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REVISIT TO ALEXANDER MODULES OF 2-GENERATOR
KNOTS IN THE 3-SPHERE

HYUN-JONG SONG*

ABSTRACT. It is known that a 2-generator knot K has a cyclic Alexander
module Z[t,t~1]/(A(t)) where A(t) is the Alexander polynomial of K.
In this paper we explicitly show how to reduce 2-generator Alexander
modules to cyclic ones by using Chiswell, Glass and Wilsons presentations
of 2-generator knot groups
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where a? = bab™ 1.

1. Introduction

A knot K in the 3-sphere S whose fundamental group is defined by a pre-

sentation with two generators (and hence one relator) is called a 2-generator
knot.
An arc 7 embedded in S® so that K N7 = O7 is called an unknotting tunnel
of K if the complement of a regular neighbourhood of K Ut in S is H», a
handlebody of genus 2. A knot with an unknotting is called a tunnel 1-knot.
By attaching to Hs a 2-handle corresponding to 7, one would get the exterior of
K, the complement of a regular neighbourhood of K in S3. Thus we see that a
tunnel 1-knot is a 2- generator knot. The converse statement is one of intriguing
conjectures in knot theory. Berge knots admitting lens space Dehn surgeries are
well known examples of tunnel 1-knots. In particular, characterization of the
Alexander polynomials of Berge knots seems somewhat intriguing subject. Re-
cently Chiswell, Glass and Wilson [2] introduced a handy method of computing
the Alexander polynomial of a 2-generator knot via its group presentation

< x7y | (xal)y717... 7(xak)y"ﬂc > )

It is induced by a presentation admitting a generator with zero exponent sum
[5, Chapter V, Lemma 11.8].
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Indeed via Nielsen transformations [6, Chapter 3] corresponding to mutual
subtractions in the Euclidean algorithm any 2-generator presentation of a knot
group can be brought into < z,y | w > so that w, and w,, the sum of exponents
of y and z in w, are 0 and 1 respectively. Then it is easy to see that the relator
w is cyclically conjugate to that introduced by Chiswell, Glass and Wilson.

Using such special presentations of 2-generator knots, we have:

Theorem 1.1. Any 2-generator knot in the 3-sphere has a cyclic Alexander
module Z[t,t=1]/(A(t)) where A(t) denotes the Alexander polynomial of a knot.

Milnor [7, Footnote, p. 120] asserted that a 2-generator knot has a cyclic
Alexander module. This follows easily from the fact that the Alexander module
has deficiency 0. See [4, p. 14] for more details. Hence the Alexander module
arising from a 2-generator 1-relator knot group via Fox differential calculus can
be always reduced to a cyclic one. The method shown in this paper may be
thought of as explicit reducing steps for the desired cyclic Alexander modules.
We have in mind a practical application of explicit knowledge of the Alexander
polynomial to homology of the cyclic branched covering [9].

A knot K in S? is said to be a (1,1)-knot if K is split into a pair of trivial

arcs in solid tori determined by a Heegaard torus of S®. All torus knots, and
all 2-bridge knots are (1,1)-knots. The author [8] showed that any (1,1)-knot
in S3 admits a cyclic Alexander module by explicitly constructing the infinite
cyclic covering space of its exterior.
Finally it is pointed out that in a Chiswell, Glass and Wilson’s presentation,
tidiness of a relator word (for the definition see [2, p.2]) would not be necessary
to get the desired Alexander polynomial because it is assumed to be in Z[t, t~1]
instead of Z[t].

2. Proof of the main theorem

Lemma 2.1. A 2-generator knot in S® admits a presentation < z,y | w >
such that wy =0, and w; = 1.

Proof. If necessary replacing a generator to its inverse, we assume that for a
knot group presentation < a,b | r > both r, and r;, are relative prime positive
integers since the abelianized presentation of a knot group is isomorphic to
Z. Define [r] to be the largest integer not greater than a real number r. If
T4 < T3, then replacing a by ab~l7e] (and hence a~! by b[%]a_l) in r, we end
up with a presentation with a new pair of sums of exponents (rq, 7, — ra[:—z])
Otherwise exchanging roles of a and b, we end up with a presentation with a
new pair of sums of exponents (r, — rb[:—:], rp). Inductively executing Nielsen
transformations corresponding to mutual subtractions, we eventually end up
with < 2,y | w > such that w, =0, and w, = 1. O

A presentation < z,y | w > of a knot group with wy, = 0 and w, = 1 is said
to be normalized.
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Example 2.2. The fundamental group of a torus knot ¢(5, 7) has a presentation
< z,y | 27 >. Put wy = z%7. Replacing = by zy~15) = 2y~! (and hence
271 by yz~1) in wo, we have

1 1

wy =Y TY 1

zy oy oy’

where (w), =5, and (w;), = 2. Replacing y by yr~13] = yg—2

wy = zy~tady~lzdy eyl

in w1, we have

xyxfzyz*an:*ny*anzdy

where (ws), = 1, and (ws), = 2. Finally replacing by zy~?

the desired normalized relator.

in ws, we have

w(z,y) = yaxy Pzy ey ey Pey Cey Cay e
y72l,,y72l,y73xyx71y2m71y3x71y2x71y3x7
y2x71y3m71y2x71y3x71y2x71

1

Remark 2.3. A normal presentation of a 2-generator knot group is not unique.
For a normalized presentation < z,y | w(z,y) >, we may get another normalized
presentation < z,y | w(z,ya*) > for any integer k € Z.

Lemma 2.4. Assume that a presentation < z,ylw = yﬁlajal, e ,yﬁ’cxak > i
normalized so that w, = 0. Then w is cyclically conjugate to a word
2l Y
(@) (a)v

J
Proof. For each 1 < j < k, take 7; = >_ ;. Then the last term (z{*)¥™ is
i=1

always equal to z}*

since w, = 0. (]
Example 2.5.
For w in Example 2.2, we have the following product of conjugates ;

xymy—ny—ékmy—ny—Qxy—llmy—lS
xy—l(imy—lsxy—zoxy—ms

(@ 1y @y @y @y @ty
(e EA €t AN €t U €t U

—15 —12

Let X be a standard 2-complex associated with a presentation of < z,y | w >
of a knot group G with a single 0-cell v, two 1-cells =,y and one 2-cell w such
that 7 (X,v) = G. And let X be a infinite cyclic covering space of X such
that 7r1(X' ,0) = G, the commutator subgroup of G where ¥ is 0-cell chosen in
the 0-skelecton X° of X. Under action of the covering transformation group
G/G =< t"n € Z >, H\(X) = G/G admits a Z[t,t~'] module structure
so called the Alexander module of a knot. For the canonical homomorphism
¢ : G =<z,ylw > Gap Z< t"|n € Z >= G/G. The linear extension to the
group ring is also denoted by ¢ : ZG — Z[t,t71], and ¢(w) = w? is denoted by
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[w] for w € ZG. Fox derivatives of w € ZG with respect to x,y are denoted by
%—Z’, %—Z respectively.
Lemma 2.6 follows immediately from Fox differential calculus, lemma 2.4 and

the fact that the canonical homomorphism ¢ carries x,y to 1,t respectively.

Lemma 2.6. For a presentation < z,y | w = (2®0)¥"", .- (z®)¥™* > with
w, = 1, we have:

(1) 18] = S ot and
(2) [52]=0

For any positive integer n, a tamed embedding of the n— sphere S™ in the
n + 2— sphere S™*2 is said to be n— knot. From lemma 2.6, we have:

Corollary 2.7. If a n— knot has a presentation

< x’y | w = (mal)y’yl’._. ’(xak)y’ﬂc >7

k
then it has the Alexander polynomial A(t) = Y a;t".
i=1

Example 2.8. The Alexander polynomial corresponding to the normal pre-
sentation in Example 2.5 is
trt 2t O Y T g IO S 720 g
7t722 _ t720 _ t717 _ t715 _ t712 _ t710 _ t77 _ t75 _ t72 —1

e A ok e o A o A S A A o
422 1T 15 412 410 4T 45

We recover the Alexander polynomial in Z[t] by multiplying a unit 23 of Z|[t, ¢t 1]
to the above Laurant polynomial.

24 4419 L 1T gl 12 4 10 4T L ys Ly 46 48 411 413 416 418 423

The following example is prepared to show that we may get the desired
Alexander polynomial from a normalized presentation < z,y | w > without the
tidy condition of w in [2].

Example 2.9. Kanenobu and Sumi [3, Example 2.1] showed that a ribbon
2-knot K2 = R(1,2,—3,1) admits a knot group presentation

<zy |2z ly Py P lymyPe Ry >,

which is normalized to a presentation

<wzy|y 2Pyt

The relator word can be brought into the product of conjugates;

2

x_lyx_lya:_ly_ cha:_lnyy_lx > .

@" @ @ @YY @ @)
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Finally we end up with the desired Alexander polynomial

At) = 2671 =214t 2 ¢l pt 41
=t

From the homology long exact sequence of of a pair (X, X°), we have a short
exact sequence
0— Hy(X) = Hi(X,X0) 3 keri, — 0
where the boundary homomorphism 9 has the right inverse o, and hence the
short exact sequence is split in such a way that Hy (X, X°) = H,(X) @ Z[t,t}]
where Z[t,t~!] stands for a free Z[t,t~1] -module of rank 1 generated by (t — 1)@
From [1, Proposition 9.2] we have:

Lemma 2.10. Let < z,y | w > be a knot group presentation, %,y lifted 1-
cells of x,y respectively, and w a lifted 2-cell of w. Then Hi(X, X°) admits a
Z[t, Y] -module presentation

209 1 1205 >
Ox oy Y

where 0% = ([z] — 1), and 9y = ([y] — 1)v for the connecting homomorphism
0 : Hi(X, X% — keri,

<Ej|w=

From lemma 2.10, we have:

Proposition 2.11. If a knot group presentation < x,y | w > is normalized,
then Hy(X) admits a Z[t,t~1] -module presentation

<i|w=[508 >= 2l )/ (Aw)
ox
Proof. Since [%—Z] =0, H,(X, X°) admits a Z[t,t~'] -module presentation
<& g00 = (22 >
z,glo =51z >.

Furthermore since 03 = (t — 1)9, removing § corresponding to the free Z[t,t}]
-module generator from the presentation of Hy(X, X") we get the desired cyclic

module presentation of Hy(X).
O

Theorem 1.1 follows from Lemma 2.1 and Proposition 2.11.
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