

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

U - HANG KI AND SOO JIN KIM*

ABSTRACT. Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (ϕ, ξ, η, g) in a complex space form $M_{n+1}(c)$, $c \neq 0$. We denote by R_{ξ} and R'_X be the structure Jacobi operator with respect to the structure vector ξ and be $R'_X = (\nabla_X R)(\cdot, X)X$ for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies $dt(X,Y) = 2\theta g(\phi X,Y)$ for a scalar $\theta(\neq 2c)$ and any vector fields X and Y on M. In this paper, we prove that if it satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R'_{\xi} = 0$, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature \bar{r} of M holds $\bar{r} - 2(n-1)c \leq 0$.

1. Introduction

Let \tilde{M} be a Kaehlerian manifold with parallel complex structure J. Then a submanifold M of \tilde{M} is called a CR submanifold if there exists a differentiable distribution $\Delta: p \to \Delta_p \subset T_p(M)$ on M such that Δ is J-invariant and the complementary orthogonal distribution Δ^{\perp} is totally real, where T_pM denotes the tangent space at each point p in M ([1], [27]). In particular, M is said to be a semi-invariant submanifold provided that $\dim \Delta^{\perp} = 1$. The unit normal in $J\Delta^{\perp}$ is called the distinguished normal to the semi-invariant submanifold ([4], [25]). In this case, M admits an almost contact metric structure (ϕ, ξ, η, g) . A typical example of a semi-invariant submanfold is real hypersurfaces in a Kaehlerian manifold. And new examples of nontrivial semi-invariant submanifolds in a complex projective space $P_n\mathbb{C}$ are constructed in [15] and [22]. Accordingly, we may expect to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold.

An n-dimensional complex space form $\tilde{M}_n(c)$ is a Kaehlerian manifold of constant holomorphic sectional curvature 4c. As is well known, complete and simply connected complex space forms are isometric to a complex projective space $P_n\mathbb{C}$, or a complex hyperbolic space $H_n\mathbb{C}$ according as c > 0 or c < 0.

Received November 7, 2019; Accepted January 3, 2020.

²⁰¹⁰ Mathematics Subject Classification. 53B20, 53C15, 53C25.

Key words and phrases. semi-invariant submanifold, distinguished normal, complex space form, Hopf real hypersurfaces, structure Jacobi operator, scalar curvature.

^{*}Corresponding author.

For the real hypersurface of $\tilde{M}_n(c), c \neq 0$, many results are known. One of them, Takagi([23], [24]) classified all the homogeneous real hypersurfaces of $P_n\mathbb{C}$ as six model spaces which are said to be A_1, A_2, B, C, D and E, and Cecil-Ryan ([5]) and Kimura ([17]) proved that they are realized as the tubes of constant radius over Kaehlerian submanifolds when the structure vector field ξ is principal.

On the other hand, real hypersurfaces in $H_n\mathbb{C}$ have been investigated by Berndt [2], Montiel and Romero [18] and so on. Berndt [2] classified all homogeneous real hypersurfaces in $H_n\mathbb{C}$ and showed that they are realized as the tubes of constant radius over certain submanifolds. Also such kinds of tubes are said to be real hypersurfaces of type A_0, A_1, A_2 or type B.

Let M be a real hypersurface of type A_1 or type A_2 in a complex projective space $P_n\mathbb{C}$ or that of type A_0, A_1 or A_2 in a complex hyperbolic space $H_n\mathbb{C}$. Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type (A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex space form were studied by many authors ([7], [8], [11], [16], [18], [20] etc.).

We remark that, in particular, a homogeneous real hypersurface of type (A) in $\tilde{M}_n(c)$ has a lot of nice geometric properties. For example, Okumura ([20]) or Montiel and Romero ([18]) showed respectively that a real hypersurface of type (A) in $P_n\mathbb{C}$ or in $H_n\mathbb{C}$ if and only if the structure tensor ϕ commutes with the shape operator A ($\phi A = A\phi$).

Denoting by R the curvature tensor of the submanifold, we define the Jacobi operator $R_{\xi} = R(\cdot, \xi)\xi$ with respect to the structure vector ξ . Then R_{ξ} is a self adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator R_{ξ} , characterization problems for real hypersurfaces of type (A) have recently studied (cf. [7], [8], [16]). In the provious paper ([7]), Cho and one of the present authors gave another characterization of real hypersurface of type (A) in a complex projective space $P_n\mathbb{C}$. Namely they prove the following:

Theorem CK([7]). Let M be a connected real hypersurface of $P_n\mathbb{C}$ if it satisfies (1) $R_{\xi}A\phi = \phi AR_{\xi}$ or (2) $R_{\xi}\phi = \phi R_{\xi}$, $R_{\xi}A = AR_{\xi}$, then M is of type (A), where A denotes the shape operator of M.

For each point p in a real hypersurface M and each unit tangent vector $X \in T_pM$, we define R'_X by $R'_X = (\nabla_X R)(\cdot, X)X$. If $\nabla_\xi R_\xi = 0$, then we have $R'_\xi = 0$. If the structure vector ξ is a geodesic vector field, then $R'_\xi = 0$ has a nice geometric meaning (cf. [3]).

On the other hand, semi-invariant submanifolds of codimension 3 in a complex space form $M_{n+1}(c)$ have been studied in [12] \sim [15] and so on by using properties of induced almost contact metric structure and those of the third

fundamental form of the submanifold. In the preceding work, Ki, Song and Takagi ([15]) assert the following:

Theorem KST([15]). Let M be a real (2n-1)-dimensional semi-invariant submanifold of codimension 3 in a complex projective space $P_{n+1}\mathbb{C}$ with constant holomorphic sectional curvature 4c. If the structure vector ξ is an eigenvector for the shape operator in the direction of the distinguished normal and the third fundamental form t satisfies $dt = 2\theta\omega$ for a certain scalar $\theta(<2c)$, where $\omega(X,Y) = g(\phi X,Y)$ for any vectors X and Y on M, then M is a Hopf real hypersurface in a complex projective space $P_n\mathbb{C}$.

In this paper, we consider a semi-invariant submanifold M of codimension 3 in a complex space form $M_{n+1}(c), c \neq 0$ which satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R'_{\xi} = 0$ such that the third funamental form t satisfies $dt = 2\theta\omega$ for a certain scalar $\theta(\neq 2c)$. If the scalar curvature \bar{r} of M satisfies $\bar{r} - 2c(n-1) \leq 0$, then we prove that M is a real hypersurface is of type (A) in $M_n(c)$.

All manifolds in the present paper are assumed to be connected and of class C^{∞} and the semi-invariant are supposed to be orientable.

2. Preliminares

Let \tilde{M} be a real 2(n+1)-dimensional Kaehlerian manifold with parallel almost complex structure J and a Riemannian metric tensor G. Let M be a real (2n-1)-dimensional Riemannian manifold immersed isometrically in \tilde{M} by the immersion $i:M\to \tilde{M}$. In the sequel, we identify i(M) with M itself. We denote by g the Riemannian metric tensor on M from that of \tilde{M} .

If we denote by $\tilde{\nabla}$ the operator of covariant differentiation with respect to the metric tensor G on \tilde{M} and by ∇ the one on M, then the Gauss and Weingarten formulas are respectively given by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)C + g(KX, Y)D + g(LX, Y)E, \tag{2.1}$$

(2.2)
$$\tilde{\nabla}_X C = -AX + l(X)D + m(X)E,$$

$$\tilde{\nabla}_X D = -KX - l(X)C + t(X)E,$$

$$\tilde{\nabla}_X E = -LX - m(X)C - t(X)D$$

for any vector fields tangent to X and Y on M and any unit vector field C, D and E normal to M, because we take C, D and E are mutually orthogonal, where A, K, L are called the second fundamental forms and l, m and t third fundamental forms.

As is well-known, a submanifold M of a Kaehlerian manifold \tilde{M} is said to be a CR submanifold ([1], [27]) if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution (Δ, Δ^{-1}) such that for any point

p in M we have $J\Delta_p = T_pM$, $JT_p^{\perp} \subset T_p^{\perp}M$, where $T_p^{\perp}M$ denote the normal space of M at p. In particular, M is said to be semi-invariant submanifold([4], [25]) provided that $dim\Delta^{\perp} = 1$ or to be a CR submanifold with CR dimension n - 1([21]).

In this case the unit normal vector field in $J\Delta^{\perp}$ is called a *distinguished* normal to the semi-invariant submanifold and denote this by \mathcal{C} ([25], [26]).

From now on we discuss that M is a real (2n-1)-dimensional semi-invariant submanifold of a codimension 3 in a Kaehlerian manifold \tilde{M} of real 2(n+1)-dimension . Then we can choose a local orthonormal frame field $\{e_1, \cdots, e_{n-1}, Je_1, \cdots, J_{e_{n-1}}, e_0 = \xi, C = J\xi, D = JE, E\}$ on the tangent space $T_p\tilde{M}$ of \tilde{M} for any point p in M such that $e_1, \cdots, e_{n-1}, Je_1, \cdots, J_{e_{n-1}} \in T_pM$, $\xi \in T_p^{\perp}M$, and $C, D, E \in T_p^{\perp}M$.

Now, let ϕ be the restriction of J on M, then we have

$$JX = \phi X + \eta(X)C$$
, $\eta(X) = g(\xi, X)$, $JC = -\xi$ (2.3)

for any vector field X on M ([26]). From this it is, using Hermitian property of J, verified that the aggregate (ϕ, ξ, η, g) is an almost contact metric structure on M, that is, we have

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad g(\xi, X) = \eta(X),$$

 $\phi \xi = 0, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$

for any vector fields X and Y.

In the sequel, we denote the normal components of $\tilde{\nabla}_X C$ by $\nabla^{\perp} C$. The distinguished normal C is said to be *parallel* in the normal bundle if we have $\nabla^{\perp} C = 0$, that is, l and m vanish identically.

Using the Kaehler condition $\tilde{\nabla}J=0$ and the Gauss and Weingarten formulas,we obtain from (2.3)

$$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi, \tag{2.4}$$

$$\nabla_X \xi = \phi A X,\tag{2.5}$$

$$KX = \phi LX - m(X)\xi, \tag{2.6}$$

$$LX = -\phi KX + l(X)\xi \tag{2.7}$$

for any vectors X and Y on M. From the last two equations, we have

$$g(K\xi, X) = -m(X), \tag{2.8}$$

$$g(L\xi, X) = l(X). \tag{2.9}$$

Using the frame field $\{e_0 = \xi, e_1, \dots, e_{n-1}, \phi e_1, \dots, \phi e_{n-1}\}$ on M it follows from $(2.6) \sim (2.9)$ that

(2.10)
$$T_r K = \eta(K\xi) = -m(\xi)$$
$$T_r L = \eta(L\xi) = l(\xi).$$

By the way, there is no loss of generality such that we may assume $T_rL = 0$ (cf. [15]). So we have

$$l(\xi) = 0. \tag{2.11}$$

In what follows, to write our formulas in a convention form, we denote by $\alpha = \eta(A\xi)$, $\beta = (A^2\xi)$, $T_rA = h$, $T_rK = k$, $T_r(^tAA) = h_{(2)}$ and for a function f we denote by ∇f the gradient vector field of f.

From (2.10) we also have

$$m(\xi) = -k. \tag{2.12}$$

From (2.6) and (2.7) we get

$$\eta(X)l(\phi Y) - \eta(Y)l(\phi X) = m(Y)\eta(X) - m(X)\eta(Y),$$

which together with (2.12) gives

$$l(\phi X) = m(X) + k\eta(X). \tag{2.13}$$

Similarly, we have from (2.8)

$$m(\phi X) = -l(X), \tag{2.14}$$

where we have used (2.9) and (2.11).

Taking the inner product with LY to (2.6) and using (2.9), we get

$$g(KLX,Y) + g(LKX,Y) = -\{l(X)m(Y) + l(Y)m(X)\}.$$
 (2.15)

Now, we put $\nabla_{\xi} \xi = U$ in the sequel. Then U is orthogonal to ξ be because of (2.5).

We put

$$A\xi = \alpha \xi + \mu W, \tag{2.16}$$

where W is a unit vector orthogonal to ξ . Then we have

$$U = \mu \phi W \tag{2.17}$$

by virtue of (2.5). Thus, W is also orthogonal to U. Further, we have

$$\mu^2 = \beta - \alpha^2. \tag{2.18}$$

From (2.16) and (2.17) we have

$$\phi U = -A\xi + \alpha \xi. \tag{2.19}$$

If we take account of (2.5), (2.10) and (2.19), then we find

$$g(\nabla_X \xi, U) = \mu g(AW, X). \tag{2.20}$$

Since W is orthogonal to ξ , we can, using (2.5) and (2.17), see that

$$\mu g(\nabla_X W, \xi) = g(AU, X). \tag{2.21}$$

Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

$$(\nabla_X A)\xi = -\phi \nabla_X U + q(AU + \nabla \alpha, X) - A\phi AX + \alpha \phi AX. \tag{2.22}$$

In the rest of this paper we shall suppose that \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature 4c, which is called a *complex space* form and denote by $M_{n+1}(c)$, that is, we have

$$\begin{split} \tilde{R}(\tilde{X},\tilde{Y})\tilde{Z} &= c\{G(\tilde{Y},\tilde{Z})\tilde{X} - G(\tilde{X},\tilde{Z})\tilde{Y} + G(J\tilde{Y},\tilde{Z})J\tilde{X} - G(J\tilde{X},\tilde{Z})J\tilde{Y} \\ &- 2G(J\tilde{X},\tilde{Y})J\tilde{Z}\} \end{split}$$

for any vectors \tilde{X} , \tilde{Y} and \tilde{Y} on \tilde{M} , where \tilde{R} is the curvature tensor of \tilde{M} . Then equations of the Gauss and Codazzi are given by

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X$$

$$-g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY$$

$$+g(KY,Z)KX - g(KX,Z)KY + g(LY,Z)LX - g(LX,Z)LY,$$

(2.24)
$$(\nabla_X A)Y - (\nabla_Y A)X - l(X)KY + l(Y)KX - m(X)LY + m(Y)LX = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2q(\phi X, Y)\xi\},$$

$$(\nabla_X K)Y - (\nabla_Y K)X = -l(X)AY + l(Y)AX + t(X)LY - t(Y)LX, \quad (2.25)$$

$$(\nabla_X L)Y - (\nabla_Y L)X = -m(X)AY + m(Y)AX - t(X)KY + t(Y)KX,$$
 (2.26)

where R is the Riemman Christoffel curvature tenser of M, and those of the Ricci tensor by

$$(\nabla_X l)Y - (\nabla_Y l)X + g((KA - AK)X, Y) = m(Y)t(X) - m(X)t(Y), \quad (2.27)$$

$$(\nabla_X m)Y - (\nabla_Y m)X + g((LA - AL)X, Y) + t(X)l(Y) - t(Y)l(X) = 0, (2.28)$$

(2.29)
$$(\nabla_X t)Y - (\nabla_Y t)X + g((LK - KL)X, Y)$$

$$= l(Y)m(X) - l(X)m(Y) + 2cg(\phi X, Y).$$

In the end of this section, we introduce the structure Jacobi operator R_{ξ} with respect to the structure vector field ξ which is defined by $R_{\xi}X = R(X, \xi)\xi$ for any vector field X. Then we have from (2.23)

$$R_{\xi}X = c(X - \eta(X)\xi) + \alpha AX - \eta(AX)A\xi + \eta(K\xi)KX - \eta(KX)K\xi + \eta(L\xi)LX - \eta(LX)L\xi.$$

Since l and m are dual 1-forms of $L\xi$ and $K\xi$ respectively because of (2.8) and (2.9), the last relationship is reformed as

$$R_{\xi}X = c(X - \eta(X)\xi) + \alpha AX - \eta(AX)A\xi + kKX + m(X)K\xi - l(X)L\xi$$
, (2.30) where we have used (2.8) ~ (2.12).

3. Structure equations satisfying $dt = 2\theta\omega$

In this section we will suppose that M is a semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$, $c \neq 0$. Further, suppose that the third fundamental form t satisfies

$$dt = 2\theta\omega, \quad \omega(X, Y) = g(\phi X, Y)$$
 (3.1)

for any vector fields X and Y and a certain scalar θ , where d denotes the exterior differential operator. Then (2.29) is reduced to

$$g((LK - KL)X, Y) + l(X)m(Y) - l(Y)m(X) = -2(\theta - c)g(\phi X, Y),$$

which together with (2.15) yields

$$g(LKX,Y) + l(X)m(Y) = -(\theta - c)g(\phi X, Y), \tag{3.2}$$

From this and $(2.8)\sim(2.12)$ we have

$$KL\xi = kL\xi, \quad LK\xi = 0.$$
 (3.3)

for any vector X on M.

Differentiating (3.1) covariantly along M and making use of (2.4) and the first Bianchi identity, we find

$$(X\theta)\omega(Y,Z) + (Y\theta)\omega(Z,X) + (Z\theta)\omega(X,Y) = 0,$$

which implies $(n-2)X\theta=0$. Therefore, θ is a constant if n>2.

For the case where $\theta = c$ in (3.1) we have $dt = 2c\omega$. In this case, the normal connection of M is said to be L-flat([21]).

By properties of the almost contact metric structure we have from (3.2)

$$T_r({}^tKK) - ||m||^2 + ||l||^2 = 2(n-1)(\theta - c),$$

where we have used (2.6), (2.9) and (2.10), which connected to (2.8) gives

$$||K - m \otimes \xi||^2 + ||l||^2 = 2(n-1)(\theta - c), \tag{3.4}$$

where $||T||^2 = g(T,T)$ for any tensor field T on M. Hence $\theta - c$ is nonnegative. In the same way, we can verify, using (2.7), (2.11), (2.14) and (3.2), that

$$||m + k\xi||^2 - T(^tLL) = 2(n-1)(\theta - c).$$
(3.5)

In the previous paper [15] we prove the following:

Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal connection in $M_{n+1}(c)$, $c \neq 0$. If $A\xi = \alpha \xi$, then we have $\nabla^{\perp} C = 0$ and K = L = 0 on M.

Transforming (3.2) by ϕ and using (2.6) and (2.14), we find

$$K^{2}X + \eta(X)K^{2}\xi + l(X)L\xi = (\theta - c)\{X - \eta(X)\xi\},\$$

which shows $\eta(X)K^2\xi - g(K^2\xi,X)\xi = 0$. Thus, we have

$$K^2 \xi = (\|K\xi\|^2)\xi$$

because of (2.8), where $g(K\xi, K\xi) = ||K\xi||^2$. Combining above two equations, it follows that

$$K^{2}X + l(X)L\xi + ||K\xi||^{2}\eta(X)\xi = (\theta - c)(X - \eta(X)\xi).$$
(3.6)

In the same way, we have from (3.2)

$$L^{2}\xi = kK\xi + (\|K\xi\|^{2} + k^{2})\xi, \tag{3.7}$$

where we have used (2.7), (2.13) and (3.3).

Since we have (2.14) and the second equation of (3.3), we see from (3.2)

$$(\theta - c - ||K\xi||^2)L\xi = 0.$$

On the other hand we have from (3.2)

$$kl(LX) = (\theta - c - ||L\xi||^2)m(X) + k(\theta - c)\eta(X)$$

because of (2.13) and (3.3), which together with (3.7) yields

$$(\theta - c - ||L\xi||^2 - k^2)(||K\xi||^2 - k^2) = 0.$$

Now, let Ω_0 be a set of points such that $||L\xi|| \neq 0$ and Ω_0 be nonvoid. Then we have

$$||K\xi||^2 = \theta - c, \quad ||L\xi||^2 + k^2 = \theta - c$$
 (3.8)

on Ω_0 .

In fact, if not, then we have $m(X) = -k\eta(X)$, which connected to (2.13) gives $l(\phi X) = 0$ and hence $L\xi = 0$, a contradiction. Thus, the second equation of (3.8) is established.

We discuss our arguments on Ω_0 . Using equations already obtained, we can find (for detail, see (2.22) and (2.24) of [15])

$$\nabla_X k = 2AL\xi,\tag{3.9}$$

$$\nabla_X L\xi = t(X)K\xi - AKX - kAX. \tag{3.10}$$

Differentiating (3.9) covariantly and taking the skew-symmetric part obtained, we get

$$(\theta - 2c)\{\eta(X)K\xi - m(X)\xi\} = 0,$$

where we have used (2.13), (2.24), (3.3) and (3.10), which shows

$$(\theta - 2c)(m(X) + k\eta(X)) = 0$$

and hence $(\theta - 2c)l(X) = 0$ by virtue of (2.13). Thus, $\theta - 2c = 0$ on Ω_1 . Therefore we conclude that

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in $M_{n+1}(c)$, $c \neq 0$ satisfying $\theta \neq 2c$. Then, we have l = 0.

Throughout this paper, we assume that M satisfies (3.1) with $\theta \neq 2c$. Then, by Lemma 3.2 we have l = 0 and hence

$$m(X) = -k\eta(X) \tag{3.11}$$

because of (2.13). Hence (2.8) and (2.9) are reduced respectively to

$$K\xi = k\xi, \quad L\xi = 0. \tag{3.12}$$

Since l = 0 on M, (3.2) and (2.7) are reformed respectively as

$$g(LKX,Y) = -(\theta - c)g(\phi X, Y), \tag{3.13}$$

$$L = -\phi K. \tag{3.14}$$

From the last two relationships, we obtain

$$KL + LK = 0, (3.15)$$

$$L^{2}X = (\theta - c)(X - \eta(X)\xi). \tag{3.16}$$

It is clear, using (3.11), that (2.6) becomes

$$KX = \phi LX + k\eta(X). \tag{3.17}$$

If we take account of (3.11) and Lemma 3.2, then (2.24) \sim (2.28) are reformed respectively as

(3.18)
$$(\nabla_X A)Y - (\nabla_Y A)X = k\{\eta(Y)LX - \eta(X)LY\} + c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},$$
$$(\nabla_X K)Y - (\nabla_Y K)X = t(X)LY - t(Y)LX, \tag{3.19}$$

$$(\nabla_X L)Y - (\nabla_Y L)X = k\{\eta(X)AY - \eta(Y)AX\} - t(X)KY + t(Y)KX, (3.20)$$

$$KAX - AKX = k\{\eta(X)t - t(X)\xi\},\tag{3.21}$$

$$LAX - ALX = (Xk)\xi - \eta(X)\nabla k + k(\phi AX + A\phi X), \tag{3.22}$$

Putting $X = \xi$ in (3.21) and using (3.12), we find

$$KA\xi = kA\xi + k\{t - t(\xi)\xi\}. \tag{3.23}$$

If we apply this by ϕ and use (2.19), (3.12) and (3.14), then we get

$$g(KU, X) = k\{t(\phi X) - u(X)\},\tag{3.24}$$

where u(X) = g(U, X) for any vector X.

Replacing X by ξ in (3.22) and using (2.5), (3.12) and (3.14), we get

$$KU = (\xi k)\xi - \nabla k + kU. \tag{3.25}$$

which together with (3.24) gives

$$Xk = (\xi k)\eta(X) + k\{2u(X) - t(\phi X)\}. \tag{3.26}$$

This yields $\phi \nabla k = k\{2(A\xi - \alpha\xi) + t - t(\xi)\xi\}.$

If we apply (3.22) by ϕ and take account of (3.17) and the last equation, then we find

$$\phi ALX - KAX = k\{(t - t(\xi)\xi)\eta(X) + 2\eta(X)(A\xi - \alpha\xi) + 2\eta(A\xi, X)\xi - AX - \phi A\phi X\},$$

or, using (3.21) we have $\phi AL + LA\phi = 0$.

Since θ is constant if n > 2, differentiating (3.16) covariantly, we get

$$2L\nabla_X L = (c - \theta)\{\eta(X)\phi A + g(\phi A, X)\xi\},\$$

or, using (3.13) and (3.20), it is verified that (see, [15])

$$2(\nabla_X L)LY = (\theta - c)\{-2t(X)\phi Y + \eta(Y)(A\phi - \phi A)X - g((A\phi + \phi A)X, Y)\xi + \eta(X)(\phi A + A\phi)Y\} + k\{\eta(Y)(AL + LA)X - g((AL + LA)X, Y)\xi - \eta(X)(LA - AL)Y\},$$

which together with (3.12) and (3.26) yields

(3.28)
$$(\theta - c)(A\phi - \phi A)X + (k^2 + \theta - c)(u(X)\xi + \eta(X)U)$$
$$+ k\{(AL + LA)X + k\{-t(\phi X)\xi + \eta(X)\phi \circ t\} = 0.$$

Taking the trace of this, we obtain

$$kTr(AL) = 0. (3.29)$$

In the previous paper [15], the following proposition was proved for the case where c > 0.

Proposition 3.3. If M satisfies $dt = 2\theta\omega$ for a scalar $\theta(\neq 2c)$ and $\mu = 0$ in $M_{n+1}(c)$, $c \neq 0$, then we have k = 0 on M.

Proof. This fact was proved for c>0 (see, Proposition 3.5 of [15]). But, regardless of the sign of c this one is established. However, only $\xi k=0$ and $\xi \alpha=0$ should be newly certified. We are now going to prove that $\xi k=0$.

Differentiating (3.11) covariantly and using (2.5), we find

$$\nabla_X m = -(Xk)\xi + k\phi AX,$$

from which, taking the skew-symmetric part and using (2.28) with l=0,

$$LAX - ALX - k(\phi A + A\phi)X = (Xk)\xi - \eta(X)\nabla k.$$

If we put $X = \xi$ in this and make use of (3.12), then we find

$$\nabla k = (\xi k)\xi \tag{3.30}$$

because $A\xi = \alpha\xi$ was assumed. From the last two equations, if follows that

$$LA - AL = k(\phi A + A\phi). \tag{3.31}$$

Differentiating (3.30) covariantly, and taking the skew-symmetric part obtained, we find

$$(\xi k)(A\phi + \phi A) = 0, \tag{3.32}$$

where we have used (2.5).

Since we have $A\xi = \alpha\xi$ because of (2.16), we can write (2.22) as

$$(\nabla_X A)\xi = -A\phi AX + \alpha\phi AX + (X\alpha)\xi.$$

which together with (3.12) and (3.18) gives

$$2A\phi AX + \alpha(A\phi + \phi A) + 2c\phi X = \eta(X)\nabla\alpha - (X\alpha)\xi. \tag{3.33}$$

Putting $X = \xi$ in this, we also find

$$\nabla \alpha = (\xi \alpha) \xi. \tag{3.34}$$

Using the quite same method as that used to (3.32) from (3.30), we can derive from the last equation the following:

$$(\xi \alpha)(\phi A + A\phi) = 0. \tag{3.35}$$

Now, if we suppose that $\xi k \neq 0$. Then we have

$$\phi A + A\phi = 0$$
, $LA = AL$

on this open subset because of (3.31) and (3.32). We discuss our arguments on such a place. By virtue of (3.34) and the last relationship, we can write (3.33) as

$$A^2\phi + c\phi = 0,$$

If we apply this by ϕ , then we obtain

$$A^{2}X + cX = (\alpha^{2} + c)\eta(X)\xi,$$
 (3.36)

where we have used $A\xi = \alpha \xi$.

Since we have $A\xi = \alpha \xi$, that is, U = 0 was assumed, (3.28) can be written as $(\theta - c)A\phi X + kALX = 0$ with the aid of (3.24), which together with (3.17) yields

$$(\theta - c)AX + kAKX = \alpha(\theta - c + k^2)\eta(X)\xi.$$

Combining this to (3.36), we find $kKX + (\theta - c)X = (\theta - c + k^2)\eta(X)\xi$, which shows $(n-1)(\theta - c) = 0$. Thus we have $\theta - c = 0$ if n > 2, This contradicts Lemma 3.1. Thus $\xi k = 0$ is proved on M.

By the same as above we can prove $\xi \alpha = 0$ by virtue of (3.34) and (3.35). This completes the proof.

We set $\Omega = \{p \in M : k(p) \neq 0\}$, and suppose that Ω is not empty, In the rest of this paper, we discuss our arguments on the open subset Ω of M. So, by Proposition 3.3, we see that $\mu \neq 0$ on Ω .

4. Jacobi operators of semi-invariant submanifolds

We will continue now, our arguments under the same hypotheses $dt = 2\theta\omega$ for a scalar $\theta(\neq 2c)$ as in section 3. Then, by virtue of (3.11) and (3.12) we can write (2.30) as

$$R_{\xi}X = c(X - \eta(X)\xi) + \alpha AX - \eta(AX)A\xi + kKX - k^2\eta(X)\xi, \tag{4.1}$$
 which implies.

 $R_{\xi}KX = c(KX - k\eta(X)\xi) + \alpha AKX - \eta(AKX)A\xi + kK^2X - k^3\eta(X)\xi$, where we have used (3.12), from which taking the skew-symmetric part,

$$(R_{\xi}K - KR_{\xi})X = \alpha(AK - KA)X + g(A\xi, X)KA\xi - g(KA\xi, X)A\xi,$$

which together with (2.16), (3.21) and (3.23) gives

$$(R_{\xi}K - KR_{\xi})X = k\mu\{t(X)W - w(X)t - t(\xi)(\eta(X)W - w(X)\xi)\},\$$

where g(W, X) = w(X) = for any vector X.

According to Proposition 3.3, we then have

Lemma 4.1. $R_{\xi}K = KR_{\xi}$ holds on Ω if and only if $t \in f(\xi, W)$, where $f(\xi, W)$ denoted a linear subspace spanned by ξ and W.

Under the hypotheses of Lemma 4.1, we have

$$t = t(\xi)\xi + t(W)W. \tag{4.2}$$

From (2.17) and (4.2) we obtain $t(\phi X) = -\frac{1}{\mu}t(W)u(X)$, which together with (3.24) yields

$$KU = \tau U, \tag{4.3}$$

where τ is defined by $\mu\tau = -k(\mu + t(W))$, or using (3.14),

$$LU = \mu \tau W. \tag{4.4}$$

By virtue of (3.13) and the last two relationships, it follows that

$$\tau^2 = \theta - c. \tag{4.5}$$

Since $\theta - c \neq 0$ on Ω by Lemma 3.1, τ is a positive constant on Ω if n > 2. In a direct consequence of (3.14) and (4.3), we see that

$$\mu LW = \tau U. \tag{4.6}$$

Using (2.16) and (3.12), we can write (3.23) as

$$\mu KW = k\mu W + k(t - t(\xi)\xi),$$

which together with (4.2) implies that

$$KW = -\tau W \tag{4.7}$$

because of Proposition 3.3.

Now, by using (3.24) and (4.3) we see that

$$t(\phi X) = -\mu(1 + \frac{\tau}{k})u(X) \tag{4.8}$$

on Ω , which connected to the property of the almost contact metric structure implies that

$$t = t(\xi)\xi - \mu(1 + \frac{\tau}{k})W.$$
 (4.9)

If we take account of (4.3), then (3.25) can be written as

$$\nabla k = (\xi k)\xi + (k - \tau)U. \tag{4.10}$$

On the other hand, if we use (2.19) and (2.24), then (2.22) implies that

$$(\nabla_{\xi} A)\xi = 2AU + \nabla\alpha + 2\eta(L\xi) - 2\eta(K\xi)L\xi.$$

Thus, it follows, using (3.12), that

$$(\nabla_{\varepsilon} A)\xi = 2AU + \nabla \alpha. \tag{4.11}$$

Putting $X = \xi$ in (2.22) and using (2.16), (2.18) and (4.11), we get

$$\nabla_{\xi} U = 3\phi A U + \alpha A \xi - \beta \xi + \phi \nabla \alpha, \tag{4.12}$$

which together with (3.12), (3.14) and (4.7) gives

$$-K\nabla_{\xi}U = 3LAU + \alpha\mu W + \mu^2 k\xi + L\nabla\alpha. \tag{4.13}$$

In the following, we see, using (2.16) and (2.19), that $\phi U = -\mu W$. Differentiating the last equation covariantly and using (2.4), we find

$$q(AU, X)\xi - \phi \nabla_X U = (X\mu)W + \mu \nabla_X W.$$

Putting $X = \xi$ in this and using (4.12), we get

$$\mu \nabla_{\xi} W = 3AU - \alpha U + \nabla \alpha - (\xi \alpha) \xi - (\xi \mu) W, \tag{4.14}$$

which tells us that

$$W\alpha = \xi \mu. \tag{4.15}$$

In the next step suppose, throughout this paper, that $R_{\xi}\phi = \phi R_{\xi}$. Then from (4.1) we have

$$\alpha(\phi A - A\phi)X = q(A\xi, X)U + q(U, X)A\xi + 2kLX, \tag{4.16}$$

where we have used (3.11), (3.12) and (3.14). Applying this by L and using (2.19), (3.17) and (3.22), we find

(4.17)
$$\alpha \{AKX - k\eta(X)A\xi - \phi ALX\} + g(LU, X)A\xi + g(KU, X)U + 2kL^2X = 0,$$

which together with (2.16), (3.21) and (3.24) yields

$$k\alpha\{t(X)\xi - \eta(X)t + \mu(w(X)\xi - \eta(X)W\}$$

+ $q(LU, X)A\xi - q(A\xi, X)LU - u(X)KU + q(KU, X)U = 0.$

If we take the inner product with ξ to this and make use of (3.12), then we get

$$k\alpha\{t(X) - t(\xi)\eta(X) + g(A\xi, X) - \alpha\eta(X)\} + \alpha g(LU, X)U = 0. \tag{4.18}$$

Combining the last two relationships and making use of (2.18), we get

$$\mu\{w(X)LU - g(LU, X)W\} + u(X)KU - g(KU, X)U = 0. \tag{4.19}$$

We notice here that the following (cf. see [10]):

Remark 4.1. $\alpha \neq 0$ on Ω .

Now, putting X = U in (4.16) and using (2.16) and (2.19), we find

$$\alpha(\phi AU + \mu AW) = \mu^2 A\xi + 2kLU. \tag{4.21}$$

Remark 4.2. $\Omega = \emptyset$ if $\theta = c$.

In fact, since $\theta - c = 0$ was assumed, (3.16) implies that L = 0 and hence $KX = k\eta(X)\xi$ by virtue of (3.17). Thus, (3.20) becomes

$$k\{\eta(X)AY - \eta(Y)AX + \xi(\eta(X)t(Y) - \eta(Y)t(X))\} = 0,$$

which enables us to obtain $k\{t(X) + g(A\xi, X) - \sigma\eta(X)\} = 0$, where we have put $\sigma = \alpha + t(\xi)$. Therefore, combining the last two equations, it follows that

$$AX = \eta(X)A\xi + g(A\xi, X)\xi - \alpha\eta(X)\xi.$$

From this we have AU = 0 and $AW = \mu \xi$. Consequently we see from (4.21) $\mu = 0$, a contradiction because of Proposition 3.3.

Lemma 4.2. Let M be a semi-invariant submanifold of codimension 3 in $M_{n+1}(c)$, $c \neq 0$ satisfying $dt = 2\theta\omega$ for a scalar $\theta(\neq 2c)$. If it satisfies $R_{\xi}\phi = \phi R_{\xi}$, then $R_{\xi}K = KR_{\xi}$ holds on Ω .

Proof. Applying (4.16) by A and taking the trace obtained, we get $g(A^2\xi, U) = 0$ because of (3.29), which together with (2.16) and Lemma 3.1 gives g(AW, U) = 0.

If we take the inner product with U to (4.21) and make use of (2.19) and the last assertion, then we have g(LU, U) = 0.

Putting X=U in (4.19) and using this fact we have $KU=\tau U$, where τ is given by $\tau \mu^2=g(KU,U)$ because of Proposition 3.3, which together with (3.14) implies that $LU=\tau \mu W$. Thus, if we combine this and (2.16) to (4.18), then we obtain

$$k\alpha\{t - t(\xi)\xi + \mu(1 + \frac{\tau}{k})W\} = 0.$$

Because of Remark 4.1, we have (4.9). Hence $t \in f(\xi, W)$. By Lemma 4.1, we conclude that $R_{\xi}K = KR_{\xi}$.

In the next place, differentiating (4.1) covariantly along Ω , we find

$$g((\nabla_X R_{\xi})Y, Z) = -(k^2 + c)\{\eta(Z)g(\nabla_X, \xi Y) + \eta(Y)g(\nabla_X \xi, Z)\} + (X\alpha)g(AY, Z) + \alpha g((\nabla_X A)Y, Z) - g(A\xi, Z)\{g((\nabla_X A)\xi, Y) - g(A\phi AY, X)\} - g(A\xi, Y)\{g((\nabla_X A)\xi, Z) - g(A\phi AZ, X)\} + (Xk)g(KY, Z) + kg((\nabla_X K)Y, Z) - 2k(Xk)\eta(Y)\eta(Z).$$

Replacing X by ξ in this and using (2.5) and (4.11), we find

$$(\nabla_{\xi} R_{\xi}) X = -(k^{2} + c)(u(X)\xi + \eta(X)U) + (\xi\alpha)AX + \alpha(\nabla_{\xi}A)X + (\xi k)KX + k(\nabla_{\xi}K)X - 2k(\xi k)\eta(X)\xi - (3AU + \nabla\alpha)g(A\xi, X) - (3g(AU, X) + X\alpha)A\xi.$$

For each point $p \in M$ and each unit tangent vector $X \in T_pM$, we defined R_X' by $R_X' = (\nabla_X R)(\cdot, X)X$. Then, in particular supposing that the structure vector field ξ of M is a geodesic vector field, it is easily seen that $R_{\xi}' = 0$ on M if and only if the Jacobi operator R_{ξ} is diagonalizable by a parallel orthonormal frame field along each trajectory of ξ and at the same time their eigenvalues are constant along each trajectory of ξ (cf. [3]).

Now, suppose that $R'_{\xi} = (\nabla_{\xi} R_{\xi}) \xi = 0$ on M. Then we have from (4.22)

$$\alpha(\nabla_{\xi}A)\xi + k(\nabla_{\xi}K)\xi = (k^2 + c)U + \alpha(3AU + \nabla\alpha) + k(\xi k)\xi,$$

where we have used the first equation of (3.12). From $K\xi = k\xi$, we have $(\nabla_X K)\xi + K\nabla_X \xi = (X\xi)\xi + k\nabla_X \xi$, which shows $(\nabla_\xi K)\xi + KU = (\xi k)\xi + kU$. If we combine this to the last equation, then we find

$$\alpha AU + kKU + cU = 0, (4.23)$$

where we have used (4.11).

In the rest of this paper, we shall suppose that M satisfies $R_{\xi}\phi = \phi R_{\xi}$ and $R'_{\xi} = 0$. Then from (4.3) and (4.23) we have

$$\alpha AU + (k\tau + c)U = 0,$$

which implies that

$$AU = \lambda U, \quad \alpha \lambda + k\tau + c = 0. \tag{4.24}$$

From this and (4.21) we have

$$\alpha AW = \alpha \mu \xi + (\mu^2 + 2k\tau + \alpha\lambda)W,$$

where we have used (2.16), (2.19) and (4.4), which implies that

$$AW = \mu \xi + (\rho - \alpha)W, \tag{4.25}$$

where we have put

$$\alpha(\rho - \alpha) = \mu^2 + 2k\tau + \alpha\lambda. \tag{4.26}$$

Differentiating (4.25) covariantly along Ω , we find

$$(\nabla_X A)W + A\nabla_X W = (X\mu)\xi + \mu\nabla_X \xi + X(\rho - \alpha)W + (\rho - \alpha)\nabla_X W. \quad (4.27)$$

Taking the inner product W to this and using (2.21) and (4.25), we find

$$g((\nabla_X A)W, W) = -2g(AU, X) + X\rho - X\alpha \tag{4.28}$$

because W is orthogonal to ξ . If we apply (4.27) by ξ and take account of (2.21), we also find

$$\mu g((\nabla_X A)W, \xi) = (\rho - 2\alpha)g(AU, X) + \mu(X\mu) \tag{4.29}$$

or, using (3.18)

$$\mu(\nabla_{\xi}A)W = (\rho - 2\alpha)AU + \mu\nabla\mu - k\mu LW - cU. \tag{4.30}$$

From this we verify, using (3.12), (3.18), (4.6) and (4.28), that

$$\mu(\nabla_W A)\xi = (\rho - 2\alpha)AU - 2cU + \mu\nabla\mu. \tag{4.31}$$

Putting $X = \xi$ in (4.28) and using (4.29), we obtain

$$W\mu = \xi \rho - \xi \alpha. \tag{4.32}$$

Replacing X by ξ in (4.27) and using (4.6) and (4.30), we find

$$(\rho - 2\alpha)AU - k\tau U - cU + \mu\nabla\mu + \mu(A\nabla_{\xi}W - (\rho - \alpha)\nabla_{\xi}W)$$

= $\mu(\xi\mu)\xi + \mu^{2}U + \mu(\xi\rho - \xi\alpha)W$,

which together with (4.14) and (4.15) gives

(4.33)
$$3A^{2}U - 2\rho AU + (\alpha \rho - \beta - k\tau - c)U + A\nabla \alpha + \frac{1}{2}\nabla \beta - \rho \nabla \alpha$$
$$= 2\mu(W\alpha)\xi + (2\alpha - \rho)(\xi\alpha)\xi + \mu(\xi\rho)W.$$

Differentiating the equation $AU = \lambda U$ covariantly, we find

$$(\nabla_X A)U + A\nabla_X U = (X\lambda)U + \lambda\nabla_X U$$

from which, taking the skew-symmetric part,

$$\mu(k\tau + c)(\eta(X)w(Y) - \eta(Y)w(X)) + g(A\nabla_X U, Y) - g(A\nabla_Y U, X)$$

= $(X\lambda)u(Y) - (Y\lambda)u(X) + \lambda(g(\nabla_X U, Y) - g(\nabla_Y U, X)),$

where we have used (2.16), (2.19), (3.18) and (4.4).

Replacing X by U in this and taking account of $AU = \lambda U$, we find

$$A\nabla_U U - \lambda \nabla_U U = (U\lambda)U - \mu^2 \nabla \lambda. \tag{4.34}$$

If we take the inner product this with ξ and remember (4.25), then we also find

$$\mu g(\nabla_U U, \xi) + \mu^2(W\lambda) + (\rho - \alpha - \lambda)g(\nabla_U U, W) = 0.$$
 (4.35)

On the other hand, differentiating (4.3) covariantly, we find

$$(\nabla_X K)U + K\nabla_X U = \tau \nabla_X U. \tag{4.36}$$

If we take the inner product with U to this, then we have $g((\nabla_X K)U, U) = 0$. But, from (3.19), (4.2) and (4.4) we have $(\nabla_U K)U = 0$, which together with (4.7) and (4.36) yields $g(\nabla_U U, W) = 0$. Thus, (4.35) turns out to be

$$\mu g(\nabla_U U, \xi) + \mu^2(W\lambda) = 0.$$

However, the first term of this vanishes identically by virtue of (2.20) and (4.25). Thus, it follows that $\mu(W\lambda) = 0$ and hence $W\lambda = 0$ by virtue of Proposition 3.3.

In the same way, we can verify, using (2.20) and (4.25), that $\xi \lambda = 0$. Summing up, we have

$$\xi \lambda = 0, \quad W \lambda = 0. \tag{4.37}$$

If we put $X = \mu W$ in (3.28) and take account of (2.16), (3.12), (4.2), (4.6) and (4.25), then we find

$$(\theta - c)\{AU - (\rho - \alpha)U\} + k\tau\{AU + (\rho - \alpha)U\} = 0,$$

which together with (4.5) and (4.24) yields

$$\lambda(k+\tau) + (\rho - \alpha)(k-\tau) = 0. \tag{4.38}$$

Finally, differentiating (2.16) covariatly and using (2.5), we find

$$(\nabla_X A)\xi + A\phi AX = (X\alpha)\xi + \alpha\phi AX + (X\mu)W + \mu\nabla_X W.$$

If we put $X = \mu W$ in this and make use of (4.24), (4.25) and (4.31), then we find

$$\mu^2 \nabla_W W - \mu \nabla \mu = (2\rho\lambda - 3\alpha\lambda + \alpha^2 - \alpha\rho - 2c)U - \mu(W\alpha)\xi - \mu(W\mu)W. \tag{4.39}$$

5. Semi-invariant submanifolds satisfying $R_{\xi}\phi=\phi R_{\xi}$ and $R_{\xi}^{'}=0$

We will continue our arguments under the same hypotheses as that in section 3. Further, we assume that $R_{\xi}\phi = \phi R_{\xi}$ and $R_{\xi}' = 0$ hold on M. Then all equations obtained in section 4 are valid.

Lemma 5.1. Let M be a semi-invariant submanifold of codimension 3 in $M_{n+1}(c)$, $c \neq 0$, n > 2 such that $dt = 2\theta\omega$ for a scalar $\theta(\neq 2c)$. If it satisfies $R_{\xi}\phi = \phi R_{\xi}$ and $R'_{\xi} = 0$, then we have

$$\nabla k = (k - \tau)U. \tag{5.1}$$

Proof. Differentiating the second relationship of (4.24) with respect to W and using (4.37), we find $\lambda(W\alpha) = 0$ with the aid of (4.10).

But, we notice here that $\lambda \neq 0$ if $\xi k \neq 0$. In fact, if not, then we have $\lambda = 0$ on this open subset. So, we have $k\tau + c = 0$ on the set because of (4.24), which shows $\tau \nabla k = 0$ on the set. Thus, we have $\nabla k = 0$ because of Remark 4.2, a contradiction. Hence $\xi k = 0$ on Ω is proved.

Because of (2.17) we can write (4.9) as

$$t(Y) = t(\xi)\eta(Y) - (1 + \frac{\tau}{k})g(\phi U, Y)$$

for any vector field Y. Differentiating this covariantly along Ω , we find

$$\begin{split} X(t(Y)) = & X(t(\xi))\eta(Y) + t(\xi)g(\phi AX,Y) + \frac{\tau}{k^2}(k-\tau)\mu u(X)w(Y) \\ & - (1 + \frac{\tau}{k})\{\lambda u(X)\eta(Y) + g(\phi\nabla_X U,Y)\}, \end{split}$$

from which, taking the skew-symmetric part and making use of (2.19), (2.22), (3.1), (4.24) and (5.1) implies that

$$\begin{split} &(5.2) \\ &2\theta g(\phi X,Y) + \frac{\tau}{k^2}(k-\tau)\mu\{u(Y)w(X) - u(X)w(Y)\} \\ &+ t(\xi)\{g(\phi AX,Y) - g(\phi AY,X)\} = X(t(\xi))\eta(Y) - Y(t(\xi)\eta(X) \\ &+ (1+\frac{\tau}{k})\{2cg(\phi X,Y) + \lambda(u(X)\eta(Y) - u(Y)\eta(X)) + (X\alpha)\eta(Y) - (Y\alpha)\eta(X) \\ &+ 2g(A\phi AX,Y) + \alpha(g(\phi AX,Y) - g(\phi AY,X))\}. \end{split}$$

Putting $Y = \xi$ in this and using (2.5) and (4.24), we find

$$(5.3) \hspace{3cm} X(t(\xi)) = \xi(t(\xi))\eta(X) + t(\xi)u(X) \\ + (1+\frac{\tau}{k})\{(\alpha-2\lambda)u(X) - (\xi\alpha)\eta(X) + X\alpha\}.$$

Lemma 5.2. Under the same hypotheses as those in Lemma 5.1, we have $k - \tau \neq 0$ on Ω .

Proof. If not, then we have $k - \tau = 0$ on an open subset of Ω . We discuss our arguments on such a place. Then we have $\lambda = 0$ because of (4.38). Thus, (4.24) tells us that AU = 0 and $\tau^2 + c = 0$, which together with (4.5) yields $\theta = 0$. We also have from (2.18) and (4.26)

$$\beta - \rho \alpha + 2\tau^2 = 0. \tag{5.4}$$

In the next step, differentiating (4.7) covariantly and taking the skew-symmetric part, and using (3.19) and (4.6), we find

(5.5)
$$\frac{\tau}{\mu} \{ t(Y)u(X) - t(X)u(Y) \} + g(K\nabla_X W, Y) - g(K\nabla_Y W, X)$$
$$= \tau \{ (\nabla_Y W)X - (\nabla_X W)Y \}.$$

If we put $X = \xi$ in this and take account of (2.21), (4.3), (4.7), (4.14) and the fact that AU = 0, then we find

$$K\nabla\alpha + \tau\nabla\alpha = 2\tau(\xi\alpha)\xi + \tau(2\alpha + t(\xi))U. \tag{5.6}$$

Replacing X by W in (5.5) and using (4.39), we also obtain

$$\mu(K\nabla\mu + \tau\nabla\mu) = 2\tau(\mu^2 - \alpha^2 + \rho\alpha + 2c)U + 2\mu\tau(W\alpha)\xi.$$

If we take the inner product with U to this and make use of (4.3), then we find $\mu(U\mu) = (\mu^2 - \alpha^2 + \rho\alpha + 2c)\mu^2$, which connected to (2.18) and (5.4) gives $\mu(U\mu) = 2(\mu^2 + \tau^2 + c)\mu^2$ by virtue of (4.5). Hence, it follows that

$$\mu(U\mu) = 2\mu^4. \tag{5.7}$$

However, if we take the inner product with U to (4.30), and use (5.4) and the fact that $\tau^2 + c = 0$ and AU = 0, then we get $\mu(U\mu) = (\rho - \alpha)U\alpha + 2c\mu^2$, which together with (5.7) yields

$$(\rho - \alpha)U\alpha = 2(\mu^2 - c)\mu^2. \tag{5.8}$$

Since we know that $k = \tau$, $\theta = 0$ and $\lambda = 0$, we can write (5.2) as

$$-4cg(\phi X, Y) - t(\xi)\{g(\phi AX, Y) - g(\phi AY, X)\}$$

$$= X(t(\xi))\eta(Y) - Y(t(\xi))\eta(X) + 2\{2g(A\phi AX, Y) + \alpha(g(\phi AX, Y) - g(\phi AY, X)) + (X\alpha)\eta(Y) - (Y\alpha)\eta(X)\}.$$

Putting $Y = \xi$ in this and remembering AU = 0, we get

$$X(t(\xi)) + 2(X\alpha) = \{\xi(t(\xi)) + 2\xi\alpha\}\eta(X) + (2\alpha + t(\xi))u(X).$$

Substituting this into the last equation, we obtain

$$(t(\xi) + 2\alpha)\{u(X)\eta(Y) - u(Y)\eta(X) + g(\phi AX, Y) - g(\phi AY, X)\} + 4g(A\phi AX, Y) + 4cg(\phi X, Y) = 0,$$

where we have used (4.5), and the fact that $\tau^2 + c = 0$ and AU = 0.

If we put $X = \mu W$ in this and take account of (2.17), (4.25) and the fact that AU = 0 and $\theta = 0$, then we get

$$(2\alpha + t(\xi))(\rho - \alpha) + 4c = 0.$$

However, applying (5.6) by U and using (4.3), we find

$$2U\alpha = \{2\alpha + t(\xi)\}\mu^2.$$

From the last two relationships it follows that $(\rho - \alpha)U\alpha = -2\mu^2$, which together with (5.8) will produce a contradiction. Therefore, $k - \tau \neq 0$ on Ω is proved.

Now, differentiating (5.1) covariantly, and taking the skew-symmetric part obtained, du=0 because of $k-\tau\neq 0$. Hence, we have $du(\xi,X)=0$ for any vector X. If we take account of (2.5), (2.20), (4.12) and (4.24), then we see from this

$$3\lambda\phi U + A\xi - \beta\xi + \phi\nabla\alpha + \mu AW = 0.$$

or, using (2.16), (2.17) and (4.38),

$$\nabla \alpha = (\xi \alpha)\xi + (\rho - 3\lambda)U. \tag{5.9}$$

We are now going to prove that $\xi \alpha = 0$. Differentiating the second equation of (4.24) with respect to ξ and taking account of (4.37) and Lemma 5.1, we obtain $\lambda \xi \alpha = 0$. But, the function λ does not vanish on Ω because of (4.24), (5.1) and Lemma 5.2. Thus, (5.9) is reformed as

$$\nabla \alpha = (\rho - 3\lambda)U. \tag{5.10}$$

Lemma 5.3. Under the same hypotheses as those stated in Lemma 5.1, we have $\Omega = \emptyset$.

Proof. We already know that du = 0. So, from (4.36) we have

$$g(K\nabla_X U,Y) - g(K\nabla_Y U,X) + \mu \tau \{t(X)w(Y) - t(Y)w(X)\} = 0,$$

where we have used (3.19) and (4.4).

If we put $X = \xi$ in this and make use of (2.19), (2.20), (4.12) and (4.24), then we find

$$K(3\lambda\phi U + \alpha A\xi - \beta\xi + \phi\nabla\alpha) + k\mu AW + \mu\tau t(\xi)W = 0,$$

which connected to (2.16), (3.12), (3.14), (4.7), (4.25) and (5.10) gives

$$\tau t(\xi) + (\rho - \alpha)(k + \tau) = 0, \tag{5.11}$$

or, using (4.38),

$$\tau(k-\tau)t(\xi) = \lambda(k+\tau)^2. \tag{5.12}$$

Using (5.10), we can write (5.3) as

$$X(t(\xi)) = \xi(t(\xi))\eta(X) + \{(1 + \frac{\tau}{k})(\lambda + \alpha - \rho) + t(\xi)\}u(X).$$
 (5.13)

Differentiating (5.11) covariantly and using (5.1), we find

$$\tau X(t(\xi)) = (\alpha - \rho)(k - \tau)u(X) + (k + \tau)(X\alpha - X\rho),$$

which connected to (4.38) gives

$$\tau X(t(\xi)) = (k+\tau)(X\alpha - X\rho + \lambda u(X)). \tag{5.14}$$

By the way, if we differentiate (4.38) with respect to ξ and using (4.37) and (5.1), we get $(k - \tau)(\xi \rho - \xi \alpha) = 0$, which together with Lemma 5.2 gives $\xi \rho - \xi \alpha = 0$. Thus, (5.14) tells us that $\xi(t(\xi)) = 0$ because of $\xi \rho - \xi \alpha = 0$.

Hence, (5.13) can be written as

$$\tau X(t(\xi)) = \{ (k + \frac{\tau^2}{k} + 2\tau)(\alpha - \rho) + \tau \lambda (1 + \frac{\tau}{k}) \} u(X),$$

where we have used (5.11).

Combining this to (5.14), we obtain

$$(k+\tau)(\nabla\alpha-\nabla\rho+\lambda U)=(1+\frac{\tau}{k})\{(k+\tau)(\alpha-\rho)+\tau\lambda\}U,$$

which connected to (4.38) and Lemma 5.2 yields

$$k(\nabla \alpha - \nabla \rho) = 2\tau(\lambda + \alpha - \rho)U. \tag{5.15}$$

On the other hand, if we differentiate (5.13) and use (5.1) and itself, then we find

$$\lambda(k+\tau)^2U+\tau(k-\tau)\nabla t(\xi)=(k+\tau)^2\nabla\lambda+2\lambda(k^2-\tau^2)U,$$
 or, using (5.14) and (5.15),

$$(k+\tau)\nabla\lambda = 6\tau\lambda U,\tag{5.16}$$

where we have used (4.38) and Lemma 5.2.

Now, if we put X = U and Y = W in (5.2) and make use of (2.17), (4.24), (4.25) and (5.10), then we find

$$\theta k(k-\tau) - \tau \alpha \lambda(k-\tau) - \tau^2 (k-\tau)^2$$

= $c(k^2 - \tau^2) + \lambda^2 (k+\tau)^2 - \tau \lambda(k+\tau)(t(\xi) + \rho)$,

or, using (4.5), (4.38) and (5.1), we obtain

$$\lambda^{2}(k+\tau)^{2} + 2\lambda\alpha\tau(k-\tau) + (k-\tau)^{2}(\tau^{2} - c) = 0.$$
 (5.17)

If we use (4.38), (5.1) and (5.10) and (5.16), then we can write this as $\lambda = 0$. Thus, (5.17) implies $\tau^2 = c$, a contradiction because of Proposition 3.3. Therefore, we conclude that k = 0 on M, that is, $\Omega = \emptyset$. This completes the proof of Lemma 5.3.

6. Main theorem

We will continue our arguments under the same hypotheses as those in section 5. Then, by Lemma 5.3 we have k = 0 on M and hence (3.6) can be written as

$$K^{2}X = (\theta - c)(X - \eta(X)\xi), \tag{6.1}$$

where we have used (3.12).

By virtue of (3.24) we have KU=0 and hence $\tau U=0$ because of (4.3). Thus, (3.28) can be written as $\tau(\phi A-A\phi)=0$. Therefore, it follows that

$$A\phi = \phi A,\tag{6.2}$$

which implies $A\xi = \alpha \xi$. From (6.2) and (3.18) with k = 0, we can verify that (cf. [6], [11])

$$A^{2} = \alpha A + c(I - \eta \otimes \xi). \tag{6.3}$$

Further, (3.27) is reduced to

$$2(\nabla_X L)LY = \tau^2 \{t(X)\phi Y + \eta(Y)A\phi X + \eta(X)\phi AY\}.$$

Applying this by L and making use of (2.5), (3.16) and (3.22) we get,

$$(\nabla_X L)Y = -t(X)KY + \eta(X)AKY + \eta(Y)AKX + g(AX, KY)\xi. \tag{6.4}$$

In the same, we have from (6.1)

$$(\nabla_X K)Y = t(X)LY - \eta(X)LAY - \eta(Y)ALX - g(AX, LY)\xi. \tag{6.5}$$

Since we have $T_rL=0$, $K\xi=0$ and $A\xi=\alpha\xi$, taking the trace of (6.4), we obtain

$$T_r(AK) = 0 (6.6)$$

and hence

$$T_r(A^2K) = 0 (6.7)$$

because of (6.3).

Since we have AK = KA because of (3.21) with k = 0. it follows that A and K are diagonalizable at the same time. So, using (6.2) and (6.3) and

the fact that $A\xi = \alpha \xi$, we can verify that A has two constant eigenvalues α and $(\alpha - \sqrt{D})/2$ with multiplicities 1, 2(n-1) respectively, and D denoted by $D = \alpha^2 + 4c$, where we have used (6.6) and (6.7). Consequently the trace h of A is given by (for detail, see (4.16) of [15])

$$h = n\alpha - (n-1)\sqrt{D}. ag{6.8}$$

On the other hand, differentiating (6.5) covariantly along M and using the previously obtained formulas and the Ricci identity for K, we have (for detail, see (4.20) and (4.22) of [15])

$$(h+3\alpha)(h-\alpha) = 4(n-1)\{(n+1)\theta - 2c(n+2)\},\tag{6.9}$$

$$(\theta - 3c)(h - \alpha) = 2(n - 1)(\theta - 2c)\alpha. \tag{6.10}$$

By the way, we have from (6.8) and (6.9)

$$\alpha(\alpha - \sqrt{D}) = 2(\theta - 3c).$$

Thus, if we combine (6.8) and (6.10) to the last relationship, we obtain

$$(\theta - 3c)^2 = (\theta - 2c)\alpha^2. \tag{6.11}$$

From (2.23) we see that the Ricci tensor S of M is given by

$$SX = c\{(2n+1)X - 3\eta(X)\xi\} + hAX - A^2X - K^2X - L^2X$$

because of Lemma 5.3, which together with (3.16) and (6.1) implies that

$$SX = \{c(2n+1) - 2\tau^2\}X + (2\tau^2 - 3c)\eta(X)\xi + hAX - A^2X.$$

Thus, the scalar curvature \bar{r} of M is given by

$$\bar{r} = 2(n-1)(2n+1)c - 4(n-1)\tau^2 + h(h-\alpha). \tag{6.12}$$

where we have used (6.3).

By the way, it is clear, using (4.5), that $\theta - 3c \neq 0$ for c < 0. But, we also have $\theta - 3c \neq 0$ for c > 0 if $\bar{r} - 2(n-1)c < 0$.

In fact, if not, then we have $\theta = 3c$ on this subset of M. We discuss our arguments on this set. So we have $\alpha = 0$ because of (6.11). Hence, (6.3) and (6.9) imply respectively $h_{(2)} = 2(n-1)c$, $h^2 = 4(n-1)^2c$.

Using these facts and (4.5), we can write (6.12) as $\bar{r} - 2(n-1)c = 4(n-1)(2n-3)c$, a contradiction because $\bar{r} - 2(n-1)c \leq 0$. Thus, if we combine (6.10) to (6.11), then we obtain $\alpha(h-\alpha) = 2(n-1)(\theta-3c)$, which together with (6.9) yields

$$h(h-\alpha) = 2(n-1)(2n-1)\tau^2 - 4n(n-1)c.$$

Using this fact, we can write (6.12) as $\bar{r} - 2(n-1)c = 2(n-1)(2n-3)\tau^2$.

Therefore we have $\tau = 0$ if $\bar{r} - 2(n-1)c \le 0$ and hence K = L = 0 on M by virtue of (3.16) and (6.1).

Let $N_0(p) = \{ \nu \in T_p^{\perp}(M) : A_{\nu} = 0 \}$ and $H_0(p)$ be the maximal J-invariant subspace of $N_0(p)$. Since K = L = 0, the orthogonal complement of $H_0(p)$ is invariant under parallel translation with respect to the normal connection because of $\nabla^{\perp}C = 0$. Thus, by the reduction theorem in [9] and by Lemma 3.2 and Proposition 3.3, we conclude that

Theorem 6.1. Let M be a real (2n-1)-dimensional (n>2) semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$, $c \neq 0$ with constant holomorphic sectional curvature 4c such that the third fundamental form t satisfies $dt = 2\theta\omega$ for a scalar $\theta - 2c \neq 0$ and $\bar{r} - 2c(n-1) \leq 0$, where $\omega(X,Y) = g(\phi X,Y)$ for any vector fields X and Y on M. If M satisfies $R_{\xi}\phi = \phi R_{\xi}$ and at the same time $R'_{\xi} = 0$, then M is a real hypersurface in a complex space form $M_n(c)$, $c \neq 0$.

Since we have $\nabla^{\perp}C=0$, we can write (3.18) and (4.16) as

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},$$

$$\alpha(\phi AX - A\phi X) - g(A\xi, X)U - g(U, X)A\xi = 0$$

respectively. Making use of (2.4), (2.5) and the above equations, it is prove in [15] that g(U,U)=0, that is, M is a Hopf real hypersurface. Hence, we conclude that $\alpha(A\phi-\phi A)=0$ and hence $A\xi=0$ or $A\phi=\phi A$. Here, we note that the case $\alpha=0$ correspond to the case of tube of radius $\pi/4$ in $P_n\mathbb{C}([5],[6])$. But, in the case $H_n\mathbb{C}$ it is known that α never vanishes for Hopf hypersurfaces (cf.[19]) Thus, owing to Theorem 6.1 and main theorem in [18] and [20], we have

Theorem 6.2. Let M be a real (2n-1)-dimensional (n>2) semi-invariant submanifold of codimension 3 in a complex space form $M_{n+1}(c)$, $c \neq 0$ with constant holomorphic sectional curvature 4c such that $R'_{\xi} = 0$ and the third fundmental form t satisfies $dt = 2\theta\omega$ for a scalar $\theta - 2c(\neq 0)$, where R'_X is defined by $R'_X = (\nabla_X R)(\cdot, X)X$ for any unit vector field X. Then $R_{\xi}\phi = \phi R_{\xi}$ holds on M if and only if $A\xi = 0$ or M is locally congruent to one of the following hypersurfaces provided that the scalar curvature \bar{r} of M satisfies $\bar{r} - 2(n-1)c \leq 0$:

- (I) in case that $M_n(c) = P_n \mathbb{C}$ with $\eta(A\xi) \neq 0$,
 - (A₁) a geodesic hypersphere of radius r, where $0 < r < \pi/2$ and $r \neq \pi/4$,
 - (A₂) a tube of radius r over a totally geodesic $P_k\mathbb{C}$ for some $k \in \{1, ..., n-2\}$, where $0 < r < \pi/2$ and $r \neq \pi/4$;
- (II) in case that $M_n(c) = H_n\mathbb{C}$,
 - (A_0) a horosphere,
 - (A_1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1}\mathbb{C}$,
 - (A_2) a tube over a totally geodesic $H_k\mathbb{C}$ for some $k \in \{1, ..., n-2\}$.

From (4.22) and Theorem 6.2 we have

Corollary 6.3. If we replace the condition $R'_{\xi} = 0$ by $\nabla_{\xi} R_{\xi} = 0$ in Theorem 6.2, then we verify that M is the same type as those stated in Theorem 6.2.

References

- A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69(1978), 135-142.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395(1989), 132-141.
- [3] J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2(1992), 57-82.
- [4] D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27(1976), 313-319.
- [5] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-499.
- [6] T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer (2015).
- [7] J. T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators. Acta Math. Hungar. 80(1998), 155-167.
- [8] J. T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex projective space, Tsukuha J. Math. 22(1997), 145-156.
- [9] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 3(1971), 333-340.
- [10] J. I. Her, U-H. Ki and S.-B. Lee, Semi-invariant submanifolds of codimension 3 of a complex projective space in terms of the Jacobi operator, *Bull. Korean Math. Soc.* 42(2005), 93-119.
- [11] U-H. Ki, Cyclic-parallel real hypersurfaces of a complex space form, Tsukuba J. Math. 12(1988), 259-268.
- [12] U-H. Ki, H. Kurihara and H. Song, Semi-invariant submanifolds of codimension 3 in complex space forms in terms of the structure Jacobi operator, to appear.
- [13] U-H. Ki and H. Song, Jacobi operators on a semi-invariant submanifolds of codimension 3 in a complex projective space, Nihonkai Math J. 14(2003), 1-16.
- [14] U-H. Ki and H. Song, Submanifolds of codimension 3 in a complex space form with commuting structure Jacobi operator, to appear.
- [15] U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, *Nihonkai Math J.* 11(2000), 57-86.
- [16] U-H. Ki, Soo Jin Kim and S.-B. Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, *Bull. Korean Math. Soc.* 42(2005), 337-358.
- [17] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149.
- [18] S. Montiel and A.Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20(1986), 245-261.
- [19] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, *Cambridge University Press*: (1998(T. E. Cecil and S.-S. Chern eds.)), 233-305.
- [20] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1973), 355-364.

- [21] M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7(1978), 509-517.
- [22] H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25(2001), 279-298.
- [23] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19(1973), 495-506.
- [24] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I,II, *J. Math. Soc. Japan* 27(1975), 43-53, 507-516.
- [25] Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sũgaku 16(1964), 34-61.
- [26] K. Yano, and U-H. Ki, On $(f,g,u,v,w,\lambda,\mu,\nu)$ -structure satisfying $\lambda^2+\mu^2+\nu^2=1$, Kodai Math. Sem. Rep. 29(1978), 285-307.
- [27] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).

U - HANG KI

The National Academy of Sciences, Seoul, 06579, Korea

 $E ext{-}mail\ address: uhangki2005@naver.com}$

SOO JIN KIM

Department of Mathematics Chosun University Gwangju, 61452, Korea

E-mail address: ccamzzicee@naver.com