

REVISIT TO ALEXANDER MODULES OF 2-GENERATOR KNOTS IN THE 3-SPHERE

HYUN-JONG SONG*

ABSTRACT. It is known that a 2-generator knot K has a cyclic Alexander module $\mathbb{Z}[t,t^{-1}]/(\Delta(t))$ where $\Delta(t)$ is the Alexander polynomial of K. In this paper we explicitly show how to reduce 2-generator Alexander modules to cyclic ones by using Chiswell, Glass and Wilsons presentations of 2-generator knot groups

$$\langle x,y \mid (x^{\alpha_1})^{y^{\gamma_1}}, \cdots, (x^{\alpha_k})^{y^{\gamma_k}} \rangle$$

where $a^b = bab^{-1}$.

1. Introduction

A knot K in the 3-sphere S^3 whose fundamental group is defined by a presentation with two generators (and hence one relator) is called a 2-generator knot.

An arc τ embedded in S^3 so that $K \cap \tau = \partial \tau$ is called an unknotting tunnel of K if the complement of a regular neighbourhood of $K \cup \tau$ in S^3 is H_2 , a handlebody of genus 2. A knot with an unknotting is called a tunnel 1-knot. By attaching to H_2 a 2-handle corresponding to τ , one would get the exterior of K, the complement of a regular neighbourhood of K in S^3 . Thus we see that a tunnel 1-knot is a 2- generator knot. The converse statement is one of intriguing conjectures in knot theory. Berge knots admitting lens space Dehn surgeries are well known examples of tunnel 1-knots. In particular, characterization of the Alexander polynomials of Berge knots seems somewhat intriguing subject. Recently Chiswell, Glass and Wilson [2] introduced a handy method of computing the Alexander polynomial of a 2-generator knot via its group presentation

$$< x, y \mid (x^{\alpha_1})^{y^{\gamma_1}}, \cdots, (x^{\alpha_k})^{y^{\gamma_k}} > .$$

It is induced by a presentation admitting a generator with zero exponent sum [5, Chapter V, Lemma 11.8].

Received October 28, 2019; Accepted April 15, 2020.

 $^{2010\} Mathematics\ Subject\ Classification.\ 57M25.$

 $Key\ words\ and\ phrases.$ 2-generator knots, Alexander modules .

 $^{^{*}}$ This work was supported by a Research Grant of Pukyong National University (2019 year).

360 H-J SONG

Indeed via Nielsen transformations [6, Chapter 3] corresponding to mutual subtractions in the Euclidean algorithm any 2-generator presentation of a knot group can be brought into $\langle x, y | w \rangle$ so that w_y and w_x , the sum of exponents of y and x in w, are 0 and 1 respectively. Then it is easy to see that the relator w is cyclically conjugate to that introduced by Chiswell, Glass and Wilson.

Using such special presentations of 2-generator knots, we have:

Theorem 1.1. Any 2-generator knot in the 3-sphere has a cyclic Alexander module $\mathbb{Z}[t, t^{-1}]/(\Delta(t))$ where $\Delta(t)$ denotes the Alexander polynomial of a knot.

Milnor [7, Footnote, p. 120] asserted that a 2-generator knot has a cyclic Alexander module. This follows easily from the fact that the Alexander module has deficiency 0. See [4, p. 14] for more details. Hence the Alexander module arising from a 2-generator 1-relator knot group via Fox differential calculus can be always reduced to a cyclic one. The method shown in this paper may be thought of as explicit reducing steps for the desired cyclic Alexander modules. We have in mind a practical application of explicit knowledge of the Alexander polynomial to homology of the cyclic branched covering [9].

A knot K in S^3 is said to be a (1,1)-knot if K is split into a pair of trivial arcs in solid tori determined by a Heegaard torus of S^3 . All torus knots, and all 2-bridge knots are (1,1)-knots. The author [8] showed that any (1,1)-knot in S^3 admits a cyclic Alexander module by explicitly constructing the infinite cyclic covering space of its exterior.

Finally it is pointed out that in a Chiswell, Glass and Wilson's presentation, tidiness of a relator word (for the definition see [2, p.2]) would not be necessary to get the desired Alexander polynomial because it is assumed to be in $\mathbb{Z}[t, t^{-1}]$ instead of $\mathbb{Z}[t]$.

2. Proof of the main theorem

Lemma 2.1. A 2-generator knot in S^3 admits a presentation $\langle x, y \mid w \rangle$ such that $w_y = 0$, and $w_x = 1$.

Proof. If necessary replacing a generator to its inverse, we assume that for a knot group presentation $\langle a,b \mid r \rangle$ both r_a and r_b are relative prime positive integers since the abelianized presentation of a knot group is isomorphic to \mathbb{Z} . Define [r] to be the largest integer not greater than a real number r. If $r_a < r_b$, then replacing a by $ab^{-\lceil \frac{r_b}{r_a} \rceil}$ (and hence a^{-1} by $b^{\lceil \frac{r_b}{r_a} \rceil}a^{-1}$) in r, we end up with a presentation with a new pair of sums of exponents $(r_a, r_b - r_a \lceil \frac{r_b}{r_a} \rceil)$. Otherwise exchanging roles of a and b, we end up with a presentation with a new pair of sums of exponents $(r_a - r_b \lceil \frac{r_a}{r_b} \rceil, r_b)$. Inductively executing Nielsen transformations corresponding to mutual subtractions, we eventually end up with $\langle x,y \mid w \rangle$ such that $w_y = 0$, and $w_x = 1$.

A presentation $\langle x, y \mid w \rangle$ of a knot group with $w_y = 0$ and $w_x = 1$ is said to be normalized.

Example 2.2. The fundamental group of a torus knot t(5,7) has a presentation $\langle x,y \mid x^5y^{-7} \rangle$. Put $w_0 = x^5y^7$. Replacing x by $xy^{-\left[\frac{7}{5}\right]} = xy^{-1}$ (and hence x^{-1} by yx^{-1}) in w_0 , we have

$$w_1 = xy^{-1}xy^{-1}xy^{-1}xy^{-1}xy^6$$

where $(w_1)_x = 5$, and $(w_1)_y = 2$. Replacing y by $yx^{-\left[\frac{5}{2}\right]} = yx^{-2}$ in w_1 , we have $w_2 = xy^{-1}x^3y^{-1}x^3y^{-1}x^3y^{-1}xyx^{-2}yx^{-2}yx^{-2}yx^{-2}y$

where $(w_2)_x = 1$, and $(w_2)_y = 2$. Finally replacing x by xy^{-2} in w_2 , we have the desired normalized relator.

$$\begin{array}{rcl} w(x,y) & = & yxy^{-3}xy^{-2}xy^{-2}xy^{-3}xy^{-2}xy^{-3}x \\ & & y^{-2}xy^{-2}xy^{-3}xyx^{-1}y^2x^{-1}y^3x^{-1}y^2x^{-1}y^3x^{-1} \\ & & y^2x^{-1}y^3x^{-1}y^2x^{-1}y^3x^{-1}y^2x^{-1} \end{array}$$

Remark 2.3. A normal presentation of a 2-generator knot group is not unique. For a normalized presentation $\langle x,y \mid w(x,y) \rangle$, we may get another normalized presentation $\langle x,y \mid w(x,yx^k) \rangle$ for any integer $k \in \mathbb{Z}$.

Lemma 2.4. Assume that a presentation $\langle x, y | w = y^{\beta_1} x^{\alpha_1}, \cdots, y^{\beta_k} x^{\alpha_k} \rangle$ is normalized so that $w_y = 0$. Then w is cyclically conjugate to a word

$$(x_1^{\alpha})^{y^{\gamma_1}}, \cdots, (x_k^{\alpha})^{y^{\gamma_k}}.$$

Proof. For each $1 \leq j \leq k$, take $\gamma_j = \sum_{i=1}^j \beta_i$. Then the last term $(x_k^{\alpha_k})^{y^{\gamma_k}}$ is always equal to $x_k^{\alpha_k}$ since $w_j = 0$.

Example 2.5.

For w in Example 2.2, we have the following product of conjugates;

$$\begin{array}{l} x^{y}x^{y^{-2}}x^{y^{-4}}x^{y^{-6}}x^{y^{-9}}x^{y^{-11}}x^{y^{-13}} \\ x^{y^{-16}}x^{y^{-18}}x^{y^{-20}}x^{y^{-23}} \\ (x^{-1})^{y^{-22}}(x^{-1})^{y^{-20}}(x^{-1})^{y^{-17}}(x^{-1})^{y^{-15}}(x^{-1})^{y^{-12}} \\ (x^{-1})^{y^{-10}}(x^{-1})^{y^{-7}}(x^{-1})^{y^{-5}}(x^{-1})^{y^{-2}}x^{-1} \end{array}$$

Let X be a standard 2-complex associated with a presentation of $\langle x,y \mid w \rangle$ of a knot group G with a single 0-cell v, two 1-cells x,y and one 2-cell w such that $\pi_1(X,v)=G$. And let \tilde{X} be a infinite cyclic covering space of X such that $\pi_1(\tilde{X},\tilde{v})=G$, the commutator subgroup of G where \tilde{v} is 0-cell chosen in the 0-skelecton \tilde{X}^0 of \tilde{X} . Under action of the covering transformation group $G/G=\langle t^n|n\in\mathbb{Z}\rangle$, $H_1(\tilde{X})=G/G$ admits a $\mathbb{Z}[t,t^{-1}]$ module structure so called the Alexander module of a knot. For the canonical homomorphism $\phi:G=\langle x,y|w\rangle \to G_{ab}\cong \langle t^n|n\in\mathbb{Z}\rangle \cong G/G$. The linear extension to the group ring is also denoted by $\phi:\mathbb{Z}G\to\mathbb{Z}[t,t^{-1}]$, and $\phi(w)=w^\phi$ is denoted by

362 H-J SONG

[w] for $w \in \mathbb{Z}G$. Fox derivatives of $w \in \mathbb{Z}G$ with respect to x, y are denoted by $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}$ respectively.

Lemma 2.6 follows immediately from Fox differential calculus, lemma 2.4 and the fact that the canonical homomorphism ϕ carries x, y to 1, t respectively.

Lemma 2.6. For a presentation $\langle x, y \mid w = (x^{\alpha_1})^{y^{\gamma_1}}, \cdots, (x^{\alpha_k})^{y^{\gamma_k}} \rangle$ with $w_x = 1$, we have:

(1)
$$\left[\frac{\partial w}{\partial x}\right] = \sum_{i=1}^{k} \alpha_i t^{\gamma_i}$$
, and

$$(2) \left[\frac{\partial w}{\partial y} \right] = 0$$

For any positive integer n, a tamed embedding of the n- sphere S^n in the n+2- sphere S^{n+2} is said to be n- knot. From lemma 2.6, we have:

Corollary 2.7. If a n-knot has a presentation

$$< x, y \mid w = (x^{\alpha_1})^{y^{\gamma_1}}, \cdots, (x^{\alpha_k})^{y^{\gamma_k}} >,$$

then it has the Alexander polynomial $\Delta(t) = \sum_{i=1}^{k} \alpha_i t^{\gamma_i}$.

Example 2.8. The Alexander polynomial corresponding to the normal presentation in Example 2.5 is

$$\begin{array}{l} t+t^{-2}+t^{-4}+t^{-6}+t^{-9}+t^{-11}+t^{-13}+t^{-16}+t^{-18}+t^{-20}+t^{-23}\\ -t^{-22}-t^{-20}-t^{-17}-t^{-15}-t^{-12}-t^{-10}-t^{-7}-t^{-5}-t^{-2}-1\\ =\ t+t^{-4}+t^{-6}+t^{-9}+t^{-11}+t^{-13}+t^{-16}+t^{-18}+t^{-23}\\ -t^{-22}-t^{-17}-t^{-15}-t^{-12}-t^{-10}-t^{-7}-t^{-5}-1 \end{array}$$

We recover the Alexander polynomial in $\mathbb{Z}[t]$ by multiplying a unit t^{23} of $\mathbb{Z}[t, t^{-1}]$ to the above Laurant polynomial.

$$t^{24} + t^{19} + t^{17} + t^{14} + t^{12} + t^{10} + t^7 + t^5 + 1 - t - t^6 - t^8 - t^{11} - t^{13} - t^{16} - t^{18} - t^{23} + t^{11} - t^{11$$

The following example is prepared to show that we may get the desired Alexander polynomial from a normalized presentation $\langle x, y \mid w \rangle$ without the tidy condition of w in [2].

Example 2.9. Kanenobu and Sumi [3, Example 2.1] showed that a ribbon 2-knot K2 = R(1, 2, -3, 1) admits a knot group presentation

$$< x, y \mid x^{-1}y^{-1}x^3y^{-2}x^{-1}yxy^2x^{-3}y >,$$

which is normalized to a presentation

$$< x, y \mid y^{-1}x^2y^{-1}x^{-1}yx^{-1}yx^{-1}y^{-2}xyx^{-1}y^2xy^{-1}x > 0$$

The relator word can be brought into the product of conjugates;

$$(x^2)^{y^{-1}}(x^{-1})^{y^{-2}}(x^{-1})^{y^{-1}}(x^{-1})(x)^{y^{-2}}(x^{-1})^{y^{-1}}(x)^y x.$$

Finally we end up with the desired Alexander polynomial

$$\begin{array}{rcl} \Delta(t) & = & 2t^{-1} - t^{-2} - t^{-1} + t^{-2} - t^{-1} + t + 1 \\ & = & t \end{array}$$

From the homology long exact sequence of of a pair $(\tilde{X}, \tilde{X^0})$, we have a short exact sequence

$$0 \to H_1(\tilde{X}) \to H_1(\tilde{X}, \tilde{X_0}) \xrightarrow{\partial} keri_* \to 0$$

where the boundary homomorphism ∂ has the right inverse σ , and hence the short exact sequence is split in such a way that $H_1(\tilde{X}, \tilde{X}^0) \cong H_1(\tilde{X}) \bigoplus \mathbb{Z}[t, t^{-1}]$ where $\mathbb{Z}[t, t^{-1}]$ stands for a free $\mathbb{Z}[t, t^{-1}]$ -module of rank 1 generated by $(t-1)\tilde{v}$ From [1, Proposition 9.2] we have:

Lemma 2.10. Let $\langle x, y \mid w \rangle$ be a knot group presentation, \tilde{x}, \tilde{y} lifted 1-cells of x, y respectively, and \tilde{w} a lifted 2-cell of w. Then $H_1(\tilde{X}, \tilde{X}^0)$ admits a $\mathbb{Z}[t, t^{-1}]$ -module presentation

$$<\tilde{x},\tilde{y}\mid \tilde{w}=[rac{\partial w}{\partial x}]\tilde{x}+[rac{\partial w}{\partial y}]\tilde{y}>$$

where $\partial \tilde{x} = ([x] - 1)\tilde{v}$, and $\partial \tilde{y} = ([y] - 1)\tilde{v}$ for the connecting homomorphism $\partial: H_1(\tilde{X}, \tilde{X}^0) \to keri_*$

From lemma 2.10, we have:

Proposition 2.11. If a knot group presentation $\langle x, y \mid w \rangle$ is normalized, then $H_1(\tilde{X})$ admits a $\mathbb{Z}[t, t^{-1}]$ -module presentation

$$<\tilde{x}\mid \tilde{w}=[\frac{\partial w}{\partial x}]\tilde{x}>\cong \mathbb{Z}[t,t^{-1}]/(\Delta(t))$$

Proof. Since $\left[\frac{\partial w}{\partial y}\right] = 0$, $H_1(\tilde{X}, \tilde{X}^0)$ admits a $\mathbb{Z}[t, t^{-1}]$ -module presentation

$$<\tilde{x}, \tilde{y}|\tilde{w} = \left[\frac{\partial w}{\partial x}\right]\tilde{x} > .$$

Furthermore since $\partial \tilde{y} = (t-1)\tilde{v}$, removing \tilde{y} corresponding to the free $\mathbb{Z}[t, t^{-1}]$ -module generator from the presentation of $H_1(\tilde{X}, \tilde{X}^0)$ we get the desired cyclic module presentation of $H_1(\tilde{X})$.

Theorem 1.1 follows from Lemma 2.1 and Proposition 2.11.

References

- [1] G. Berde and H. Zieschang, Knots. Walter de Gruyter, Berlin · New york, 2003.
- [2] I.M. Chiswell, A.M.W. Glass and J.S. Wilson, Residual nilpotence and ortdering in onerelator groups and knot groups, arXiv:1405.0994v2.
- [3] T. Kanenobu and T. Sumi, Classification of a family of ribbon 2-knots with trivial Alexander polynomial, Commun. Korean Math. Soc. 33(2018), no.2, 591-604.

364 H-J SONG

- [4] C. McA. Gordon, Some aspects of classical knot theory. In: Knot theory (ed. J.C. Hausmann), Lect. Notes in Math. 685(1978),1-60. Berlin-Heidelberg-New York: Springer Verlag.
- R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin Heidelberg New York 1977.
- [6] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
- [7] J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber, and Schmidt, Boston, Mass., 1968, 115133.
- [8] H.J. Song, Infinite cyclic covering spaces of (1,1)-knot complements, in preparation.
- [9] H.J. Song, Knots with cyclic Alexander modules, in preparation.

Hyun-Jong Song

Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea

E-mail address: hjsong@pknu.ac.kr