 show the bifurcation diagrams
of Nrf1 and miR-378 with the change of range k3. Figure 5 and Figure 6 show
the bifurcation diagrams of Nrf1 and miR-378 with the change of range k1 in
Figure 4.

In Figure 3 and Figure 4, when k3 is small, the Nrf1 level is higher than
the miR-378 level. Thus, the phenotype appears in a normal state. In contrast,
when k3 is large, the miR-378 level is higher than Nrf1. In the case, the opposite
reaction occurs; that is, the NAFLD phenotype appears. The regions with an
intermediate k3 represent two positive stable equilibria (depicted by solid line).
In general, that is called a bistability region. Between the two stable equilibria,
there is an unstable equilibrium (depicted by a dashed line). When k3 becomes
large, the state of the region of the phenotype changes from its normal state to
NAFLD. Conversely, when k3 becomes small, the opposite change occurs. As
k3 gradually increases or decreases, the point at which the phenotype begins to
change is BP and is called the threshold.

Similarly, in Figure 5 and Figure 6, when k1 is small, the Nrf1 level is smaller
than the miR-378 level. Thus, the phenotype represents NAFLD state. In
contrast, when k1 is large, the Nrf1 level is larger than the miR-378 level. In
this case, the opposite reaction occurs, that is, the normal phenotype appears.
Figure 5 and Figure 6 similar to Figure 3 and Figure 4, the regions with an
intermediate k1 represent two positive stable equilibria (depicted by a solid line).
In general, it is called a bistability region. Between the two stable equilibria
represent unstable equilibrium (depicted by a dashed line). When k1 becomes
large, the state of the region of the phenotype changes from NAFLD to normal



374 S. LEE AND K. SHIN

Figure 3. Bifurcation diagram of N with the change of k3.
The Nrf1 and miR-378 levels at equilibria. The parameter val-
ues are: k1 = 0.05, k2 = 100, k4 = 3000, γ = 0.33, δ = 0.02.

Figure 4. Bifurcation diagram of m with the change of k3.
The Nrf1 and miR-378 levels at equilibria. The parameter val-
ues are: k1 = 0.05, k2 = 100, k4 = 3000, γ = 0.33, δ = 0.02.

state. Conversely, when k1 becomes small, the opposite situation occurs. As
k1 gradually increases or decreases, the point at which the phenotype begins
to change is BP and is called the threshold. Overall, therefore, the disease
phenotype is changed when k3 is exceeded by certain thresholds of Nrf1 and
miR-378. It is the fact that maximal transcription rate of miR-378 is the key
of NAFLD therapy.



NEGATIVE FEEDBACK LOOP WITH NRF1 AND MIR-378 375

Figure 5. Bifurcation diagram of N with the change of k1.
The Nrf1 and miR-378 levels at equilibria. The parameter val-
ues are: k2 = 100, k3 = 0.0022, k4 = 3000, γ = 0.33, δ = 0.02.

Figure 6. Bifurcation diagram of m with the change of k1.
The Nrf1 and miR-378 levels at equilibria. The parameter val-
ues are: k2 = 100, k3 = 0.0022, k4 = 3000, γ = 0.33, δ = 0.02.

5. Discussion

In a previous study, the therapeutic potential of miR-378 reducing drugs
is mentioned [7]. In this study, a nonlinear mathematical model for NAFLD
was established for two genes, miR-378 and Nrf1. The mathematical model
yielded two asymptotical stable intervals of NAFLD-free equilibria and one
NAFLD equilibria. We obtained bifurcation to observe the change of Nrf1
and miR-378 concentrations depending on the range of k1 and k3. Further,
analysis of the model revealed the presence of a transition in NAFLD. Analysis
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of the model revealed the presence of a transition in NAFLD; an “on transition”
from the normal state to the NAFLD state and an “off transition” from the
NAFLD state to the normal state. This mathematical modeling study shows
that the treatment of the disease can be enhanced by switching off NAFLD by
the regulation of miR-378.
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