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A NOTE ON TWO WEIGHT INEQUALITIES FOR THE

DYADIC PARAPRODUCT

Daewon Chung

Abstract. In this paper, we provide detailed proof of the Sawyer type

characterization of the two weight estimate for the dyadic paraproduct.

Although the dyadic paraproduct is known to be a well localized opera-
tors and the testing conditions obtained from checking boundedness of the

given localized operator on a collection of test functions are provided by

many authors. The main purpose of this paper is to present the neces-
sary and sufficient conditions on the weights to ensure boundedness of the

dyadic paraproduct directly.

1. Introduction

Weighted norm estimates for singular integral operators are widely encoun-
tered and studied in many areas of analysis. The one-weight case are now well
understood. Precisely, one looks for a function φ(x) sharp in terms of its growth,
such that

‖Tf‖L2(w) ≤ Cφ([w]A2
)‖f‖L2(w)

where [w]A2
is the A2-characteristic of the weight w . The answer of this question

for the general Caldéron-Zygmund operator is given, in 2012, [5] and for their
commutators [4]. The two-weight case are now only known for the maximal
function [7] which is the first result obtained in two-weight setting, fractional
and Poisson integrals, square functions and the Hilbert transform, the martin-
gale transform, and positive and well localized dyadic operators. Recently, the
author in [1] also provides the proof for essentially well localized operators. Al-
though the dyadic paraproduct is a well localized operator, therefore, it follows
the conditions for well localized operators, direct proof of the necessary and suf-
ficient conditions on the weights for the boundedness of the dyadic paraproduct
are not published yet except paraproduct type operators which appeared in the

Received April 2, 2020; Accepted May 8, 2020.
2010 Mathematics Subject Classification. Primary 42A30 ; Secondary 42B20.
Key words and phrases. Two weight inequalities, Dyadic paraproduct, Carleson

Embedding.
The author was supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future

Planning(2015R1C1A1A02037331).

c©2020 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

377



378 D. CHUNG

two weight estimate for the Hilbert transform. In this paper, we provide direct
proof for the dyadic paraproduct. As we mentioned, we consider the bounded-
ness of the dyadic paraproduct πb acting from L2(R, u) to L2(R, v), i.e. we will
characterize the following inequality

‖πbf‖L2(v) ≤ C‖f‖L2(u) (1.1)

for all f ∈ L2(u). In what follows D denotes the dyadic intervals, hI denotes the
Haar function associated with I, and 〈f, g〉 :=

∫
fḡ denotes the inner product

on L2(R). The dyadic paraproduct is defined by

πbf =
∑
I∈D
〈b, hI〉〈f〉IhI ,

and the linear bound for the one weight case are obtained in [2] and the quanti-
tative two weight estimates are obtained in [3], which are more geometric since
the condition only involves the weights and not the operators, such as Carleson
conditions or bilinear embedding conditions, and A2-type conditions. It is com-
mon when one consider the two-weight problem to make the change of variables
f = wf u = w−1. Then it allows us to characterize the boundedness of πb(w·)
from L2(w) to L2(v), i.e. we need to characterize the inequality

‖πb(wf)‖L2(v) ≤ C‖f‖L2(w)

instead of the inequality (1.1). We now state the main theorem.

Theorem 1.1. Let v and w be two Radon measures on R. Then

‖πb(wf)‖L2(v) ≤ C‖f‖L2(w), ‖π∗b (vf)‖L2(w) ≤ C‖f‖L2(v) (1.2)

if and only if for all I, J ∈ D and I ∩ J 6= ∅, the following testing conditions
hold:

‖1Iπb(w1I)‖L2(v) ≤ C1‖1I‖L2(w) (1.3)

‖1Iπ∗b (v1I)‖L2(w) ≤ C2‖1I‖L2(v) (1.4)

|〈πb(w1I), v1J〉 ≤ C3w(I)1/2v(J)1/2 (1.5)

In Theorem 1.1, π∗b stands for the adjoint operator of the dyadic paraproduct
which is defined by

π∗bf =
∑
I∈D
〈b, hI〉〈f, hI〉

1I

|I|
,

where 1I denotes the characteristic function of the interval I. We also use the
notation w(I) for the w-measure of an interval I, i.e. w(I) =

∫
I
wdx . Definitions

and some useful lemmas are collected in Section 2. We give the proof of the main
theorem and concluding remarks in Section 3 and in Section 4, respectively.
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2. Definitions and Useful lemmatas

In this section, we will review definitions, notations and some useful lemmas.
Throughout the paper a constant C will be a numerical constant that may
change from line to line. The symbol A . B means there is a constant c > 0
such that A ≤ cB. Given a weight w and an interval I we define the weighed
Haar function associated to I as

hwI (x) =
1

w(I)1/2

[
w(I−)1/2

w(I+)1/2
1I+ −

w(I+)1/2

w(I−)1/2
1I−

]
,

where I+ and I− denote the right and left half of I, respectively. The Haar
systems {hI}I∈D and {hwI }I∈D are orthonormal systems in L2 and L2(w) re-
spectively, where L2(w) is the collection of square integrable functions with
respect to the measure wdx and it is a Hilbert space with the weighted inner
product defined by 〈f, g〉w =

∫
fgwdx . Then, every function f ∈ L2(w) can be

written as

f =
∑
I∈D
〈f, hwI 〉whwI

where the sum converges almost everywhere in L2(w). Moreover,

‖f‖2L2(w) =
∑
I∈D
|〈f, hwI 〉w|2 .

For convenience, we will observe basic properties of the weighted Haar system.
First observe that 〈hK , hwI 〉w could be non-zero only if I ⊇ K; moreover, for
any I ⊇ K ,

|〈hK , hwI 〉w| ≤ 〈w〉
1/2
K .

For I ) J , hwI is constant on J . If we denote this constant by hwI (J), the
weighted average 〈f〉J,w := w(J)−1

∫
J
gw can be written as follows

〈f〉J,w =
∑
I)J

〈f, hwI 〉whwI (J) .

Throughout the paper the following Weighted Caleson Embedding Theorem
will be used frequently. This Theorem was first stated in [6].

Theorem 2.1 (Weighted Carleson Embedding Theorem). Let {αJ} be a non-
negative sequence such that for all dyadic intervals I,∑

J∈D(I)

αJ ≤ Cw(I) .

Then for all f ∈ L2(w), ∑
J∈D

αJ〈f〉2J,w ≤ 4C‖f‖2L2(w) .

We also use the following lemmas in the proof of Theorem 1.1.
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Lemma 2.2. For any weights w and v satisfying the testing condition (1.5)
and weighted Haar functions hwI and hvI , the following estimate holds:

|〈πb(whwI ), vhvI 〉| ≤ 4C3 ,

Proof. Using the definition of the weighted Haar function and the well localized
property of πb, we have that

|〈πb(whwI ), vhvI 〉|

≤

√
w(I−)v(I−)

w(I)w(I+)v(I)v(I+)

∣∣〈πb (w1I+) , v1I+〉∣∣
+

√
w(I+)v(I+)

w(I)w(I−)v(I)v(I−)

∣∣〈πb (w1I−) , v1I−〉∣∣
+

√
w(I+)v(I−)

w(I)w(I−)v(I)v(I+)

∣∣〈πb (w1I−) , v1I+〉∣∣
+

√
w(I−)v(I+)

w(I)w(I+)v(I)v(I−)

∣∣〈πb (w1I+) , v1I−〉∣∣
≤

√
1

w(I+)v(I+)

∣∣〈πb (w1I+) , v1I+〉∣∣+

√
1

w(I−)v(I−)

∣∣〈πb (w1I−) , v1I−〉∣∣
+

√
1

w(I−)v(I+)

∣∣〈πb (w1I−) , v1I+〉∣∣+

√
1

w(I+)v(I−)

∣∣〈πb (w1I+) , v1I−〉∣∣
≤ 4C3 .

�

Lemma 2.3. For any weights w and v satisfying the testing conditions (1.3)
and (1.4), the following estimates hold with a fixed dyadic interval I0:

(1)
∣∣∣∑I∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g〉I0,v1I0〉
∣∣∣ . C2‖f‖L2(w)‖g‖L2(v),

(2)
∣∣∣∑J∈D(I0)

〈〈f〉I0,wπb(w1I0), v〈g, hvJ〉vhvJ〉
∣∣∣ . C1‖f‖L2(w)‖g‖L2(v),

(3) |〈〈f〉I0,wπb(w1I0), v〈g〉I0,v1I0〉| . C1‖f‖L2(w)‖g‖L2(v).

Proof. For the estimate (1), we use the linearity of πb, the Cauchy-Schwarz
inequality, and the testing condition (1.4). Then we have∣∣∣∣∣∣

∑
I∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g〉I0,v1I0〉

∣∣∣∣∣∣
≤ |〈g〉I0,v|

∑
I∈D(I0)

|〈πb(w〈f, hwI 〉whwI ), v1I0〉|
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≤ |〈g〉I0,v|

∣∣∣∣∣∣
〈
πb

w ∑
I∈D(I0)

〈f, hwI 〉whwI

 , v1I0

〉∣∣∣∣∣∣
= |〈g〉I0,v|

∣∣∣∣∣∣
〈
w1/2

∑
I∈D(I0)

〈f, hwI 〉whwI , w1/2
1I0π

∗
b (v1I0)

〉∣∣∣∣∣∣
≤ |〈g〉I0,v|

∥∥∥∥∥∥
∑

I∈D(I0)

〈f, hwI 〉whwI

∥∥∥∥∥∥
L2(w)

‖1I0π∗b (v1I0)‖L2(w)

≤ C2
1

v(I0)

(∫
I0

|g|2v
)1/2(∫

I0

v

)1/2

‖g‖L2(v)‖f‖L2(w)‖1I0‖L2(v)

= C2‖g‖L2(v)‖f‖L2(w)

Similarly to the estimate (1) one can immediately get the estimates (2) and
(3). �

3. Proof of Theorem 1.1

First we will assume that f and g are finite linear combinations of charac-
teristic functions 1I with 2−n|I0| ≤ |I| ≤ |I0| for some dyadic interval I0 and
n > 0. Since we will get the estimates independent of I0 and d, by the density
of the simple function in L2(w), we can get the result for general f and g. Then
our considering function f and g are compactly supported on a dyadic interval
I0 ∈ D.

Since

πb(hI) =
∑
J(I

〈b, hJ〉〈hI〉JhJ and π∗b (hI) = 〈b, hI〉
1I

|I|
,

the dyadic paraproduct and its adjoint operator are both well localized. There-
fore we will consider functions f and g compactly supported on a dyadic interval
I0 ∈ D. Then we can write

f =
∑

I∈D(I0)

〈f, hwI 〉whwI + 〈f〉I0,w1I0 , g =
∑

I∈D(I0)

〈g, hvI 〉vhvI + 〈g〉I0,v1I0 .

For the necessary condition for boundedness of πb and π∗b can be easily obtained
by replacing f = g = 1I in (1.2) and f = 1I and g = 1J in the following duality
argument (3.1) for I, J ∈ D . For the sufficient condition, by duality, it is enough
to prove:

〈πb(fw), gv〉 ≤ C‖g‖L2(v)‖f‖L2(w) . (3.1)

We start the proof of (3.1) by splitting the left-hand side of the inequality (3.1)
into several sums.

〈πb(fw), gv〉 =
∑

I,J∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g, hvJ〉vhvJ〉
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+
∑

I∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g〉I0,v1I0〉

+
∑

J∈D(I0)

〈〈f〉I0,wπb(w1I0), v〈g, hvJ〉vhvJ〉

+ 〈〈f〉I0,wπb(w1I0), v〈g〉I0,v1I0〉
:= Σ1 + Σ2 + Σ3 + Σ4 .

By Lemma 2.3, we get the following for the last three sums:

|Σ2|+ |Σ3|+ |Σ4| . (C1 + C2)‖f‖L2(w)‖g‖L2(v) .

Thus it is enough to consider the first sum Σ1. We will also split Σ1 into several
sums as follows.

|Σ1| =

∣∣∣∣∣∣
∑

I,J∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g, hvJ〉vhvJ〉

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑

I,J∈D(I0)
J)I

〈πb(w〈f, hwI 〉whwI ), v〈g, hvJ〉vhvJ〉

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

I,J∈D(I0)
I)J

〈πb(w〈f, hwI 〉whwI ), v〈g, hvJ〉vhvJ〉

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

I∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g, hvI 〉vhvI 〉

∣∣∣∣∣∣
:= |Σ5|+ |Σ6|+ |Σ7| .

We use Lemma 2.2 for Σ7. Then we have

|Σ7| =

∣∣∣∣∣∣
∑

I∈D(I0)

〈πb(w〈f, hwI 〉whwI ), v〈g, hvI 〉vhvI 〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

I∈D(I0)

〈f, hwI 〉w〈g, hvI 〉v 〈πb(whwI ), vhvI 〉

∣∣∣∣∣∣
≤ sup

I∈D(I0)

|〈πb(whwI ), vhvI 〉|

 ∑
I∈D(I0)

〈f, hwI 〉2w

1/2 ∑
I∈D(I0)

〈g, hvI 〉2v

1/2

≤ 4C3‖f‖L2(w)‖g‖L2(v)

Since Σ5 and Σ6 are symmetric, one can get the estimate of Σ6 similar to Σ5.
Now we only have Σ5 to finish the proof.
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Stopping intervals: In order to get the estimate for Σ5 we will use the
stopping time argument. We follow the standard construction of stopping in-
tervals appeared in [8] to construct collection S ⊂ D of stopping intervals. For

a interval J , let S̃(J) be the collection of maximal intervals I ∈ D(J) such that

〈g〉J,v > 2〈g〉J,v .

Let S :=
⋃

I∈S̃(J) I , and let R(J) := D(J) \
⋃

K∈S̃ D(K). Then we see im-

mediately that the collection of stopping intervals S̃(J) satisfies the following
properties:

(1) For any I ∈ R(J) we have 〈g〉I,v ≤ 2〈g〉J,v .
(2) v(G(J)) ≤ 1

2v(J).

In order to construct the collection S of stopping intervals, consider all maximal
I ∈ D(J) with |I| ≤ 2K where K is a fixed large integer. Then collection of these

maximal intervals will be the first generation S̃1 of stopping intervals. We get the

second generation of stopping intervals for each I ∈ S̃1, construct the collection

S̃(I) of stopping intervals and define the second generation S̃2 =
⋃

I∈S̃1 S̃(I) .
We define recursively a sequence of next generations

S̃n+1 =
⋃

I∈S̃n

S̃(I)

and the collection of stopping intervals S :=
⋃

n≥1 S̃n. Property (2) gives us
the following Carleson embedding condition, for all J ∈ D .∑

I∈S∩D(J)

v(I) ≤ 2v(J) .

For every interval I ∈ D(I0), we define the stopping parent and the projection
as follows

P(I) := min{J ∈ S | J ⊇ I} ,

P
w
J f =

∑
I:P(I)=J

〈f, hwI 〉hwI , Pv
Jg =

∑
I:P(I)=J

〈g, hvI 〉hvI .

Then we can write f =
∑

I∈S P
w
I f and g =

∑
J∈S P

v
Jg . Furthermore, we have

Σ5 =
∑

I,J∈S
〈πb(Pv

I (wf), vPv
Jg〉

=
∑
I∈S
〈πb(Pw

I (wf), vPv
Ig〉+

∑
I,J∈S
J)I

〈πb(Pw
I (wf), vPv

Jg〉

:= Σ8 + Σ9 .
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3.1. Estimating Σ8

For the sum Σ8, we have

Σ8 =
∑
I∈S
〈πb(Pw

I (wf)), vPv
Ig〉

=
∑
I∈S

∑
K(L∈D(I)
P(K)=P(L)=I

〈πb(w〈f, hwK〉whwK), v〈g, hvL〉vhvL〉

=
∑
I∈S

∑
K∈D(I)
P(K)=I

〈
πb(w〈f, hwK〉whwK), v

∑
L:K(L∈D(I)
P(L)=I

〈g, hvL〉vhvL

〉

=
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v (〈g〉K,v1K − 〈g〉I,v1I)〉

=
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉K,v1K〉

−
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉I,v1I〉 .

Then we get

|Σ8| ≤

∣∣∣∣∣∣∣∣
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉K,v1K〉

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉I,v1I〉

∣∣∣∣∣∣∣∣
:= |Σ10|+ |Σ11| .

It is good to remind the stopping condition which is 〈g〉K,v ≤ 〈g〉I,v. Using this
fact, we have the followings

|Σ10| =

∣∣∣∣∣∣∣∣
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉K,v1K〉

∣∣∣∣∣∣∣∣
≤
∑
I∈S

∑
K∈D(I)
P(K)=I

|〈g〉I,v| |〈πb(w〈f, hwK〉whwK), v1K〉|
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≤
∑
I∈S
|〈g〉I,v|

∑
K∈D(I)
P(K)=I

|〈w〈f, hwK〉whwK , π∗b (v1K)〉|

≤
∑
I∈S
|〈g〉I,v|

∑
K∈D(I)
P(K)=I

‖〈f, hwK〉whwK‖L2(w)‖π∗b (v1K)‖L2(w)

≤ C2

∑
I∈S
|〈g〉I,v|

∑
K∈D(I)
P(K)=I

‖〈f, hwK〉whwK‖L2(w)‖v1K‖L2(w)

≤ C2

∑
I∈S
|〈g〉I,v|

 ∑
K∈D(I)
P(K)=I

‖〈f, hwK〉whwK‖2L2(w)


1/2 ∑

K∈D(I)
P(K)=I

w(K)


1/2

≤ C2

∑
I∈S
|〈g〉I,v|v(I)1/2‖Pw

I f‖L2(w) .

Then for the sum Σ11 we have

|Σ11| =

∣∣∣∣∣∣∣∣
∑
I∈S

∑
K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v〈g〉I,v1I〉

∣∣∣∣∣∣∣∣
≤
∑
I∈S
|〈g〉I,v|

∣∣∣∣∣∣∣∣
∑

K∈D(I)
P(K)=I

〈πb(w〈f, hwK〉whwK), v1I〉

∣∣∣∣∣∣∣∣
≤
∑
I∈S
|〈g〉I,v|

∣∣∣∣∣∣∣∣
〈
πb

w ∑
K∈D(I)
P(K)=I

〈f, hwK〉whwK

 , v1I

〉∣∣∣∣∣∣∣∣
≤
∑
I∈S
|〈g〉I,v|

∣∣∣∣∣∣∣∣
〈
w

∑
K∈D(I)
P(K)=I

〈f, hwK〉whwK ,1Iπ∗b (v1I)

〉∣∣∣∣∣∣∣∣
≤
∑
I∈S
|〈g〉I,v|‖Pw

I f‖L2(w)‖1Iπ∗b (v1I)‖L2(w)

≤ C2

∑
I∈S
|〈g〉I,v| v(I)1/2‖Pw

I f‖L2(w) .
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Combining the estimates for Σ10 and Σ11 and using the Carleson Embedding
Theorem, we have

|Σ8| ≤ C2

∑
I∈S
|〈g〉I,v|v(I)1/2‖Pw

I f‖L2(w)

≤ C2‖f‖L2(w)

(∑
I∈S
|〈g〉I,v|2v(I)

)1/2

≤ C2‖f‖L2(w)‖g‖L2(v) .

For the sum Σ9, using the localized property of πb i.e. πb(wP
w
I (wf)) = 1Iπb(wP

w
I (wf)

and 〈g〉I,v1I = 1I

∑
J)I〈g, hvK〉vhvK we have that

Σ9 =
∑

I,J∈S
J)I

〈πb(Pw
I (wf)), vPv

Jg〉 =
∑
I∈S

〈
πb(P

w
I (wf)), v

∑
J∈S,J)I

P
v
Jg

〉

=
∑
I∈S

∑
K)I

〈πb(Pw
I (wf)), v1I〈g, hvK〉vhvK〉

=
∑
I∈S
〈g〉I,v 〈πb(Pw

I (wf)), v1I〉

Thus, we get the last estimate

|Σ9| ≤
∑
I∈S
|〈g〉I,v 〈πb(Pw

I (wf)), v1I〉| ≤
∑
I∈S
|〈g〉I,v 〈Pw

I (wf),1Iπ
∗
b (v1I)〉|

≤
∑
I∈S
|〈g〉I,v| ‖Pw

I (wf)‖L2(w)‖1Iπ∗b (v1I)‖L2(w)

≤ C2‖f‖L2(w)

(∑
I∈S
|〈g〉I,v|2 v(I)

)1/2

≤ C2‖f‖L2(w)‖g‖L2(v) .

Once again we use the Carleson Embedding Theorem for the last inequality.
Since the sum Σ6 is symmetric to Σ5, by the estimates for the sums Σ7, Σ8, Σ9,
Σ10, and Σ11, we get the estimate for the sum Σ1 as follows

|Σ1| ≤ C‖f‖L2(w)‖g‖L2(v) ,

where C . C1 + C2 + C3 and this indeed finished the proof.

4. Concluding Remarks

As we mentioned in the beginning, the authors in [3] obtained the quantita-
tive estimate for the dyadic paraproduct. They prove the following Theorem.

Theorem 4.1. Let (u, v) be a pair of measurable functions on R such that v
and u−1, the reciprocal of u, are weights on R and such that

(i) (u, v) ∈ Ad
2, that is [u, v]Ad

2
:= supI∈DmI(u−1)mIv <∞.
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(ii) there is a constant Du,v > 0 such that∑
I∈D(J)

|∆Iv|2|I|mI(u−1) ≤ Du,vv(J) for all J ∈ D,

where ∆Iv := mI+v −mI−v.
Assume that b ∈ Carlu,v, that is b ∈ L1

loc(R) and there is a constant Bu,v > 0
such that ∑

I∈D(J)

|〈b, hI〉|2

mIv
≤ Bu,vu−1(J) for all J ∈ D.

Then πb, the dyadic paraproduct associated to b, is bounded from L2(u) into
L2(v). Moreover, there exists a constant C > 0 such that for all f ∈ L2(u)

‖πbf‖L2(v) ≤ C
√

[u, v]Ad
2
Bu,v

(√
[u, v]Ad

2
+
√
Du,v

)
‖f‖L2(u) ,

where πbf :=
∑

I∈DmIf 〈b, hI〉hI .

Also, they provide a necessary condition for boundedness of πb. However,
there are no results connecting Theorem 1.1 and Theorem 4.1 yet. This might
be a very challenging and interesting problem.
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