본 논문은 스칼라 곱셈, Menezes-Vanstone 타원곡선 암호 및 복호 알고리즘, 점-덧셈, 점-2배 연산, 유한체상 곱셈, 나눗셈 등의 7가지 동작을 수행하는 GF($2^{191}$) 타원곡선 암호프로세서를 하드웨어로 설계하였다. 단순 전력 분석에 대비하기 위해 타원곡선 암호프로세서는 주된 반복 동작이 키 값에 무관하게 동일한 연산 동작으로 구성되는 몽고메리 스칼라 곱셈 기법을 사용하며, GF($2^m$)의 유한체에서 각각 1, (m/8), (m-1)개의 고정된 사이클에 완료되는 GF-ALU, GF-MUL, GF-DIV 연산장치가 병렬적으로 수행되는 동작 특성을 갖는다. 설계된 프로세서는 0.35um CMOS 공정에서 약 68,000개의 게이트로 구성되며, 시뮬레이션을 통한 최악 지연시간은 7.8 ns로 약 125 MHz의 동작속도를 갖는다. 설계된 프로세서는 320 kps의 암호율, 640 kbps을 복호율 갖고 7개의 유한체 연산을 지원하므로 다양한 암호와 통신 분야에 적용할 수 있다.