일상생활에서 디지털 스크린을 오랜 시간 사용하면 눈의 피로, 안구 건조, 두통 등 컴퓨터 시각 증후군을 경험하게 된다. 컴퓨터 시각 증후군을 예방하기 위해서는 스크린 사용 시간을 제한하고 수시로 휴식을 취하는 것이 중요하다. 최근 스마트폰에서는 스크린 사용 시간을 알 수 있도록 도와주는 다양한 애플리케이션이 존재한다. 하지만, 사용자는 스마트폰 스크린뿐만 아니라 데스크탑, 노트북, 태블릿 등 다양한 스크린을 보기 때문에 이러한 앱만으로는 한계가 있다. 본 논문에서는 color, IMU, lidar 센서 데이터를 이용하여, 사용 중인 스크린 디바이스를 감지하는 머신 러닝 기반 모델을 제안하고 여러 가지 모델의 성능을 비교한다. 성능 비교 결과 신경망 기반 모델이 전통적인 머신 러닝 모델보다 높은 F1 스코어를 보였다. 신경망 기반 모델에서는 MLP, CNN 기반 모델이 LSTM 기반 모델보다 높은 스코어를 보였으며, 전통적인 머신 러닝 모델에서는 RF 모델이 가장 우수했으며, 다음으로는 SVM 모델이었다.