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STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT

SUBMANIFOLDS IN COMPLEX SPACE FORMS

U - HANG KI and SOO JIN KIM∗

Abstract. Let M be a semi-invariant submanifold of codimension 3 with

almost contact metric structure (φ, ξ, η, g) in a complex space formMn+1(c),

c 6= 0. We denote by Rξ and R′X be the structure Jacobi operator with re-
spect to the structure vector ξ and be R′X = (∇XR)(·, X)X for any unit

vector field X on M , respectively. Suppose that the third fundamental

form t satisfies dt(X,Y ) = 2θg(φX, Y ) for a scalar θ(6= 2c) and any vector
fields X and Y on M . In this paper, we prove that if it satisfies Rξφ = φRξ
and at the same time R′ξ = 0, then M is a Hopf real hypersurfaces of type

(A), provided that the scalar curvature r̄ of M holds r̄ − 2(n− 1)c ≤ 0.

1. Introduction

Let M̃ be a Kaehlerian manifold with parallel complex structure J . Then a
submanifold M of M̃ is called a CR submanifold if there exists a differentiable
distribution 4 : p → 4p ⊂ Tp(M) on M such that 4 is J-invariant and the
complementary orthogonal distribution 4⊥ is totally real, where TpM denotes
the tangent space at each point p in M ([1], [27]). In particular, M is said to be
a semi-invariant submanifold provided that dim4⊥ = 1. The unit normal in
J4⊥ is called the distinguished normal to the semi-invariant submanifold ([4],
[25]). In this case, M admits an almost contact metric structure (φ, ξ, η, g). A
typical example of a semi-invariant submanfold is real hypersurfaces in a Kaehle-
rian manifold. And new examples of nontrivial semi-invariant submanifolds in
a complex projective space PnC are constructed in [15] and [22]. Accordingly,
we may expect to generalize some results which are valid in a real hypersurface
to a semi-invariant submanifold.

An n-dimensional complex space form M̃n(c) is a Kaehlerian manifold of
constant holomorphic sectional curvature 4c. As is well known, complete and
simply connected complex space forms are isometric to a complex projective
space PnC, or a complex hyperbolic space HnC according as c > 0 or c < 0.
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For the real hypersurface of M̃n(c), c 6= 0, many results are known. One
of them, Takagi([23], [24]) classified all the homogeneous real hypersurfaces of
PnC as six model spaces which are said to be A1, A2, B,C,D and E, and Cecil-
Ryan ([5]) and Kimura ([17]) proved that they are realized as the tubes of
constant radius over Kaehlerian submanifolds when the structure vector field ξ
is principal.

On the other hand, real hypersurfaces in HnC have been investigated by
Berndt [2], Montiel and Romero [18] and so on. Berndt [2] classified all ho-
mogeneous real hypersurfaces in HnC and showed that they are realized as the
tubes of constant radius over certain submanifolds. Also such kinds of tubes
are said to be real hypersurfaces of type A0, A1, A2 or type B.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC.
Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type
(A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex
space form were studied by many authors ([7], [8], [11], [16], [18], [20] etc.).

We remark that, in particular, a homogeneous real hypersurface of type (A)

in M̃n(c) has a lot of nice geometric properties. For example, Okumura ([20])
or Montiel and Romero ([18]) showed respectively that a real hypersurface of
type (A) in PnC or in HnC if and only if the structure tensor φ commutes with
the shape operator A (φA = Aφ).

Denoting by R the curvature tensor of the submanifold, we define the Jacobi
operator Rξ = R(·, ξ)ξ with respect to the structure vector ξ. Then Rξ is a self
adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator Rξ, characteriza-
tion problems for real hypersurfaces of type (A) have recently studied (cf. [7],
[8], [16]). In the provious paper ([7]), Cho and one of the present authors gave
another characterization of real hypersurface of type (A) in a complex projective
space PnC. Namely they prove the following :

Theorem CK([7]). Let M be a connected real hypersurface of PnC if it satisfies
(1) RξAφ = φARξ or (2) Rξφ = φRξ, RξA = ARξ, then M is of type (A), where
A denotes the shape operator of M .

For each point p in a real hypersurface M and each unit tangent vector
X ∈ TpM , we define R′X by R′X = (∇XR)(·, X)X. If ∇ξRξ = 0, then we have

R′ξ = 0. If the structure vector ξ is a geodesic vector field, then R
′

ξ = 0 has a

nice geometric meaning (cf. [3]).

On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex space form Mn+1(c) have been studied in [12] ∼ [15] and so on by using
properties of induced almost contact metric structure and those of the third



STRUCTURE JACOBI OPERATORS 391

fundamental form of the submanifold. In the preceding work, Ki, Song and
Takagi ([15]) assert the following :

Theorem KST([15]). Let M be a real (2n−1)-dimensional semi-invariant sub-
manifold of codimension 3 in a complex projective space Pn+1C with constant
holomorphic sectional curvature 4c. If the structure vector ξ is an eigenvec-
tor for the shape operator in the direction of the distinguished normal and the
third fundamental form t satisfies dt = 2θω for a certain scalar θ(< 2c), where
ω(X,Y ) = g(φX, Y ) for any vectors X and Y on M , then M is a Hopf real
hypersurface in a complex projective space PnC.

In this paper, we consider a semi-invariant submanifold M of codimension 3
in a complex space form Mn+1(c), c 6= 0 which satisfies Rξφ = φRξ and at the
same time R′ξ = 0 such that the third funamental form t satisfies dt = 2θω for a

certain scalar θ( 6= 2c). If the scalar curvature r̄ of M satisfies r̄−2c(n−1) ≤ 0,
then we prove that M is a real hypersurface is of type (A) in Mn(c).

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant are supposed to be orientable.

2. Preliminares

Let M̃ be a real 2(n+1)-dimensional Kaehlerian manifold with parallel almost
complex structure J and a Riemannian metric tensor G. Let M be a real
(2n−1)-dimensional Riemannian manifold immersed isometrically in M̃ by the

immersion i : M → M̃ . In the sequel, we identify i(M) with M itself. We

denote by g the Riemmanian metric tensor on M from that of M̃ .
If we denote by ∇̃ the operator of covariant differentiation with respect to the

metric tensor G on M̃ and by ∇ the one on M , then the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )D + g(LX, Y )E, (2.1)

∇̃XC = −AX + l(X)D +m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.2)

for any vector fields tangent to X and Y on M and any unit vector field C,D
and E normal to M , because we take C,D and E are mutually orthogonal,
where A,K,L are called the second fundamental forms and l,m and t third
fundamental forms.

As is well-known, a submanifold M of a Kaehlerian manifold M̃ is said to be
a CR submanifold ([1], [27]) if it is endowed with a pair of mutually orthogonal
and complementary differentiable distribution (∆,∆−1) such that for any point
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p in M we have J∆p = TpM , JT⊥p ⊂ T⊥p M , where T⊥p M denote the normal
space of M at p. In particular, M is said to be semi-invariant submanifold([4],
[25]) provided that dim∆⊥ = 1 or to be a CR submanifold with CR dimension
n− 1([21]).

In this case the unit normal vector field in J∆⊥ is called a distinguished
normal to the semi-invariant submanifold and denote this by C ([25], [26]).

From now on we discuss that M is a real (2n−1)-dimensional semi-invariant

submanifold of a codimension 3 in a Kaehlerian manifold M̃ of real 2(n + 1)-
dimension . Then we can choose a local orthonormal frame field {e1, · · · , en−1,

Je1, · · · , Jen−1 , e0 = ξ, C = Jξ,D = JE,E} on the tangent space TpM̃ of M̃

for any point p in M such that e1, · · · , en−1, Je1, · · · , Jen−1
∈ TpM , ξ ∈ T⊥p M ,

and C, D, E ∈ T⊥p M .
Now, let φ be the restriction of J on M , then we have

JX = φX + η(X)C, η(X) = g(ξ,X), JC = −ξ (2.3)

for any vector field X on M ([26]). From this it is, using Hermitian property of
J , verified that the aggregate (φ, ξ, η, g) is an almost contact metric structure
on M , that is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(ξ,X) = η(X),

φξ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y .
In the sequel, we denote the normal components of ∇̃XC by ∇⊥C. The

distinguished normal C is said to be parallel in the normal bundle if we have
∇⊥C = 0, that is, l and m vanish identically.

Using the Kaehler condition ∇̃J = 0 and the Gauss and Weingarten formu-
las,we obtain from (2.3)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, (2.4)

∇Xξ = φAX, (2.5)

KX = φLX −m(X)ξ, (2.6)

LX = −φKX + l(X)ξ (2.7)

for any vectors X and Y on M . From the last two equations, we have

g(Kξ,X) = −m(X), (2.8)

g(Lξ,X) = l(X). (2.9)

Using the frame field {e0 = ξ, e1, · · · , en−1, φe1, · · · , φen−1} on M it follows
from (2.6) ∼ (2.9) that

TrK = η(Kξ) = −m(ξ)

TrL = η(Lξ) = l(ξ).
(2.10)
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By the way, there is no loss of generality such that we may assume TrL = 0(cf.
[15]). So we have

l(ξ) = 0. (2.11)

In what follows, to write our formulas in a convention form, we denote by
α = η(Aξ), β = (A2ξ), TrA = h, TrK = k, Tr(

tAA) = h(2) and for a function
f we denote by ∇f the gradient vector field of f .

From (2.10) we also have

m(ξ) = −k. (2.12)

From (2.6) and (2.7) we get

η(X)l(φY )− η(Y )l(φX) = m(Y )η(X)−m(X)η(Y ),

which together with (2.12) gives

l(φX) = m(X) + kη(X). (2.13)

Similarly, we have from (2.8)

m(φX) = −l(X), (2.14)

where we have used (2.9) and (2.11).
Taking the inner product with LY to (2.6) and using (2.9), we get

g(KLX,Y ) + g(LKX,Y ) = −{l(X)m(Y ) + l(Y )m(X)}. (2.15)

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ be because of
(2.5).

We put

Aξ = αξ + µW, (2.16)

where W is a unit vector orthogonal to ξ. Then we have

U = µφW (2.17)

by virtue of (2.5). Thus, W is also orthogonal to U . Further, we have

µ2 = β − α2. (2.18)

From (2.16) and (2.17) we have

φU = −Aξ + αξ. (2.19)

If we take account of (2.5), (2.10) and (2.19), then we find

g(∇Xξ, U) = µg(AW,X). (2.20)

Since W is orthogonal to ξ, we can, using (2.5) and (2.17), see that

µg(∇XW, ξ) = g(AU,X). (2.21)
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Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

(∇XA)ξ = −φ∇XU + g(AU +∇α,X)−AφAX + αφAX. (2.22)

In the rest of this paper we shall suppose that M̃ is a Kaehlerian manifold
of constant holomorphic sectional curvature 4c, which is called a complex space
form and denote by Mn+1(c), that is, we have

R̃(X̃, Ỹ )Z̃ = c{G(Ỹ , Z̃)X̃ −G(X̃, Z̃)Ỹ +G(JỸ , Z̃)JX̃ −G(JX̃, Z̃)JỸ

− 2G(JX̃, Ỹ )JZ̃}

for any vectors X̃, Ỹ and Ỹ on M̃ , where R̃ is the curvature tensor of M̃ . Then
equations of the Gauss and Codazzi are given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX (2.23)

− g(φX,Z)φY − 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY,

(∇XA)Y − (∇YA)X − l(X)KY + l(Y )KX −m(X)LY

+m(Y )LX = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},
(2.24)

(∇XK)Y − (∇YK)X = −l(X)AY + l(Y )AX + t(X)LY − t(Y )LX, (2.25)

(∇XL)Y − (∇Y L)X = −m(X)AY +m(Y )AX − t(X)KY + t(Y )KX, (2.26)

where R is the Riemman Christoffel curvature tenser of M , and those of the
Ricci tensor by

(∇X l)Y − (∇Y l)X + g((KA−AK)X,Y ) = m(Y )t(X)−m(X)t(Y ), (2.27)

(∇Xm)Y − (∇Ym)X + g((LA−AL)X,Y ) + t(X)l(Y )− t(Y )l(X) = 0, (2.28)

(∇Xt)Y − (∇Y t)X + g((LK −KL)X,Y )

= l(Y )m(X)− l(X)m(Y ) + 2cg(φX, Y ).
(2.29)

In the end of this section, we introduce the structure Jacobi operator Rξ with
respect to the structure vector field ξ which is defined by RξX = R(X, ξ)ξ for
any vector field X. Then we have from (2.23)

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + η(Kξ)KX − η(KX)Kξ

+ η(Lξ)LX − η(LX)Lξ.
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Since l and m are dual 1-forms of Lξ and Kξ respectively because of (2.8)
and (2.9), the last relationship is reformed as

RξX = c(X−η(X)ξ)+αAX−η(AX)Aξ+kKX+m(X)Kξ− l(X)Lξ, (2.30)

where we have used (2.8) ∼ (2.12).

3. Structure equations satisfying dt = 2θω

In this section we will suppose that M is a semi-invariant submanifold of
codimension 3 in a complex space form Mn+1(c), c 6= 0. Further, suppose that
the third fundamental form t satisfies

dt = 2θω, ω(X,Y ) = g(φX, Y ) (3.1)

for any vector fields X and Y and a certain scalar θ, where d denotes the exterior
differential operator. Then (2.29) is reduced to

g((LK −KL)X,Y ) + l(X)m(Y )− l(Y )m(X) = −2(θ − c)g(φX, Y ),

which together with (2.15) yields

g(LKX,Y ) + l(X)m(Y ) = −(θ − c)g(φX, Y ), (3.2)

From this and (2.8)∼(2.12) we have

KLξ = kLξ, LKξ = 0. (3.3)

for any vector X on M .
Differentiating (3.1) covariantly along M and making use of (2.4) and the

first Bianchi identity, we find

(Xθ)ω(Y, Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Therefore, θ is a constant if n > 2.
For the case where θ = c in (3.1) we have dt = 2cω. In this case, the normal

connection of M is said to be L-flat([21]).
By properties of the almost contact metric structure we have from (3.2)

Tr(
tKK)− ‖m‖2 + ‖l‖2 = 2(n− 1)(θ − c),

where we have used (2.6), (2.9) and (2.10), which connected to (2.8) gives

‖K −m⊗ ξ‖2 + ‖l‖2 = 2(n− 1)(θ − c), (3.4)

where ‖T‖2 = g(T, T ) for any tensor field T on M . Hence θ− c is nonnegative.
In the same way, we can verify, using (2.7), (2.11), (2.14) and (3.2), that

‖m+ kξ‖2 − T (tLL) = 2(n− 1)(θ − c). (3.5)

In the previous paper [15] we prove the following :
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Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c 6= 0. If Aξ = αξ, then we have ∇⊥C = 0 and K = L = 0
on M .

Transforming (3.2) by φ and using (2.6) and (2.14), we find

K2X + η(X)K2ξ + l(X)Lξ = (θ − c){X − η(X)ξ},
which shows η(X)K2ξ − g(K2ξ,X)ξ = 0. Thus, we have

K2ξ = (‖Kξ‖2)ξ

because of (2.8), where g(Kξ,Kξ) = ‖Kξ‖2. Combining above two equations,
it follows that

K2X + l(X)Lξ + ‖Kξ‖2η(X)ξ = (θ − c)(X − η(X)ξ). (3.6)

In the same way, we have from (3.2)

L2ξ = kKξ + (‖Kξ‖2 + k2)ξ, (3.7)

where we have used (2.7), (2.13) and (3.3).
Since we have (2.14) and the second equation of (3.3), we see from (3.2)

(θ − c− ‖Kξ‖2)Lξ = 0.

On the other hand we have from (3.2)

kl(LX) = (θ − c− ‖Lξ‖2)m(X) + k(θ − c)η(X)

because of (2.13) and (3.3), which together with (3.7) yields

(θ − c− ‖Lξ‖2 − k2)(‖Kξ‖2 − k2) = 0.

Now, let Ω0 be a set of points such that ‖Lξ‖ 6= 0 and Ω0 be nonvoid. Then
we have

‖Kξ‖2 = θ − c, ‖Lξ‖2 + k2 = θ − c (3.8)

on Ω0.
In fact, if not, then we have m(X) = −kη(X), which connected to (2.13)

gives l(φX) = 0 and hence Lξ = 0, a contradiction. Thus, the second equation
of (3.8) is established.

We discuss our arguments on Ω0. Using equations already obtained, we can
find (for detail, see (2.22) and (2.24) of [15])

∇Xk = 2ALξ, (3.9)

∇XLξ = t(X)Kξ −AKX − kAX. (3.10)
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Differentiating (3.9) covariantly and taking the skew-symmetric part obtained,
we get

(θ − 2c){η(X)Kξ −m(X)ξ} = 0,

where we have used (2.13), (2.24), (3.3) and (3.10), which shows

(θ − 2c)(m(X) + kη(X)) = 0

and hence (θ − 2c)l(X) = 0 by virtue of (2.13). Thus, θ − 2c = 0 on Ω1.
Therefore we conclude that

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0 satisfying θ 6= 2c. Then, we have l = 0.

Throughout this paper, we assume that M satisfies (3.1) with θ 6= 2c. Then,
by Lemma 3.2 we have l = 0 and hence

m(X) = −kη(X) (3.11)

because of (2.13). Hence (2.8) and (2.9) are reduced respectively to

Kξ = kξ, Lξ = 0. (3.12)

Since l = 0 on M , (3.2) and (2.7) are reformed respectively as

g(LKX,Y ) = −(θ − c)g(φX, Y ), (3.13)

L = −φK. (3.14)

From the last two relationships, we obtain

KL+ LK = 0, (3.15)

L2X = (θ − c)(X − η(X)ξ). (3.16)

It is clear, using (3.11), that (2.6) becomes

KX = φLX + kη(X). (3.17)

If we take account of (3.11) and Lemma 3.2, then (2.24)∼(2.28) are reformed
respectively as

(∇XA)Y − (∇YA)X = k{η(Y )LX − η(X)LY }
+ c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(3.18)

(∇XK)Y − (∇YK)X = t(X)LY − t(Y )LX, (3.19)

(∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX, (3.20)
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KAX −AKX = k{η(X)t− t(X)ξ}, (3.21)

LAX −ALX = (Xk)ξ − η(X)∇k + k(φAX +AφX), (3.22)

Putting X = ξ in (3.21) and using (3.12), we find

KAξ = kAξ + k{t− t(ξ)ξ}. (3.23)

If we apply this by φ and use (2.19), (3.12) and (3.14), then we get

g(KU,X) = k{t(φX)− u(X)}, (3.24)

where u(X) = g(U,X) for any vector X.
Replacing X by ξ in (3.22) and using (2.5), (3.12) and (3.14), we get

KU = (ξk)ξ −∇k + kU. (3.25)

which together with (3.24) gives

Xk = (ξk)η(X) + k{2u(X)− t(φX)}. (3.26)

This yields φ∇k = k{2(Aξ − αξ) + t− t(ξ)ξ}.
If we apply (3.22) by φ and take account of (3.17) and the last equation, then

we find

φALX −KAX = k{(t− t(ξ)ξ)η(X) + 2η(X)(Aξ − αξ)
+ 2g(Aξ,X)ξ −AX − φAφX},

or, using (3.21) we have φAL+ LAφ = 0.
Since θ is constant if n > 2, differentiating (3.16) covariantly, we get

2L∇XL = (c− θ){η(X)φA+ g(φA,X)ξ},
or, using (3.13) and (3.20), it is verified that (see, [15])

2(∇XL)LY =(θ − c){−2t(X)φY + η(Y )(Aφ− φA)X − g((Aφ+ φA)X,Y )ξ

+ η(X)(φA+Aφ)Y }+ k{η(Y )(AL+ LA)X

− g((AL+ LA)X,Y )ξ − η(X)(LA−AL)Y },

which together with (3.12) and (3.26) yields

(θ − c)(Aφ− φA)X + (k2 + θ − c)(u(X)ξ + η(X)U)

+ k{(AL+ LA)X + k{−t(φX)ξ + η(X)φ ◦ t} = 0.
(3.28)

Taking the trace of this, we obtain

kTr(AL) = 0. (3.29)



STRUCTURE JACOBI OPERATORS 399

In the previous paper [15], the following proposition was proved for the case
where c > 0.

Proposition 3.3. If M satisfies dt = 2θω for a scalar θ(6= 2c) and µ = 0 in
Mn+1(c), c 6= 0, then we have k = 0 on M .

Proof. This fact was proved for c > 0 (see, Proposition 3.5 of [15]). But,
regardless of the sign of c this one is established. However, only ξk = 0 and
ξα = 0 should be newly certified. We are now going to prove that ξk = 0.

Differentiating (3.11) covariantly and using (2.5), we find

∇Xm = −(Xk)ξ + kφAX,

from which, taking the skew-symmetric part and using (2.28) with l = 0,

LAX −ALX − k(φA+Aφ)X = (Xk)ξ − η(X)∇k.
If we put X = ξ in this and make use of (3.12), then we find

∇k = (ξk)ξ (3.30)

because Aξ = αξ was assumed. From the last two equations, if follows that

LA−AL = k(φA+Aφ). (3.31)

Differentiating (3.30) covariantly, and taking the skew-symmetric part ob-
tained, we find

(ξk)(Aφ+ φA) = 0, (3.32)

where we have used (2.5).
Since we have Aξ = αξ because of (2.16), we can write (2.22) as

(∇XA)ξ = −AφAX + αφAX + (Xα)ξ,

which together with (3.12) and (3.18) gives

2AφAX + α(Aφ+ φA) + 2cφX = η(X)∇α− (Xα)ξ. (3.33)

Putting X = ξ in this, we also find

∇α = (ξα)ξ. (3.34)

Using the quite same method as that used to (3.32) from (3.30), we can
derive from the last equation the following :

(ξα)(φA+Aφ) = 0. (3.35)

Now, if we suppose that ξk 6= 0. Then we have

φA+Aφ = 0, LA = AL
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on this open subset because of (3.31) and (3.32). We discuss our arguments on
such a place. By virtue of (3.34) and the last relationship, we can write (3.33)
as

A2φ+ cφ = 0,

If we apply this by φ, then we obtain

A2X + cX = (α2 + c)η(X)ξ, (3.36)

where we have used Aξ = αξ.
Since we have Aξ = αξ, that is, U = 0 was assumed, (3.28) can be written

as (θ − c)AφX + kALX = 0 with the aid of (3.24), which together with (3.17)
yields

(θ − c)AX + kAKX = α(θ − c+ k2)η(X)ξ.

Combining this to (3.36), we find kKX+(θ−c)X = (θ−c+k2)η(X)ξ, which
shows (n − 1)(θ − c) = 0. Thus we have θ − c = 0 if n > 2, This contradicts
Lemma 3.1. Thus ξk = 0 is proved on M .

By the same as above we can prove ξα = 0 by virtue of (3.34) and (3.35).
This completes the proof. �

We set Ω = {p ∈ M : k(p) 6= 0}, and suppose that Ω is not empty, In the
rest of this paper, we discuss our arguments on the open subset Ω of M . So, by
Proposition 3.3, we see that µ 6= 0 on Ω.

4. Jacobi operators of semi-invariant submanifolds

We will continue now, our arguments under the same hypotheses dt = 2θω
for a scalar θ(6= 2c) as in section 3. Then, by virtue of (3.11) and (3.12) we can
write (2.30) as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX − k2η(X)ξ, (4.1)

which implies.

RξKX = c(KX − kη(X)ξ) + αAKX − η(AKX)Aξ + kK2X − k3η(X)ξ,

where we have used (3.12), from which taking the skew-symmetric part,

(RξK −KRξ)X = α(AK −KA)X + g(Aξ,X)KAξ − g(KAξ,X)Aξ,

which together with (2.16), (3.21) and (3.23) gives

(RξK −KRξ)X = kµ{t(X)W − w(X)t− t(ξ)(η(X)W − w(X)ξ)},
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where g(W,X) = w(X) = for any vector X.
According to Proposition 3.3, we then have

Lemma 4.1. RξK = KRξ holds on Ω if and only if t ∈ f(ξ,W ), where f(ξ,W )
denoted a linear subspace spanned by ξ and W .

Under the hypotheses of Lemma 4.1, we have

t = t(ξ)ξ + t(W )W. (4.2)

From (2.17) and (4.2) we obtain t(φX) = − 1
µ t(W )u(X), which together with

(3.24) yields

KU = τU, (4.3)

where τ is defined by µτ = −k(µ+ t(W )), or using (3.14),

LU = µτW. (4.4)

By virtue of (3.13) and the last two relationships, it follows that

τ2 = θ − c. (4.5)

Since θ − c 6= 0 on Ω by Lemma 3.1, τ is a positive constant on Ω if n > 2.
In a direct consequcence of (3.14) and (4.3), we see that

µLW = τU. (4.6)

Using (2.16) and (3.12), we can write (3.23) as

µKW = kµW + k(t− t(ξ)ξ),
which together with (4.2) implies that

KW = −τW (4.7)

because of Proposition 3.3.
Now, by using (3.24) and (4.3) we see that

t(φX) = −µ(1 +
τ

k
)u(X) (4.8)

on Ω, which connected to the property of the almost contact metric structure
implies that

t = t(ξ)ξ − µ(1 +
τ

k
)W. (4.9)

If we take account of (4.3), then (3.25) can be written as

∇k = (ξk)ξ + (k − τ)U. (4.10)

On the other hand, if we use (2.19) and (2.24), then (2.22) implies that
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(∇ξA)ξ = 2AU +∇α+ 2η(Lξ)− 2η(Kξ)Lξ.

Thus, it follows, using (3.12), that

(∇ξA)ξ = 2AU +∇α. (4.11)

Putting X = ξ in (2.22) and using (2.16), (2.18) and (4.11), we get

∇ξU = 3φAU + αAξ − βξ + φ∇α, (4.12)

which together with (3.12), (3.14) and (4.7) gives

−K∇ξU = 3LAU + αµW + µ2kξ + L∇α. (4.13)

In the following, we see, using (2.16) and (2.19), that φU = −µW . Differen-
tiating the last equation covariantly and using (2.4), we find

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.
Putting X = ξ in this and using (4.12), we get

µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W, (4.14)

which tells us that

Wα = ξµ. (4.15)

In the next step suppose, throughout this paper, that Rξφ = φRξ. Then from
(4.1) we have

α(φA−Aφ)X = g(Aξ,X)U + g(U,X)Aξ + 2kLX, (4.16)

where we have used (3.11), (3.12) and (3.14). Applying this by L and using
(2.19), (3.17) and (3.22), we find

α{AKX − kη(X)Aξ − φALX}
+ g(LU,X)Aξ + g(KU,X)U + 2kL2X = 0,

(4.17)

which together with (2.16), (3.21) and (3.24) yields

kα{t(X)ξ − η(X)t+ µ(w(X)ξ − η(X)W}
+ g(LU,X)Aξ − g(Aξ,X)LU − u(X)KU + g(KU,X)U = 0.

If we take the inner product with ξ to this and make use of (3.12), then we get

kα{t(X)− t(ξ)η(X) + g(Aξ,X)− αη(X)}+ αg(LU,X)U = 0. (4.18)

Combining the last two relationships and making use of (2.18), we get

µ{w(X)LU − g(LU,X)W}+ u(X)KU − g(KU,X)U = 0. (4.19)
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We notice here that the following (cf. see [10]) :

Remark 4.1. α 6= 0 on Ω.

Now, putting X = U in (4.16) and using (2.16) and (2.19), we find

α(φAU + µAW ) = µ2Aξ + 2kLU. (4.21)

Remark 4.2. Ω = ∅ if θ = c.
In fact, since θ − c = 0 was assumed, (3.16) implies that L = 0 and hence

KX = kη(X)ξ by virtue of (3.17). Thus, (3.20) becomes

k{η(X)AY − η(Y )AX + ξ(η(X)t(Y )− η(Y )t(X))} = 0,

which enables us to obtain k{t(X) + g(Aξ,X) − ση(X)} = 0, where we have
put σ = α+ t(ξ). Therefore, combining the last two equations, it follows that

AX = η(X)Aξ + g(Aξ,X)ξ − αη(X)ξ.

From this we have AU = 0 and AW = µξ. Consequently we see from (4.21)
µ = 0, a contradiction because of Proposition 3.3.

Lemma 4.2. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0 satisfying dt = 2θω for a scalar θ( 6= 2c). If it satisfies Rξφ =
φRξ, then RξK = KRξ holds on Ω.

Proof. Applying (4.16) by A and taking the trace obtained, we get g(A2ξ, U) =
0 because of (3.29), which together with (2.16) and Lemma 3.1 gives g(AW,U) =
0.

If we take the inner product with U to (4.21) and make use of (2.19) and the
last assertion, then we have g(LU,U) = 0.

Putting X = U in (4.19) and using this fact we have KU = τU , where τ
is given by τµ2 = g(KU,U) because of Proposition 3.3, which together with
(3.14) implies that LU = τµW . Thus, if we combine this and (2.16) to (4.18),
then we obtain

kα{t− t(ξ)ξ + µ(1 +
τ

k
)W} = 0.

Because of Remark 4.1, we have (4.9). Hence t ∈ f(ξ,W ). By Lemma 4.1, we
conclude that RξK = KRξ. �

In the next place, differentiating (4.1) covariantly along Ω, we find
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g((∇XRξ)Y,Z) = −(k2 + c){η(Z)g(∇X , ξY ) + η(Y )g(∇Xξ, Z)}+ (Xα)g(AY,Z)

+ αg((∇XA)Y,Z)− g(Aξ,Z){g((∇XA)ξ, Y )− g(AφAY,X)}
− g(Aξ, Y ){g((∇XA)ξ, Z)− g(AφAZ,X)}+ (Xk)g(KY,Z)

+ kg((∇XK)Y,Z)− 2k(Xk)η(Y )η(Z).

Replacing X by ξ in this and using (2.5) and (4.11), we find

(∇ξRξ)X =− (k2 + c)(u(X)ξ + η(X)U) + (ξα)AX + α(∇ξA)X

+ (ξk)KX + k(∇ξK)X − 2k(ξk)η(X)ξ

− (3AU +∇α)g(Aξ,X)− (3g(AU,X) +Xα)Aξ.

(4.22)

For each point p ∈ M and each unit tangent vector X ∈ TpM , we defined

R
′

X by R
′

X = (∇XR)(·, X)X. Then, in particular supposing that the structure

vector field ξ of M is a geodesic vector field, it is easily seen that R
′

ξ = 0 on M
if and only if the Jacobi operator Rξ is diagonalizable by a parallel orthonormal
frame field along each trajectory of ξ and at the same time their eigenvalues are
constant along each trajectory of ξ (cf. [3]).

Now, suppose that R
′

ξ = (∇ξRξ)ξ = 0 on M . Then we have from (4.22)

α(∇ξA)ξ + k(∇ξK)ξ = (k2 + c)U + α(3AU +∇α) + k(ξk)ξ,

where we have used the first equation of (3.12). From Kξ = kξ, we have
(∇XK)ξ+K∇Xξ = (Xξ)ξ+ k∇Xξ, which shows (∇ξK)ξ+KU = (ξk)ξ+ kU .
If we combine this to the last equation, then we find

αAU + kKU + cU = 0, (4.23)

where we have used (4.11).
In the rest of this paper, we shall suppose that M satisfies Rξφ = φRξ and

R
′

ξ = 0. Then from (4.3) and (4.23) we have

αAU + (kτ + c)U = 0,

which implies that

AU = λU, αλ+ kτ + c = 0. (4.24)

From this and (4.21) we have

αAW = αµξ + (µ2 + 2kτ + αλ)W,

where we have used (2.16), (2.19) and (4.4), which implies that

AW = µξ + (ρ− α)W, (4.25)

where we have put
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α(ρ− α) = µ2 + 2kτ + αλ. (4.26)

Differentiating (4.25) covariantly along Ω, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW. (4.27)

Taking the inner product W to this and using (2.21) and (4.25), we find

g((∇XA)W,W ) = −2g(AU,X) +Xρ−Xα (4.28)

because W is orthogonal to ξ. If we apply (4.27) by ξ and take account of
(2.21), we also find

µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ) (4.29)

or, using (3.18)

µ(∇ξA)W = (ρ− 2α)AU + µ∇µ− kµLW − cU. (4.30)

From this we verify, using (3.12), (3.18), (4.6) and (4.28), that

µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ. (4.31)

Putting X = ξ in (4.28) and using (4.29), we obtain

Wµ = ξρ− ξα. (4.32)

Replacing X by ξ in (4.27) and using (4.6) and (4.30), we find

(ρ− 2α)AU − kτU − cU + µ∇µ+ µ(A∇ξW − (ρ− α)∇ξW )

= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W,

which together with (4.14) and (4.15) gives

3A2U − 2ρAU + (αρ− β − kτ − c)U +A∇α+
1

2
∇β − ρ∇α

= 2µ(Wα)ξ + (2α− ρ)(ξα)ξ + µ(ξρ)W.
(4.33)

Differentiating the equation AU = λU covariantly, we find

(∇XA)U +A∇XU = (Xλ)U + λ∇XU,
from which, taking the skew-symmetric part,

µ(kτ + c)(η(X)w(Y )− η(Y )w(X)) + g(A∇XU, Y )− g(A∇Y U,X)

= (Xλ)u(Y )− (Y λ)u(X) + λ(g(∇XU, Y )− g(∇Y U,X)),

where we have used (2.16), (2.19), (3.18) and (4.4).
Replacing X by U in this and taking account of AU = λU , we find
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A∇UU − λ∇UU = (Uλ)U − µ2∇λ. (4.34)

If we take the inner product this with ξ and remember (4.25), then we also
find

µg(∇UU, ξ) + µ2(Wλ) + (ρ− α− λ)g(∇UU,W ) = 0. (4.35)

On the other hand, differentiating (4.3) covariantly, we find

(∇XK)U +K∇XU = τ∇XU. (4.36)

If we take the inner product with U to this, then we have g((∇XK)U,U) = 0.
But, from (3.19), (4.2) and (4.4) we have (∇UK)U = 0, which together with
(4.7) and (4.36) yields g(∇UU,W ) = 0. Thus, (4.35) turns out to be

µg(∇UU, ξ) + µ2(Wλ) = 0.

However, the first term of this vanishes identically by virtue of (2.20) and (4.25).
Thus, it follows that µ(Wλ) = 0 and hence Wλ = 0 by virtue of Proposition
3.3.

In the same way, we can verify, using (2.20) and (4.25), that ξλ = 0. Summing
up, we have

ξλ = 0, Wλ = 0. (4.37)

If we put X = µW in (3.28) and take account of (2.16), (3.12), (4.2), (4.6)
and (4.25), then we find

(θ − c){AU − (ρ− α)U}+ kτ{AU + (ρ− α)U} = 0,

which together with (4.5) and (4.24) yields

λ(k + τ) + (ρ− α)(k − τ) = 0. (4.38)

Finally, differentiating (2.16) covariatly and using (2.5), we find

(∇XA)ξ +AφAX = (Xα)ξ + αφAX + (Xµ)W + µ∇XW.
If we put X = µW in this and make use of (4.24), (4.25) and (4.31), then we
find

µ2∇WW −µ∇µ = (2ρλ− 3αλ+α2−αρ− 2c)U −µ(Wα)ξ−µ(Wµ)W. (4.39)

5. Semi-invariant submanifolds satisfying Rξφ = φRξ and R
′

ξ = 0

We will continue our arguments under the same hypotheses as that in section
3. Further, we assume that Rξφ = φRξ and R

′

ξ = 0 hold on M . Then all
equations obtained in section 4 are valid.
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Lemma 5.1. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c 6= 0, n > 2 such that dt = 2θω for a scalar θ( 6= 2c). If it satisfies

Rξφ = φRξ and R
′

ξ = 0, then we have

∇k = (k − τ)U. (5.1)

Proof. Differentiating the second relationship of (4.24) with respect to W and
using (4.37), we find λ(Wα) = 0 with the aid of (4.10).

But, we notice here that λ 6= 0 if ξk 6= 0. In fact, if not, then we have λ = 0
on this open subset. So, we have kτ + c = 0 on the set because of (4.24), which
shows τ∇k = 0 on the set. Thus, we have ∇k = 0 because of Remark 4.2, a
contradiction. Hence ξk = 0 on Ω is proved. �

Because of (2.17) we can write (4.9) as

t(Y ) = t(ξ)η(Y )− (1 +
τ

k
)g(φU, Y )

for any vector field Y . Differentiating this covariantly along Ω, we find

X(t(Y )) =X(t(ξ))η(Y ) + t(ξ)g(φAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

− (1 +
τ

k
){λu(X)η(Y ) + g(φ∇XU, Y )},

from which, taking the skew-symmetric part and making use of (2.19), (2.22),
(3.1), (4.24) and (5.1) implies that

2θg(φX, Y ) +
τ

k2
(k − τ)µ{u(Y )w(X)− u(X)w(Y )}

+ t(ξ){g(φAX, Y )− g(φAY,X)} = X(t(ξ))η(Y )− Y (t(ξ)η(X)

+ (1 +
τ

k
){2cg(φX, Y ) + λ(u(X)η(Y )− u(Y )η(X)) + (Xα)η(Y )− (Y α)η(X)

+ 2g(AφAX, Y ) + α(g(φAX, Y )− g(φAY,X))}.

(5.2)

Putting Y = ξ in this and using (2.5) and (4.24), we find

X(t(ξ)) = ξ(t(ξ))η(X) + t(ξ)u(X)

+ (1 +
τ

k
){(α− 2λ)u(X)− (ξα)η(X) +Xα}.

(5.3)

Lemma 5.2. Under the same hypotheses as those in Lemma 5.1, we have
k − τ 6= 0 on Ω.
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Proof. If not, then we have k − τ = 0 on an open subset of Ω. We discuss our
arguments on such a place. Then we have λ = 0 because of (4.38). Thus, (4.24)
tells us that AU = 0 and τ2 + c = 0, which together with (4.5) yields θ = 0.
We also have from (2.18) and (4.26)

β − ρα+ 2τ2 = 0. (5.4)

In the next step, differentiating (4.7) covariantly and taking the skew-symmetric
part, and using (3.19) and (4.6), we find

τ

µ
{t(Y )u(X)− t(X)u(Y )}+ g(K∇XW,Y )− g(K∇YW,X)

= τ{(∇YW )X − (∇XW )Y }.
(5.5)

If we put X = ξ in this and take account of (2.21), (4.3), (4.7), (4.14) and the
fact that AU = 0, then we find

K∇α+ τ∇α = 2τ(ξα)ξ + τ(2α+ t(ξ))U. (5.6)

Replacing X by W in (5.5) and using (4.39), we also obtain

µ(K∇µ+ τ∇µ) = 2τ(µ2 − α2 + ρα+ 2c)U + 2µτ(Wα)ξ.

If we take the inner product with U to this and make use of (4.3), then we
find µ(Uµ) = (µ2 − α2 + ρα+ 2c)µ2, which connected to (2.18) and (5.4) gives
µ(Uµ) = 2(µ2 + τ2 + c)µ2 by virtue of (4.5). Hence, it follows that

µ(Uµ) = 2µ4. (5.7)

However, if we take the inner product with U to (4.30), and use (5.4) and
the fact that τ2 + c = 0 and AU = 0, then we get µ(Uµ) = (ρ− α)Uα+ 2cµ2,
which together with (5.7) yields

(ρ− α)Uα = 2(µ2 − c)µ2. (5.8)

Since we know that k = τ , θ = 0 and λ = 0, we can write (5.2) as

−4cg(φX, Y )− t(ξ){g(φAX, Y )− g(φAY,X)}
= X(t(ξ))η(Y )− Y (t(ξ))η(X) + 2{2g(AφAX, Y )

+ α(g(φAX, Y )− g(φAY,X)) + (Xα)η(Y )− (Y α)η(X)}.
Putting Y = ξ in this and remembering AU = 0, we get

X(t(ξ)) + 2(Xα) = {ξ(t(ξ)) + 2ξα}η(X) + (2α+ t(ξ))u(X).

Substituting this into the last equation, we obtain

(t(ξ) + 2α){u(X)η(Y )− u(Y )η(X) + g(φAX, Y )− g(φAY,X)}
+ 4g(AφAX, Y ) + 4cg(φX, Y ) = 0,
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where we have used (4.5), and the fact that τ2 + c = 0 and AU = 0.
If we put X = µW in this and take account of (2.17), (4.25) and the fact

that AU = 0 and θ = 0, then we get

(2α+ t(ξ))(ρ− α) + 4c = 0.

However, applying (5.6) by U and using (4.3), we find

2Uα = {2α+ t(ξ)}µ2.

From the last two relationships it follows that (ρ − α)Uα = −2µ2, which
together with (5.8) will produce a contradiction. Therefore, k − τ 6= 0 on Ω is
proved. �

Now, differentiating (5.1) covariantly, and taking the skew-symmetric part
obtained, du = 0 because of k − τ 6= 0. Hence, we have du(ξ,X) = 0 for any
vector X. If we take account of (2.5), (2.20), (4.12) and (4.24), then we see
from this

3λφU +Aξ − βξ + φ∇α+ µAW = 0,

or, using (2.16), (2.17) and (4.38),

∇α = (ξα)ξ + (ρ− 3λ)U. (5.9)

We are now going to prove that ξα = 0. Differentiating the second equation
of (4.24) with respect to ξ and taking account of (4.37) and Lemma 5.1, we
obtain λξα = 0. But, the function λ does not vanish on Ω because of (4.24),
(5.1) and Lemma 5.2. Thus, (5.9) is reformed as

∇α = (ρ− 3λ)U. (5.10)

Lemma 5.3. Under the same hypotheses as those stated in Lemma 5.1, we
have Ω = ∅.

Proof. We already know that du = 0. So, from (4.36) we have

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0,

where we have used (3.19) and (4.4).
If we put X = ξ in this and make use of (2.19), (2.20), (4.12) and (4.24),

then we find

K(3λφU + αAξ − βξ + φ∇α) + kµAW + µτt(ξ)W = 0,

which connected to (2.16), (3.12), (3.14), (4.7), (4.25) and (5.10) gives

τt(ξ) + (ρ− α)(k + τ) = 0, (5.11)
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or, using (4.38),

τ(k − τ)t(ξ) = λ(k + τ)2. (5.12)

Using (5.10), we can write (5.3) as

X(t(ξ)) = ξ(t(ξ))η(X) + {(1 +
τ

k
)(λ+ α− ρ) + t(ξ)}u(X). (5.13)

Differentiating (5.11) covariantly and using (5.1), we find

τX(t(ξ)) = (α− ρ)(k − τ)u(X) + (k + τ)(Xα−Xρ),

which connected to (4.38) gives

τX(t(ξ)) = (k + τ)(Xα−Xρ+ λu(X)). (5.14)

By the way, if we differentiate (4.38) with respect to ξ and using (4.37)
and (5.1), we get (k − τ)(ξρ − ξα) = 0, which together with Lemma 5.2 gives
ξρ− ξα = 0. Thus, (5.14) tells us that ξ(t(ξ)) = 0 because of ξρ− ξα = 0.

Hence, (5.13) can be written as

τX(t(ξ)) = {(k +
τ2

k
+ 2τ)(α− ρ) + τλ(1 +

τ

k
)}u(X),

where we have used (5.11).
Combining this to (5.14), we obtain

(k + τ)(∇α−∇ρ+ λU) = (1 +
τ

k
){(k + τ)(α− ρ) + τλ}U,

which connected to (4.38) and Lemma 5.2 yields

k(∇α−∇ρ) = 2τ(λ+ α− ρ)U. (5.15)

On the other hand, if we differentiate (5.13) and use (5.1) and itself, then we
find

λ(k + τ)2U + τ(k − τ)∇t(ξ) = (k + τ)2∇λ+ 2λ(k2 − τ2)U,

or, using (5.14) and (5.15),

(k + τ)∇λ = 6τλU, (5.16)

where we have used (4.38) and Lemma 5.2.
Now, if we put X = U and Y = W in (5.2) and make use of (2.17), (4.24),

(4.25) and (5.10), then we find

θk(k − τ)− ταλ(k − τ)− τ2(k − τ)2

= c(k2 − τ2) + λ2(k + τ)2 − τλ(k + τ)(t(ξ) + ρ),

or, using (4.5), (4.38) and (5.1), we obtain
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λ2(k + τ)2 + 2λατ(k − τ) + (k − τ)2(τ2 − c) = 0. (5.17)

If we use (4.38), (5.1) and (5.10) and (5.16), then we can write this as λ =
0. Thus, (5.17) implies τ2 = c, a contradiction because of Proposition 3.3.
Therefore, we conclude that k = 0 on M , that is, Ω = ∅. This completes the
proof of Lemma 5.3. �

6. Main theorem

We will continue our arguments under the same hypotheses as those in section
5. Then, by Lemma 5.3 we have k = 0 on M and hence (3.6) can be written as

K2X = (θ − c)(X − η(X)ξ), (6.1)

where we have used (3.12).
By virtue of (3.24) we have KU = 0 and hence τU = 0 because of (4.3).

Thus, (3.28) can be written as τ(φA−Aφ) = 0. Therefore, it follows that

Aφ = φA, (6.2)

which implies Aξ = αξ. From (6.2) and (3.18) with k = 0, we can verify that
(cf. [6], [11])

A2 = αA+ c(I − η ⊗ ξ). (6.3)

Further, (3.27) is reduced to

2(∇XL)LY = τ2{t(X)φY + η(Y )AφX + η(X)φAY }.
Applying this by L and making use of (2.5), (3.16) and (3.22) we get,

(∇XL)Y = −t(X)KY + η(X)AKY + η(Y )AKX + g(AX,KY )ξ. (6.4)

In the same, we have from (6.1)

(∇XK)Y = t(X)LY − η(X)LAY − η(Y )ALX − g(AX,LY )ξ. (6.5)

Since we have TrL = 0, Kξ = 0 and Aξ = αξ, taking the trace of (6.4), we
obtain

Tr(AK) = 0 (6.6)

and hence

Tr(A
2K) = 0 (6.7)

because of (6.3).
Since we have AK = KA because of (3.21) with k = 0. it follows that

A and K are diagonalizable at the same time. So, using (6.2) and (6.3) and
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the fact that Aξ = αξ, we can verify that A has two constant eigenvalues α
and (α−

√
D)/2 with multiplicities 1, 2(n− 1) respectively, and D denoted by

D = α2 + 4c, where we have used (6.6) and (6.7). Consequently the trace h of
A is given by (for detail, see (4.16) of [15])

h = nα− (n− 1)
√
D. (6.8)

On the other hand, differentiating (6.5) covariantly along M and using the
previously obtained formulas and the Ricci identity for K, we have (for detail,
see (4.20) and (4.22) of [15])

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2c(n+ 2)}, (6.9)

(θ − 3c)(h− α) = 2(n− 1)(θ − 2c)α. (6.10)

By the way, we have from (6.8) and (6.9)

α(α−
√
D) = 2(θ − 3c).

Thus, if we combine (6.8) and (6.10) to the last relationship, we obtain

(θ − 3c)2 = (θ − 2c)α2. (6.11)

From (2.23) we see that the Ricci tensor S of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X −K2X − L2X

because of Lemma 5.3, which together with (3.16) and (6.1) implies that

SX = {c(2n+ 1)− 2τ2}X + (2τ2 − 3c)η(X)ξ + hAX −A2X.

Thus, the scalar curvature r̄ of M is given by

r̄ = 2(n− 1)(2n+ 1)c− 4(n− 1)τ2 + h(h− α). (6.12)

where we have used (6.3).
By the way, it is clear, using (4.5), that θ − 3c 6= 0 for c < 0. But, we also

have θ − 3c 6= 0 for c > 0 if r̄ − 2(n− 1)c ≤ 0.
In fact, if not, then we have θ = 3c on this subset of M . We discuss our

arguments on this set. So we have α = 0 because of (6.11). Hence, (6.3) and
(6.9) imply respectively h(2) = 2(n− 1)c, h2 = 4(n− 1)2c.

Using these facts and (4.5), we can write (6.12) as r̄ − 2(n − 1)c = 4(n −
1)(2n − 3)c, a contradiction because r̄ − 2(n − 1)c ≤ 0. Thus, if we combine
(6.10) to (6.11), then we obtain α(h − α) = 2(n − 1)(θ − 3c), which together
with (6.9) yields

h(h− α) = 2(n− 1)(2n− 1)τ2 − 4n(n− 1)c.

Using this fact, we can write (6.12) as r̄ − 2(n− 1)c = 2(n− 1)(2n− 3)τ2.
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Therefore we have τ = 0 if r̄− 2(n− 1)c ≤ 0 and hence K = L = 0 on M by
virtue of (3.16) and (6.1).

Let N0(p) = {ν ∈ T⊥p (M) : Aν = 0} and H0(p) be the maximal J-invariant
subspace of N0(p). Since K = L = 0, the orthogonal complement of H0(p)
is invariant under parallel translation with respect to the normal connection
because of ∇⊥C = 0. Thus, by the reduction theorem in [9] and by Lemma 3.2
and Proposition 3.3, we conclude that

Theorem 6.1. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 with
constant holomorphic sectional curvature 4c such that the third fundamental
form t satisfies dt = 2θω for a scalar θ − 2c 6= 0 and r̄ − 2c(n − 1) ≤ 0,
where ω(X,Y ) = g(φX, Y ) for any vector fields X and Y on M . If M satisfies

Rξφ = φRξ and at the same time R
′

ξ = 0, then M is a real hypersurface in a

complex space form Mn(c), c 6= 0.

Since we have ∇⊥C = 0, we can write (3.18) and (4.16) as

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},
α(φAX −AφX)− g(Aξ,X)U − g(U,X)Aξ = 0

respectively. Making use of (2.4), (2.5) and the above equations, it is prove in
[15] that g(U,U) = 0, that is, M is a Hopf real hypersuface. Hence, we conclude
that α(Aφ − φA) = 0 and hence Aξ = 0 or Aφ = φA. Here, we note that the
case α = 0 correspond to the case of tube of radius π/4 in PnC([5],[6]). But, in
the case HnC it is known that α never vanishes for Hopf hypersurfaces (cf.[19])
Thus, owing to Theorem 6.1 and main theorem in [18] and [20], we have

Theorem 6.2. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 with

constant holomorphic sectional curvature 4c such that R
′

ξ = 0 and the third

fundmental form t satisfies dt = 2θω for a scalar θ −2c(6= 0), where R
′

X is

defined by R
′

X = (∇XR)(·, X)X for any unit vector field X. Then Rξφ =
φRξ holds on M if and only if Aξ = 0 or M is locally congruent to one of
the following hypersurfaces provided that the scalar curvature r̄ of M satisfies
r̄ − 2(n− 1)c ≤ 0 :

(I) in case that Mn(c) = PnC with η(Aξ) 6= 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−

2}, where 0 < r < π/2 and r 6= π/4;
(II) in case that Mn(c) = HnC,

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2}.
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From (4.22) and Theorem 6.2 we have

Corollary 6.3. If we replace the condition R
′

ξ = 0 by ∇ξRξ = 0 in Theorem
6.2, then we verify that M is the same type as those stated in Theorem 6.2.
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