코로나 바이러스의 발병 이후, 의료 산업은 침체기에 들어섰으며, 이에 대한 대응책으로 정부는 일시적으로 비대면 진료를 허용한 상태이다. 본 연구에서는, 이런 시대 흐름에 맞추어 의료 산업에 있어 현대인의 비대면 의학상담에 대한 관심도를 분석하고자 한다. 전문가에게 의학상담을 받을 수 있는 플랫폼인 지식인과, 유튜브 두가지 소셜 플랫폼에서 빅데이터를 수집해 연구를 진행했다. 전화 상담 상위 5개 키워드인 "내과", "일반의", "산경과", "정신건강의학과", "소아청소년과"와 더불어, "전문의", "의학상담", "건강정보" 총 8개의 검색어를 가지고 각 플랫폼으로부터 데이터 세트를 구축했다. 이후 크롤링 된 데이터를 바탕으로 형태소 분류, 질병 추출, 정규화 등 전처리 과정을 거쳤다. 단어 빈도수를 기준으로 한 워드 클라우드, 꺾은선 그래프, 분기별 그래프, 질병 등장 빈도별 막대 그래프 등으로 데이터 시각화를 하였다. 유튜브 데이터에 한해 감성 분류 모델을 구축하였고, GRU와 BERT 기반 모델의 성능을 비교하였다.