2021.10a
-
인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.
-
기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.
-
소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.
-
언어 모델은 많은 데이터와 많은 파라미터로 오래 사전학습을 수행할수록 그 성능이 높아지지만, 그 크기가 큰 만큼 거대 언어 모델은 너무 큰 크기로 인해서 실사용에 많은 하드웨어 리소스를 필요로 한다. 본 논문에서는 거대 언어 모델 중 하나인 T5의 인코더-디코더 구조 대비 절반의 크기를 가지는 PrefixLM 구조에 기반한 한국어 모델을 학습하여 자연어 처리에서 중요한 태스크 중 하나인 텍스트 생성 요약 태스크에서의 성능평가를 하여 BART, T5와 비교하여 각각 0.02, 0.0859의 성능 향상을 보였다.
-
기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 기존의 기계독해는 대부분 문서에 존재하는 짧고 간결한 답변 추출 문제를 풀고자 했으며 최근엔 불연속적인 범위를 추출하는 등의 확장된 문제를 다루는 데이터가 공개되었다. 불연속적인 답변 추출은 실제 애플리케이션에서 사용자에게 정보를 유연하게 제공해줄 수 있다. 따라서 본 논문에서는 기존의 간결한 단일 범위 추출에서 확장된 다중 범위 추출 시스템을 제안하고자 한다. 제안 모델은 문서를 구성하는 모든 토큰의 조합으로 구성된 Span Matrix를 통하여 다중 범위 추출 문제를 해결하고자 하며 실험을 통해 기존 연구들과 비교하여 가장 높은 86.8%의 성능을 보였다.
-
Lim, Jungwoo;Oh, Dongsuk;Park, Sungjin;Whang, Taesun;Shim, Midan;Son, Suhyune;Kim, Yujin;Lim, Heuiseok 36
다양한 Masked Language Modeling을 통해 학습한 사전 학습 모델들은 질의응답 시스템에서 매우 높은 성능을 보여주고 있다. 이러한 강력한 성능에도 불구하고 그러한 모델들이 질의를 정확히 이해하고 정답을 예측하는 것인지, 혹은 질의에 등장하는 특정 단어와 잘 나타나는 단어들을 기반으로 정답을 예측하는 것인지에 대한 분석은 아직 충분하지 않다. 이러한 사전학습 모델의 질의 이해 능력을 밝히기 위하여, 본 연구에서는 클레버 한스 테스트를 제안한다. 클레버 한스 테스트에서는 의미적 구조적, 의도 유무 측면의 여러 질의 변형이 된 데이터 셋들이 포함되어 있다. 본 연구에서는 클레버 한스 테스트를 통하여 사전학습 모델들이 의미적으로 달라진 질의나 의도가 제거된 질의를 입력으로 받아도 성능이 크게 떨어지지 않는 것을 확인하였고 모델의 질의 이해능력 부족을 실험적으로 시사하였다. -
기계 독해는 문단과 질문이 주어질 때에 정답을 맞추는 자연어처리의 연구분야다. 최근 기계 독해 모델이 사람보다 높은 성능을 보여주고 있지만, 문단과 질의가 크게 변하지 않더라도 예상과 다른 결과를 만들어 성능에 영향을 주기도 한다. 본 논문에서는 문단과 질문 두 가지 관점에서 적대적 예시 데이터를 사용하여 보다 강건한 질의응답 모델을 훈련하는 방식을 제안한다. 트랜스포머 인코더 모델을 활용하였으며, 데이터를 생성하기 위해서 KorQuAD 1.0 데이터셋에 적대적 예시를 추가하여 실험을 진행하였다. 적대적 예시를 이용한 데이터로 실험한 결과, 기존 모델보다 1% 가량 높은 성능을 보였다. 또한 질의의 적대적 예시 데이터를 활용하였을 때, 기존 KorQuAD 1.0 데이터에 대한 성능 향상을 확인하였다.
-
최근 지문을 바탕으로 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재하고 관련 데이터 셋 또한 여러 가지가 공개되어 있다. 그러나 한국의 대학수학능력시험 국어 영역과 같은 복잡한 구조의 문제에 대한 고차원적인 문제 해결 능력을 요구하는 데이터 셋은 거의 존재하지 않는다. 이로 인해 고차원적인 독해 문제를 해결하기 위한 연구가 활발히 이루어지고 있지 않으며, 인공지능 모델의 독해 능력에 대한 성능 향상이 제한적이다. 기존의 입력 구조가 단조로운 독해 문제에 대한 모델로는 복잡한 구조의 독해 문제에 적용하기가 쉽지 않으며, 이를 해결하기 위해서는 새로운 모델 훈련 방법이 필요하다. 이에 복잡한 구조의 고차원적인 독해 문제에도 대응이 가능하도록 하는 모델 훈련 방법을 제안하고자 한다. 더불어 3가지의 데이터 증강 기법을 제안함으로써 고차원 독해 문제 데이터 셋의 부족 문제 또한 해소하고자 한다.
-
Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok 55
최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다. -
본 연구에서는 2018년에 공개된 Penn Korean Universal Dependency Treebank(이하 PKT-UD v2018) 데이터의 오류를 분석하고 이를 개정하여 새롭게 데이터셋(이하 PKT-UD v2020)을 구축하였다. PKT-UD v2018은 구구조 분석 방식으로 구축된 Penn Korean Treebank를 UD(Universal Dependencies)의 체계에 맞추어 자동적으로 변환한 후 보정하여 구축한 데이터이다. 본 연구에서는 이와 같은 자동 변환의 과정에서 발생한 오류를 바로 잡고, UD 체계를 최대한 활용하면서 한국어의 특성을 잘 살린 데이터셋을 구축할 수 있는 방법을 제안하였다.
-
본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.
-
판례는 일반인 또는 법률 전문가가 사건에 참조하기 위해 가장 먼저 참고할 수 있는 재판의 선례이다. 하지만 이러한 판례의 유용성에도 불구하고 현 대법원 판례 검색 시스템은 판례 검색에 용이하지 않다. 왜냐하면 법률 전문 지식이 없는 일반인은 검색 의도에 부합하는 검색 결과를 정확히 도출하는 데 어려움이 있으며, 법률 전문가는 검색에 많은 시간과 비용이 들게 되기 때문이다. 이미 해외에서는 유사 케이스 매칭 데이터셋을 구축하여 일반인과 전문가로 하여금 유사 판례 검색을 용이하게 할 뿐만 아니라 여러 자연어 처리 태스크에도 활용하고 있다. 하지만 국내에는 법률 AI와 관련하여 오직 법률과 관련한 세부 태스크 수행에 초점을 맞춘 연구가 많으며, 리소스로서의 유사 케이스 매칭 데이터셋은 구축되어 있지 않다. 이에 본 논문에서는 리소스로서의 판례 데이터셋을 위해 딥러닝 알고리즘 중 문서의 의미를 반영할 수 있는 Doc2Vec 임베딩 모델과 SBERT 임베딩 모델을 적용하여 판례 문서 간 유사도를 측정·비교하였다. 그 결과 SBERT 모델을 통해 도출된 유사 판례가 문서 간 내용적 유사성이 높게 나타났으며, 이를 통해 SBERT 모델을 이용하여 유사 판례 매칭 기초 데이터셋을 구축하였다.
-
메신저 사용의 증가와 함께 관련 범죄와 사고가 증가하고 있어 메시지 사용자 검증의 필요성이 대두되고 있다. 본 연구에서는 그래프 기반의 인스턴트 메세지 분석 모델을 제안하여 채팅 사용자를 검증하고자 한다. 사용자 검증은 주어진 두 개의 텍스트의 작성자가 같은지 여부를 판단하는 문제다. 제안 모델에서는 사용자의 이전 대화를 토대로 n-gram 전이 그래프를 구축하고, 작성자를 알 수 없는 메세지를 이용해 전이 그래프를 순회한 랜덤워크의 특성을 추출한다. 사용자의 과거 채팅 습관과 미지의 텍스트에 나타난 특징 사이의 관계를 분석한 모델은 10,000개의 채팅 대화에서 86%의 정확도, 정밀도, 재현율로 사용자를 검증할 수 있었다. 전통적인 통계 기반 모델들이 명시적 feature를 정의하고, 방대한 데이터를 이용해 통계 수치로 접근하는데 반해, 제안 모델은 그래프 기반의 문제로 치환함으로써 제한된 데이터 분량에도 안정적인 성능을 내는 자동화된 분석 기법을 제안했다.
-
코로나바이러스감염증-19로 인한 팬데믹 상황이 지속되면서 감염증 정보의 불확실성으로 인해 코로나 관련 루머가 온라인상에서 빠르게 전파되고 있다. 이러한 코로나 관련 가짜 뉴스를 사전에 탐지하기 위해, 본 연구에서는 한국어 코로나 가짜 뉴스 데이터셋을 구축하고, 개체명과 사용자 재확산 정보를 이용한 한국어 가짜 뉴스 탐지 모델을 제안한다. 가짜 뉴스 팩트체킹 언론인 서울대팩트체크센터에서 코로나 관련 루머 및 가짜 뉴스에 대한 검증 기사를 수집한 후, 기사로부터 개체명 추출 모델을 통해 주제 키워드를 추출하고, 이를 이용해 유튜브 상의 사용자 재확산 정보를 수집하여 데이터셋을 구성하였다. BERT 기반의 제안 모델을 다양한 비교군과 비교하였고, 특성 조합에 따른 실험을 통해 각 특성 정보(기사 텍스트, 개체명 데이터, 유튜브 데이터)가 가짜 뉴스 탐지 성능에 미치는 영향을 알아보았다.
-
조기 위험 검출은 실시간으로 들어오는 텍스트를 순차적으로 처리하면서 해당 대화에 위험이 있는지 조기에 분류하는 작업으로, 정확도 저하를 최소화하는 동시에 가능한 한 빨리 대화를 분류하는 것을 목적으로 한다. 이러한, 조기 위험 검출은 온라인 그루밍 검출, 보이스 피싱 검출과 같은 다양한 영역에 활용될 수 있다. 이에, 본 논문에서는 조기 위험 검출 문제를 정의하고, 이를 평가할 수 있는 데이터 셋과 Latency F1 평가 지표를 소개한다. 또한, 점진적 문장 분류 모듈과 위험 검출 결정 모듈로 구성된 점진적 조기 텍스트 분류 시스템을 제안한다. 점진적 문장 분류 모듈은 이전 문장들에 대한 메모리 벡터와 현재 문장 벡터를 통해 현재까지의 대화를 분류한다. 위험 검출 결정 모듈은 softmax 분류 점수와 강화학습을 기반으로 하여 Read 또는 Stop 판단을 내린다. 결정 모듈이 Stop 판단을 내리면, 현재까지의 대화에 대한 분류 결과를 전체 대화의 분류 결과로 간주하고 작업을 종료한다. 해당 시스템은 micro F1과 Latency F1 지표 각각에서 0.9684와 0.8918로 높은 검출 정확성 및 검출 신속성을 달성하였다.
-
최근 급격한 정보기술의 발달로 가짜뉴스가 사회문제로 대두되고 있다. 한국어 가짜뉴스 문제를 딥러닝으로 해결하기 위해서 기존의 연구들은 본문 기반의 가짜뉴스 탐지를 진행하였으며 최근에는 기사 본문 외의 보조적 정보를 활용하는 방법으로 연구가 진행되고 있다. 그러나 기존의 방식과 개선된 방식들 모두 적절한 가짜뉴스 탐지 방법을 제시하지 못하여 모델이 산출한 가짜뉴스 표현 벡터의 품질을 보장할 수 없었다. 또한 한국어 가짜뉴스 문제를 해결함에 있어서 적절한 공개 데이터셋 또한 제공되지 않았다. 따라서 본 논문은 한국어 가짜뉴스 탐지 문제에서 독자 반응정보를 추가하여 효과적인 학습을 할 수 있는 '사용자 그래프 기반 한국어 가짜뉴스 판별 방법'과 해당 모델이 적절히 학습할 수 있는 간이 데이터셋 구축 방법을 제안한다.
-
한국어 사실 확인 과제는 학습 자료의 부재로 인해 연구에 어려움을 겪고 있다. 본 논문은 수작업으로 구성된 학습 자료를 토대로 자연어 생성 모델을 이용하여 한국어 사실 확인 자료를 구축하는 방법을 제안한다. 본 연구는 임의의 근거를 기반으로 하는 주장을 생성하는 방법 (E2C)과 임의의 주장을 기반으로 근거를 생성하는 방법 (C2E)을 모두 실험해보았다. 이때 기존 학습 자료에 위 두 학습 자료를 각각 추가하여 학습한 사실 확인 분류기가 기존의 학습 자료나 영문 사실 확인 자료 FEVER를 국문으로 기계 번역한 학습 자료를 토대로 구성된 분류기보다 평가 자료에 대해 높은 성능을 기록하였다. 또한, C2E 방법의 경우 수작업으로 구성된 자료 없이 기존의 자연어 추론 과제 자료와 HyperCLOVA Few Shot 예제만으로도 높은 성능을 기록하여, 비지도 학습 방식으로 사실 확인 자료를 구축할 수 있는 가능성 역시 확인하였다.
-
기계 학습을 활용하여 요약문을 생성했을 경우, 해당 요약문의 정확도를 측정할 수 있는 도구는 필수적이다. 원문에 대한 요약문의 사실관계 일관성의 파악을 위해 개체명 유사도, 기계 독해를 이용한 질문-답변 생성을 활용한 방법이 시도되었으나, 충분한 데이터 확보가 필요하거나 정확도가 부족하였다. 본 논문은 딥러닝 모델을 기반한 개체명 인식기와 질문-답변쌍 정확도 측정기를 활용하여 생성, 필터링한 질문-답변 쌍에 대해 일치도를 점수화하는 방법을 제안하였다. 이러한 기계적 사실관계 확인 점수와 사람의 평가 점수의 분포를 비교하여 방법의 타당성을 입증하였다.
-
현대 사회에서 소셜 네트워킹 서비스의 증가와 확산은 많은 정보를 쉽고 빠르게 얻을 수 있도록 하였지만 허위·과장 정보의 확산이 큰 문제로 자리잡고 있다. 최근 해외에서는 이들을 자동으로 분류 및 판별하고자하는 Fact 검증 모델에 관한 연구 및 모델 학습을 위한 데이터의 제작 및 배포가 활발히 이루어지고 있다. 그러나 아직 국내에서는 한국어 Fact 검증을 위한 데이터가 많이 부족한 상황이기 때문에 본 논문에서는 최근 좋은 성능을 보이는 openai 의 GPT-3를 한국어 태스크에 적용시킨 HyperCLOVA 를 이용하여 한국어 Fact 검증 데이터 셋을 자동으로 구축하고 이를 최신 Fact 검증 모델들에 적용하였을 때의 성능을 측정 및 분석 하고자 하였다.
-
기계요약의 사실 불일치는 생성된 요약이 원문과 다른 사실 정보를 전달하는 현상이며, 특히 개체명이 잘못 사용되었을 때 기계요약의 신뢰성을 크게 훼손한다. 개체명의 수정을 위해서는 두 가지 작업을 수행해야한다. 먼저 요약 내 각 개체명이 올바르게 쓰였는지 판별을 해야하며, 이후 잘못된 개체명을 맞게 고치는 작업이 필요하다. 본 논문에서는 두 가지 작업 모두 각 개체명을 문맥적으로 이해함으로써 해결할 수 있다고 가정하고, 이에 따라 두 작업에 대한 다중 작업 학습 방법을 제안한다. 제안한 방법을 통해 학습한 모델은 생성된 기계요약에 대한 후처리 교정을 수행할 수 있다. 제안 모델을 평가하기 위해 강제적으로 개체명을 훼손시킨 요약데이터와 기계 요약 데이터에 대해서 성능을 평가 하였으며, 다른 개체명 수정 모델과 비교하였다. 제안모델은 개체명 수준에서 92.9%의 교정 정확도를 달성했으며, KoBART 요약모델이 만든 기계요약의 사실 정확도 4.88% 포인트 향상시켰다.
-
최근 다양한 분야에서 자동 고객 응대 시스템을 도입하고 있으며 이에 따른 대화형 질의응답 시스템 연구의 필요성이 증가하고 있다. 본 논문에서는 새로운 도메인의 대화형 질의응답 시스템 구축에 필요한 말뭉치를 자동으로 생성하는 대화형 질의-응답 생성 시스템을 소개한다. 또한 이전 대화 내용을 고려하여 문서로부터 사용자의 다음 질문 대상이 될만한 응답 후보를 추출하는 맥락 관련 응답 추출 과제와 이에 대한 성능 평가 지표인 Sequential F1 점수를 함께 제안한다. 대화형 질의응답 말뭉치인 CoQA에 대해 응답 후보 추출 실험을 진행한 결과 기존의 응답 추출 모델보다 우리의 맥락 관련 응답 추출 모델이 Sequential F1 점수에서 31.1 높은 성능을 보였다. 또한 맥락 관련 응답 추출 모듈과 기존에 연구된 대화형 질의 생성 모듈을 결합하여 개발한 대화형 질의-응답 생성 시스템을 통해 374,260 쌍의 질의-응답으로 구성된 대화형 질의응답 말뭉치를 구축하였다.
-
Lee, Yejin;Jang, Youngjin;Lee, Hyeon-gu;Shin, Dongwook;Park, Chanhoon;Kang, Inho;Kim, Harksoo 139
최근 대용량 말뭉치를 기반으로 한 언어 모델이 개발됨에 따라 다양한 자연어처리 분야에서 사람보다 높은 성능을 보이는 시스템이 제안되었다. 이에 따라, 더 어렵고 복잡한 문제를 해결하기 위한 데이터셋들이 공개되었으며 대표적으로 기계독해 작업에서는 시스템이 질문에 대해 답변할 수 없다고 판단할 수 있는지 평가하기 위한 데이터셋이 공개되었다. 입력 받은 데이터에 대해 답변할 수 없다고 판단하는 것은 실제 애플리케이션에서 중요한 문제이기 때문에, 이를 해결하기 위한 연구도 다양하게 진행되었다. 본 논문에서는 문서를 이해하여 답변할 수 없는 데이터에 대해 효과적으로 판단할 수 있는 기계독해 시스템을 제안한다. 제안 모델은 문서의 내용과 질문에 대한 이해도가 낮을 경우 정확한 정답을 맞히지 못하는 사람의 독해 패턴에서 착안하여 기계독해 시스템의 문서 이해도를 높이고자 한다. KLUE-MRC 개발 데이터를 통한 실험에서 EM, Rouge-w 기준으로 각각 71.73%, 76.80%을 보였다. -
딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.
-
Kaldi는 음성인식 오픈소스 플랫폼이며 많은 기업에서 이를 이용하여 비즈니스 및 연구를 진행하고 있다. 그러나 국문으로 된 Kaldi에 대한 자세한 모듈 설명과 활용법은 아직 미비한 실정이다. 본 논문은 음성인식 오픈소스인 Kaldi에 대한 각 모듈별 자세한 설명과 더불어 데이터 증강 기법인 SpecAugment를 한국어 음성인식 시스템에 적용하여 성능 향상 여부를 검증하였다. 그리고 Kaldi의 음향모델과 언어모델을 변경하면서 어떠한 모듈들로 구성된 한국어 음성인식 모델을 사용하는 것이 가장 결과가 좋은 지를 검증하고 실시간 디코딩에 있어서 실용적인지를 비교하였다.
-
본 연구는 한국어 문장 임베딩(embedding)에 담겨진 언어적 속성을 평가하기 위한 프로빙 태스크(Probing Task)를 소개한다. 프로빙 태스크는 임베딩으로부터 문장의 표층적, 통사적, 의미적 속성을 구분하는 문제로 영어, 폴란드어, 러시아어 문장에 적용된 프로빙 테스크를 소개하고, 이를 기반으로하여 한국어 문장의 속성을 잘 보여주는 한국어 문장 임베딩 프로빙 태스크를 설계하였다. 언어 공통적으로 적용 가능한 6개의 프로빙 태스크와 한국어 문장의 주요 특징인 주어 생략(SubjOmission), 부정법(Negation), 경어법(Honorifics)을 추가로 고안하여 총 9개의 프로빙 태스크를 구성하였다. 각 태스크를 위한 데이터셋은 '세종 구문분석 말뭉치'를 의존구문문법(Universal Dependency Grammar) 구조로 변환한 후 자동으로 구축하였다. HuggingFace에 공개된 4개의 다국어(multilingual) 문장 인코더와 4개의 한국어 문장 인코더로부터 획득한 임베딩의 언어적 속성을 프로빙 태스크를 통해 비교 분석한 결과, 다국어 문장 인코더인 mBART가 9개의 프로빙 태스크에서 전반적으로 높은 성능을 보였다. 또한 한국어 문장 임베딩에는 표층적, 통사적 속성보다는 심층적인 의미적 속성을 더욱 잘 담고 있음을 확인할 수 있었다.
-
관용표현 중에는 중의성을 가진 표현이 많다. 즉 하나의 표현이 맥락에 따라 일반적 의미와 관용적 의미 두 가지 이상으로 해석될 가능성이 있어 이런 유형의 관용표현을 중의성 해소 없이 자연어 처리 태스크에 적용할 경우 문제가 발생하게 된다. 본 연구에서는 관용표현의 특성인 중의성과 더불어 '관용표현은 이미 사용자의 머릿속에 하나의 토큰으로 저장되어 있다'라는 'Idiom Principle'을 바탕으로 관용표현에 대해 각각 표면형, 단순 단일 토큰형, stemming 단일 토큰형 층위의 임베딩을 만들어 관용표현 분류 연구를 진행하였으며, 실험 결과 표면형 및 stemming을 적용하지 않은 단순 단일 토큰으로 학습하는 것보다, stemming을 적용한 후 단일 토큰으로 학습하는 것이 관용표현의 중의성 해소에 유의미한 효과가 있음을 확인하였다.
-
분절을 통한 양질의 입력 자질을 구성하는 것은 언어모델의 문장에 대한 이해도를 높이기 위한 필수적인 단계이다. 분절은 문장의 의미를 이해하는 데 있어 중요한 역할을 하기 때문이다. 따라서, 한국어 문장 분류 태스크를 수행함에 있어 한국어의 특징에 맞는 분절 기법을 선택하는 것은 필수적이다. 명확한 판단 기준 마련을 위해, 우리는 한국어 문장 분류 태스크에서 가장 효과적인 분절 기법이 무엇인지 감성 분석, 자연어 추론, 텍스트 간 의미적 유사성 판단 태스크를 통해 검증한다. 이 때 비교할 분절 기법의 유형 분류 기준은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 설정하며, 분절 기법 외의 다른 실험 환경들은 동일하게 설정하여 분절 기법이 문장 분류 성능에 미치는 영향만을 측정하도록 한다. 실험 결과에 따르면 자모 단위의 분절 기법을 적용한 모델이 평균적으로 가장 높은 성능을 보여주며, 반복 실험 간 편차가 적어 일관적인 성능 결과를 기록함을 확인할 수 있다.
-
Park, Chanjun;Seo, Jaehyung;Lee, Seolhwa;Moon, Heonseok;Eo, Sugyeong;Jang, Yoonna;Lim, Heuiseok 178
Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다. -
자연어 추론은 두 문장 사이의 의미 관계를 분류하는 작업이다. 본 논문에서 제안하는 의미 추론 방법은 의존 구문 분석을 사용하여 동일한 구문 정보나 기능 정보를 가진 두 개의 (피지배소, 지배소) 어절 쌍에서 하나의 어절이 겹칠 때 두 피지배소를 하나의 청크로 만들어주고 청크 기준으로 만들어진 의존 구문 분석을 사용하여 자연어 추론 작업을 수행하는 방법을 의미한다. 이러한 의미 추론 방법을 통해 만들어진 청크와 구문 구조 정보를 Biaffine Attention을 사용하여 한 문장에 대한 청크 단위의 구문 구조 정보를 반영하고 구문 구조 정보가 반영된 두 문장을 Bilinear을 통해 관계를 예측하는 시스템을 제안한다. 실험 결과 정확도 90.78%로 가장 높은 성능을 보였다.
-
기존 연구에 따르면, 시소러스의 계층적 관계를 기반으로 압축한 의미 어휘 태그를 단어 의미 모호성 해소에 사용할 경우, 그 성능이 향상되었다. 본 논문에서는 시소러스를 사용하지 않고, 국어 사전에 포함된 단어의 의미 정의를 군집화하여 압축된 의미 어휘 태그를 만드는 방법을 제안한다. 또, 이를 이용하여 효율적으로 단어 의미 모호성을 해소하는 BERT 기반의 딥러닝 모델을 제안한다. 한국어 세종 의미 부착 말뭉치로 실험한 결과, 제안한 방법의 성능이 F1 97.21%로 기존 방법의 성능 F1 95.58%보다 1.63%p 향상되었다.
-
의미역 결정은 입력된 문장 내 어절간의 의미 관계를 예측하기 위한 자연어처리 태스크이며, 핵심 서술어에 따라 상이한 의미역 집합들이 존재한다. 기존의 연구는 문장 내의 서술어의 개수만큼 입력 문장을 확장해 순차 태깅 문제로 접근한다. 본 연구에서는 확장된 입력 문장에 대해 구문 분석을 수행 후 추출된 문장 구조 정보를 의미역 결정 모델의 자질로 사용한다. 이를 위해 기존에 학습된 구문 분석 모델의 파라미터를 전이하여 논항의 위치를 예측한 후 파이프라인을 통해 의미역 결정 모델을 학습시킨다. ALBERT 사전학습 모델을 통해 입력 토큰의 표현을 얻은 후, 논항의 위치에 대응되는 표현을 따로 추상화하기 위한 계층형 트랜스포머 인코더 레이어 구조를 추가했다. 실험결과 Korean Propbank 데이터에 대해 F1 85.59의 성능을 보였다.
-
본 논문에서는 맥락에 따라 개체명의 범주가 달라지는 어휘를 중심으로 교차 태깅된 개체명의 성능을 레이블과 스팬 정답률, 문장 성분과 문장 위치에 따른 정답률로 나누어 살펴 보았다. 레이블의 정확도는 KoGPT2, mBERT, KLUE-RoBERTa 순으로 정답률이 높아지는 양상을 보였다. 스팬 정답률에서는 mBERT가 KLUE-RoBERTa보다 근소하게 성능이 높았고 KoGPT2는 매우 낮은 정확도를 보였다. 다만, KoGPT2는 개체명이 문장의 끝에 위치할 때는 다른 모델과 비슷한 정도로 성능이 개선되는 결과를 보였다. 문장 종결 위치에서 인식기의 성능이 좋은 것은 실험에 사용된 말뭉치의 문장 성분이 서술어일 때 명사의 중첩이 적고 구문이 패턴화되어 있다는 특징과 KoGPT2가 decoder기반의 모델이기 때문으로 여겨지나 이에 대해서는 후속 연구가 필요하다.
-
다수의 태스크를 처리 가능하면서 일반화된 성능을 제공할 수 있는 모델을 구축하는 자연어 이해 분야의 연구에서는 멀티태스크 학습 기법에 대한 연구가 다양하게 시도되고 있다. 또한, 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. NLU 분야의 태스크를 더욱 정확하게 수행하려면 모델 내부적으로 시간정보를 반영할 필요가 있으며, 멀티태스크 학습 과정에서 추가적인 태스크로 시간적 관계정보를 추출하여 활용 가능하다. 본 논문에서는, 한국어 입력문장의 시간적 맥락정보를 활용할 수 있도록 NLU 태스크들의 학습 과정에서 시간관계 추출 태스크를 추가한 멀티태스크 학습 기법을 제안한다. 멀티태스크 학습의 특징을 활용하기 위해서 시간적 관계정보를 추출하는 태스크를 설계하고 기존의 NLU 태스크와 조합하여 학습하도록 모델을 구성한다. 실험에서는 학습 태스크들을 다양하게 조합하여 성능 차이를 분석하며, 기존의 NLU 태스크만 사용했을 경우에 비해 추가된 시간적 관계정보가 어떤 영향을 미치는지 확인한다. 실험결과를 통하여 전반적으로 멀티태스크 조합의 성능이 개별 태스크의 성능보다 높은 경향을 확인하며, 특히 개체명 인식에서 시간관계가 반영될 경우에 크게 성능이 향상되는 결과를 볼 수 있다.
-
다중 도메인에 대해 답변 생성 모델이 동작 가능하도록 하는 가장 쉬운 방법은 모든 도메인의 데이터를 순서와 상관없이 한번에 학습하는 것이다. 하지만 이경우, 발화에 상관 없이 지나치게 일반적인 답변을 생성하는 문제가 발생한다. 이에 반해, 도메인을 분리하여 도메인을 순차적으로 학습할 경우 일반적인 답변 생성 문제를 해결할 수 있다. 하지만 이경우 새로운 도메인의 데이터를 학습할 때, 기존에 학습한 도메인에 대한 성능이 저하되는 파괴적 망각 현상이 발생한다. 파괴적 망각 현상을 해결하기 위하여 다양한 지속학습기법이 제안되었으며, 그 중 메모리 리플레이 방법은 새로운 도메인 학습시 기존 도메인의 데이터를 함께 학습하는 방법으로 파괴적 망각 현상을 해결하고자 하였다. 본 논문에서는, 사람의 기억 시스템에 대한 모형인 앳킨슨-쉬프린 기억 모형에서 착안하여 사람이 기억을 저장하는것과 유사한 방법으로 메모리 리플레이 방법의 메모리 관리방법을 제안하였고, 해당 메모리 관리법을 활용하는 메모리 리플레이 방법을 통해 답변 생성 모델의 파괴적 망각 현상을 줄이고자 하였다. 다중 도메인 답변 생성에 대한 데이터셋인 MultiWoZ-2.0를 사용하여 제안 모델을 학습 및 평가하였고, 제안 모델이 다중 도메인 답변 생성 모델의 파괴적 망각 현상을 감소시킴을 확인하였다.
-
우리는 범주 불균형 분류 문제를 해결하기 위해 학습 과정 중 범주 크기 기반 배치 샘플링 방법 전환을 위한 스케줄링 방법을 제안한다. 범주별 샘플링 확률로 범주 크기의 역수(LWRS-Reciporcal)와 범주 비율의 반수(LWRS-Ratio)를 적용하여 각각 실험을 진행하였고, LWRS-Reciporcal 방법이 F1 성능 개선에 더 효과적인 것을 확인하였다. 더하여 고정된 샘플링 확률값으로 인해 발생할 수 있는 또 다른 편향 문제를 완화하기 위해 학습 과정 중 샘플링 방법을 전환하는 스케줄링 방법을 설계하였다. 결과적으로 검증 성능의 갱신 유무로 샘플링 방법을 전환하였을 때 naver shopping 데이터셋과 KLUE-TC에 대하여 f1 score와 accuracy의 성능 합이 베이스라인보다 각각 0.7%, 0.8% 향상된 가장 이상적인 성능을 보임을 확인하였다.
-
사실 검증(Fact verification) 문제는 문서 검색(Document retrieval), 증거 선택(Evidence selection), 증거 검증(Claim verification) 3가지 단계로 구성되어있다. 사실 검증 모델들의 주요 관심사인 증거 검증 단계에서 많은 모델이 제안되는 가운데 증거 선택 단계에 집중하여 강화 학습을 통해 해결한 모델이 제안되었다. 그래프 기반의 모델과 강화 학습 기반의 사실 검증 모델을 소개하고 각 모델을 한국어 사실 검증에 적용해본다. 또한, 두 모델을 같이 사용하여 각 모델의 장점을 가지는 부분을 병렬적으로 결합한 모델의 성능과 증거의 구성 단위에 따른 성능도 비교한다.
-
구문 트리의 구조적 정보는 문장 수준 관계 추출을 수행하는데 있어 매우 중요한 자질 중 하나다. 기존 관계 추출 연구는 구문 트리에서 최단 의존 경로를 적용하는 방식으로 관계 추출에 필요한 정보를 추출해서 활용했다. 그러나 이런 트리 가지치기 기반의 정보 추출은 관계 추출에 필요한 어휘 정보를 소실할 수도 있다는 문제점이 존재한다. 본 논문은 이 문제점을 해소하기 위해 개체 중심으로 구문 트리를 재구축하고 모든 노드의 정보를 관계 추출에 활용하는 모델을 제안한다. 제안 모델은 TACRED에서 F1 점수 74.9 %, KLUE-RE 데이터셋에서 72.0%로 가장 높은 성능을 보였다.
-
Lee, Hyeon-gu;Yang, Yunyeong;Kim, Eunbyul;Cha, Woojune;Roh, Yunyoung;Kim, Eunyoung;Choi, Gyuhyeon;Shin, Dongwook;Park, Chanhoon;Kang, Inho 241
스니펫 추출은 정보검색에서 주요한 문서 정보를 짧은 문단 형태로 보여주는 것으로 사용자가 검색결과를 좀 더 효율적으로 확인할 수 있게 도와준다. 그러나 기존 스니펫은 어휘가 일치하는 문장을 찾아 보여주기에 검색의도가 반영되기 어렵다. 또한 의미적 정답을 찾기 위해 질의응답 방법론이 응용되고 있지만 오픈 도메인 환경에서 품질이 낮은 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 스니펫 추출, 의도 부착, 검증 3단계로 스니펫을 추출하여 추출된 스니펫이 질의 의도에 적합하게 추출되도록 하는 방법을 제안한다. 실험 결과 전통적인 스니펫보다 만족도가 높은 것을 보였고, 스니펫 추출만 했을 때보다 의도 부착, 검증을 하였을 때 정확도가 0.3165만큼 향상되는 것을 보였다. -
관계추출(Relation Extraction)이란 주어진 문장에서 엔터티간의 관계를 예측하는 것을 목표로 하는 태스크이다. 이를 위해 문장 구조에 대한 이해와 더불어 두 엔터티간의 관계성 파악이 핵심이다. 기존의 관계추출 연구는 영어 데이터를 기반으로 발전되어 왔으며 그에 반해 한국어 관계 추출에 대한 연구는 부족하다. 이에 본 논문은 한국어 문장내의 엔터티 정보에 대한 위치 정보를 활용하여 관계를 예측할 수 있는 방법론을 제안하였으며 이를 다양한 한국어 사전학습 모델(KoBERT, HanBERT, KorBERT, KoELECTRA, KcELECTRA)과 mBERT를 적용하여 전반적인 성능 비교 및 분석 연구를 진행하였다. 실험 결과 본 논문에서 제안한 엔터티 위치 토큰을 사용하였을때의 모델이 기존 연구들에 비해 좋은 성능을 보였다.
-
개체명 인식은 정보 추출의 하위 작업으로, 문서에서 개체명에 해당하는 단어를 찾아 알맞은 개체명을 분류하는 자연어처리 기술이다. 질의 응답, 관계 추출 등과 같은 자연어처리 작업에 대한 관심이 높아짐에 따라 세부 분류 개체명 인식에 대한 수요가 증가했다. 그러나 기존 개체명 인식 성능에 비해 세부 분류 개체명 인식의 성능이 낮다. 이러한 성능 차이의 원인은 세부 분류 개체명 데이터가 불균형하기 때문이다. 본 논문에서는 이러한 데이터 불균형 문제를 해결하기 위해 대분류 개체명 정보를 활용하여 세부 분류 개체명 인식을 수행하는 방법과 대분류 개체명 인식의 오류 전파를 완화하기 위한 2단계 학습 방법을 제안한다. 또한 레이블 주의집중 네트워크 기반의 구조에서 레이블의 공통 요소를 공유하여 세부 분류 개체명 인식에 효과적인 레이블 임베딩 구성 방법을 제안한다.
-
상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 동일한 개체(entity)를 의미하는 멘션들을 찾아 그룹화하는 자연어처리 태스크이다. 최근 상호참조해결에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후, 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델이 주로 연구되었으나, 512 토큰 이상의 긴 문서를 처리하기 위해서는 512 토큰 이하로 문서를 분할하여 처리하기 때문에 길이가 긴 문서에 대해서는 상호참조해결 성능이 낮아지는 문제가 있다. 본 논문에서는 512 토큰 이상의 긴 문서를 위한 BERT 기반의 end-to-end 상호참조해결 모델을 제안한다. 본 모델은 긴 문서를 512 이하의 토큰으로 쪼개어 기존의 BERT에서 단어의 1차 문맥 표현을 얻은 후, 이들을 다시 연결하여 긴 문서의 Global Positional Encoding 또는 Embedding 값을 더한 후 Global BERT layer를 거쳐 단어의 최종 문맥 표현을 얻은 후, end-to-end 상호참조해결 모델을 적용한다. 실험 결과, 본 논문에서 제안한 모델이 기존 모델과 유사한 성능을 보이면서(테스트 셋에서 0.16% 성능 향상), GPU 메모리 사용량은 1.4배 감소하고 속도는 2.1배 향상되었다.
-
상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.
-
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔고 그 중 그래프 기반 의존 파싱 방법은 문장 내의 모든 단어에 대해 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻고 트리를 생성하는 방법이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 서브트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 서브 트리의 정보를 이용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(서브트리-서브트리)로의 서브트리 정보를 이용할 수 있도록 하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 소폭의 성능향상을 얻었다.
-
의존 구문 분석은 문장 내 의존소와 지배소 사이의 관계를 예측하여 문장 구조를 분석하는 자연어처리 태스크이다. 최근의 딥러닝 기반 의존 구문 분석 연구는 주로 포인터 네트워크를 사용하는 방법으로 연구되고 있다. 포인터 네트워크는 내부적으로 사용하는 attention 기법에 따라 성능이 달라질 수 있다. 따라서 본 논문에서는 포인터 네트워크 모델에 적용되는 attention 기법들을 비교 분석하고, 한국어 의존 구문 분석 모델에 가장 효과적인 attention 기법을 선별한다. KLUE 데이터 셋을 사용한 실험 결과, UAS는 biaffine attention을 사용할 때 95.14%로 가장 높은 성능을 보였으며, LAS는 multi-head attention을 사용했을 때 92.85%로 가장 높은 성능을 보였다.
-
Objectivity in Korean News Reporting : Machine Learning-Based Verification of News Headline Accuracy뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.
-
좋은 자연어 이해 시스템은 인간과 같이 텍스트에서 단순히 단어나 문장의 형태를 인식하는 것 뿐만 아니라 실제로 그 글이 의미하는 바를 정확하게 추론할 수 있어야 한다. 이 논문에서 우리는 뉴스 헤드라인으로 뉴스의 토픽을 분류하는 open benchmark인 KLUE(Korean Language Understanding Evaluation)에 대하여 기존에 비교 실험이 진행되지 않은 시중에 공개된 다양한 한국어 라지스케일 모델들의 성능을 비교하고 결과에 대한 원인을 실증적으로 분석하려고 한다. KoBERT, KoBART, KoELECTRA, 그리고 KcELECTRA 총 네가지 베이스라인 모델들을 주어진 뉴스 헤드라인을 일곱가지 클래스로 분류하는 KLUE-TC benchmark에 대해 실험한 결과 KoBERT가 86.7 accuracy로 가장 좋은 성능을 보여주었다.
-
PEEP-Talk: Deep Learning-based English Education Platform for Personalized Foreign Language Learning본 논문은 외국어 학습을 위한 딥러닝 기반 영어 교육 플랫폼인 PEEP-Talk (Personalized English Education Platform)을 제안한다. PEEP-Talk는 딥러닝 기반 페르소나 대화 시스템과 영어 문법 교정 피드백 기능이 내장된 교육용 플랫폼이다. 또한 기존 페르소나 대화시스템과 다르게 대화의 흐름이 벗어날 시 이를 자동으로 판단하여 대화 주제를 실시간으로 변경할 수 있는 CD (Context Detector) 모듈을 제안하며 이를 적용하여 실제 사람과 대화하는 듯한 느낌을 사용자에게 줄 수 있다. 본 논문은 PEEP-Talk의 각 모듈에 대한 정량적인 분석과 더불어 CD 모듈을 객관적으로 판단할 수 있는 새로운 성능 평가지표인 CDM (Context Detector Metric)을 기반으로 PEEP-Talk의 강건함을 검증하였다. 이와 더불어 PEEP-Talk를 카카오톡 채널을 이용하여 배포하였다.
-
모어 판별이란 제 2 언어를 습득하는 학습자들이 생산한 목표 언어에 기반하여 학습자들의 제 1 언어를 자동적으로 확인하는 작업을 말한다. 모여 판별 과제를 성공적으로 수행하기 위한 방법을 다룬 다양한 연구들이 진행되어 왔으나, 한국어를 대상으로 진행된 모어 판별 연구는 그 수가 극히 적다. 본 연구에서는 한국어 학습자 텍스트를 대상으로 머신 러닝, 딥 러닝의 다양한 문서 분류 모델을 실험하고, 이를 통해 한국어 학습자 텍스트 모어 판별을 위해 적합한 모델을 구축하기 위해 필요한 조건을 찾아보고자 하였다.
-
지도 학습을 하기 위해선 레이블이 부착된 데이터셋이 필요하다. 크라우드소싱 서비스를 통해 데이터셋을 구축하는데 다수의 주석자(Annotator)가 관여한다. 다수의 주석자가 레이블을 할당하고 과반수인 레이블을 최종 정답으로 결정한다. 이 과정에서 최종 정답과 다른 후보 레이블의 정보가 누락된다. 이를 완화하고 목표 작업에 대한 성능을 높이기 위해 후보 레이블에 대한 정보를 반영하는 멀티 디코더 모델을 제안한다. KLUE-TC, SNLI, MNLI 데이터셋으로 정량적 성능 평가를 수행하였으며 실험한 데이터셋 모두 일괄적인 성능 향상을 보였다.
-
근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.
-
우리는 과학기술 분야 논문 내 문장에 대해 논문의 의미 구조를 반영하는 수사학적 태그를 자동으로 부착하기 위한 분류 모델을 구축한다. 문장의 태그가 이전 문장의 태그와 상관관계를 갖는 특징을 반영하여 이전 문장을 추가 자질로 사용한다. 이전 문장을 추가 자질로 모델에 입력하기 위해 5 가지 결합 방법에 대한 실험을 진행한다. 실험 결과 각 문장에 대해 독립된 인코더를 사용하고 인코더의 결과 벡터를 concatenation 연산으로 조합하여 분류를 수행하는 것이 가장 높은 성능을 보이는 것을 확인하였다.
-
BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.
-
한국어에서는 문장 내의 주어나 목적어가 자주 생략된다. 자연어 처리에서 이러한 문장을 그대로 사용하는 것은 정보 부족으로 인한 문제 난이도 상승으로 귀결된다. 생략복원은 텍스트에서 생략된 부분을 이전 문구에서 찾아서 복원해 주는 기술이며, 본 논문은 생략된 주어를 복원하는 방법에 대한 연구이다. 본 논문에서는 기존에 생략복원에 사용되지 않았던 다양한 입력 형태를 시도한다. 또한, 출력 레이어로는 finetuning layer(Linear, Bi-LSTM, MultiHeadAttention)와 생략복원 태스크 형태(BIO tagging, span prediction)의 다양한 조합을 실험한다. 국립국어원 무형 대용어 복원 말뭉치를 기반으로 생략복원이 불필요한 네거티브 샘플을 추가하여 ELECTRA 기반의 딥러닝 생략복원 모델을 학습시키고, 생략복원에 최적화된 조합을 검토한다.
-
기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.
-
최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.
-
표 기계독해에서는 도메인에 따라 언어모형에 필요한 지식이나 표의 구조적인 형태가 변화하면서 텍스트 데이터에 비해서 더 큰 성능 하락을 보인다. 본 논문에서는 표 기계독해에서 이러한 도메인의 변화에 강건한 사전학습 표 언어모형 구축을 위한 의미있는 표 데이터 선별을 통한 사전학습 데이터 구축 방법과 적대적인 학습 방법을 제안한다. 추출한 표 데이터에서 구조적인 정보가 없이 웹 문서의 장식을 위해 사용되는 표 데이터 검출을 위해 Heuristic을 통한 규칙을 정의하여 HEAD 데이터를 식별하고 표 데이터를 선별하는 방법을 적용했으며, 구조적인 정보를 가지는 일반적인 표 데이터와 엔티티에 대한 지식 정보를 가지는 인포박스 데이터간의 적대적 학습 방법을 적용했다. 기존의 정제되지 않는 데이터로 학습했을 때와 비교하여 데이터를 정제하였을 때, KorQuAD 표 데이터에서 f1 3.45, EM 4.14가 증가하였으며, Spec 표 질의응답 데이터에서 정제하지 않았을 때와 비교하여 f1 19.38, EM 4.22가 증가한 성능을 보였다.
-
음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.
-
지식 기반 다중 대화 시스템은 지식 정보를 포함한 응답을 생성하는 대화 시스템이다. 이 시스템은 응답 생성에 필요한 지식 정보를 찾아내는 지식 선택 작업과 찾아낸 지식 정보를 바탕으로 문맥을 고려한 응답을 생성하는 응답 생성 작업으로 구성된다. 본 논문에서는 지식 선택 작업을 기계독해 프레임워크에 적용하여 해결하는 방법을 제안한다. 지식 선택 작업은 여러 개의 발화로 이루어진 대화 기록을 바탕으로 지식 문서 내에 존재하는 지식을 찾아내는 작업이다. 본 논문에서는 대화 기록 모델링 계층을 활용해 마지막 발화와 관련 있는 대화 기록을 찾아내고, 주의 집중 풀링 계층을 활용해 긴 길이의 지식을 효과적으로 추출하는 방법을 제안한다. 실험 결과, 목적지향 지식 문서 기반 대화 데이터 셋인 Doc2dial 데이터의 지식 선택 작업에서 F1 점수 기준 76.52%, EM 점수 기준 66.21%의 성능을 기록해 비교 모델 보다 높은 성능을 기록하는 것을 확인할 수 있었다.
-
대형 코퍼스로 학습한 언어 모델은 코퍼스 안의 사회적 편견이나 혐오 표현까지 학습한다. 본 연구에서는 한국어 오픈 도메인 대화 모델에서 혐오 표현 생성을 완화하는 방법을 제시한다. Seq2seq 구조인 BART [1]를 기반으로 하여 컨트롤 코드을 추가해 혐오 표현 생성 조절을 수행하였다. 컨트롤 코드를 사용하지 않은 기준 모델(Baseline)과 비교한 결과, 컨트롤 코드를 추가해 학습한 모델에서 혐오 표현 생성이 완화되었고 대화 품질에도 변화가 없음을 확인하였다.
-
문서 기반 대화 시스템은 주어진 배경 지식 문서와 이전 대화를 바탕으로 대화에 이어지는 적절한 응답을 생성하는 시스템이다. 문서 기반 대화 시스템은 지식 추출 작업과 응답 생성 작업으로 나뉘며, 두 하위 작업은 서로 긴밀한 관계를 가지고 있다. 즉, 주어진 배경 지식 문서와 관련된 올바른 응답을 생성하기 위해서는 정확한 지식 추출이 필수적이며, 응답 생성에 필요한 지식을 정확히 추출하지 못하는 경우 생성 응답에 배경 지식이 반영되기 힘들다. 따라서, 본 논문에서는 추출된 지식을 확장하는 방법을 통해 생성에 필요한 지식의 재현율을 높이고 이를 활용할 수 있는 임베딩 확장 방법을 제안함으로써 SacreBLEU 기준 3.51의 성능 향상을 보였다.
-
감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.
-
본 논문은 영어 에세이 자동 평가를 위한 딥러닝 기반의 새로운 평가 방법론을 제안한다. 어휘, 형태소, 구문, 의미 단계로 이루어진 평가 과정을 통해 자동화된 에세이 평가가 가능하다. 제안하는 방법의 객관성과 신뢰성을 검증하기 위하여 사람이 평가한 점수와 각 단계별 점수 사이의 상관관계 분석을 진행하였으며, 그 결과 제안하는 평가 방법이 유의미함을 알 수 있었다.
-
텍스트 스타일 변환은 입력 스타일(source style)로 쓰여진 텍스트의 내용(content)을 유지하며 목적 스타일(target style)의 텍스트로 변환하는 문제이다. 텍스트 스타일 변환을 시퀀스 간 변환 문제(sequence-to-sequence)로 보고 기존 기계학습 모델을 이용해 해결할 수 있지만, 모델 학습에 필요한 각 스타일에 대응되는 병렬 말뭉치를 구하기 어려운 문제점이 있다. 따라서 최근에는 비병렬 말뭉치를 이용해 텍스트 스타일 변환을 수행하는 방법들이 연구되고 있다. 이 연구들은 주로 인코더-디코더 구조의 생성 모델을 사용하기 때문에 입력 문장이 가지고 있는 내용이 누락되거나 다른 내용의 문장이 생성될 수 있는 문제점이 있다. 본 논문에서는 마스크 언어 모델(masked language model)을 이용해 입력 텍스트의 내용을 유지하면서 원하는 스타일로 변경할 수 있는 텍스트 스타일 변환 방법을 제안하고 한국어 긍정-부정, 채팅체-문어체 변환에 적용한다.
-
Suh, Soo-Bin;In, Soo-Kyo;Park, Jin-Seong;Nam, Kyeong-Min;Kim, Hyeon-Wook;Moon, Ki-Yoon;Hwang, Won-Yo;Kim, Kyung-Duk;Kang, In-Ho 396
초거대 언어모델를 활용한 퓨샷(few shot) 학습법은 여러 자연어 처리 문제에서 좋은 성능을 보였다. 하지만 데이터를 활용한 추가 학습으로 문제를 추론하는 것이 아니라, 이산적인 공간에서 퓨샷 구성을 통해 문제를 정의하는 방식은 성능 향상에 한계가 존재한다. 이를 해결하기 위해 초거대 언어모델의 모수 전체가 아닌 일부를 추가 학습하거나 다른 신경망을 덧붙여 연속적인 공간에서 추론하는 P-tuning과 같은 데이터 기반 추가 학습 방법들이 등장하였다. 본 논문에서는 문맥에 따른 질의 정규화 문제를 대화형 음성 검색 서비스에 맞게 직접 정의하였고, 초거대 언어모델을 P-tuning으로 추가 학습한 경우 퓨샷 학습법 대비 정확도가 상승함을 보였다. -
자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.
-
본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.
-
다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.
-
본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.
-
본 논문은 전역 스타일 토큰(Global Style Token)을 기준으로 하여 감정의 세기를 조절할 수 있는 방법을 소개한다. 기존의 전역 스타일 토큰 연구에서는 원하는 스타일이 포함된 참조 오디오(reference audio)을 사용하여 음성을 합성하였다. 그러나, 참조 오디오의 스타일대로만 음성합성이 가능하기 때문에 세밀한 감정 조절에 어려움이 있었다. 이 문제를 해결하기 위해 본 논문에서는 전역 스타일 토큰의 레퍼런스 인코더 부분을 잔여 블록(residual block)과 컴퓨터 비전 분야에서 사용되는 AlexNet으로 대체하였다. AlexNet은 5개의 함성곱 신경망(convolutional neural networks) 으로 구성되어 있지만, 본 논문에서는 1개의 신경망을 제외한 4개의 레이어만 사용했다. 청취 평가(Mean Opinion Score)를 통해 제시된 방법으로 감정 세기의 조절 가능성을 보여준다.
-
현재 한국어 의존 구문 분석의 표준은 어절 단위로 구문 분석을 수행하는 것이다. 그러나 의존 구문 분석의 분석 단위(어절, 형태소)에 대해서는 현재까지 심도 있는 비교 연구가 진행된 바 없다. 본 연구에서는 의존 구문 분석의 분석 단위가 자연어 처리 분야의 성능에 유의미한 영향을 끼침을 실험적으로 규명한다. STEP 2000과 모두의 말뭉치를 기반으로 구축한 형태소 단위 의존 구문 분석 말뭉치를 사용하여, 의존 구문 분석기 모델 및 의존 트리를 입력으로 활용하는 문장 의미 유사도 분석(STS) 및 관계 추출(RE) 모델을 학습하였다. 그 결과, KMDP가 기존 어절 단위 구문 분석과 비교하여 의존 구문 분석기의 성능과 응용 분야(STS, RE)의 성능이 모두 유의미하게 향상됨을 확인하였다. 이로써 형태소 단위 의존 구문 분석이 한국어 문법을 표현하는 능력이 우수하며, 문법과 의미를 연결하는 인터페이스로써 높은 활용 가치가 있음을 입증한다.
-
대화 시스템은 크게 사용자와 시스템이 특정 목적 혹은 자유 주제에 대해 대화를 진행하는 것으로 구분된다. 최근 자유주제 대화 시스템(Open-Domain Dialogue System)에 대한 연구가 활발히 진행됨에 따라 자유 주제를 기반으로 하는 상담 대화, 일상 대화 시스템의 독성 발화 제어 생성에 대한 연구의 중요성이 더욱 커지고 있다. 이에 본 논문에서는 대화 모델의 독성 응답 생성을 제어하기 위해 일상 대화 데이터셋으로 학습된 BART 모델에 Plug-and-Play Language Model 방법을 적용한다. 공개된 독성 대화 분류 데이터셋으로 학습된 독성 응답 분류기를 PPLM의 어트리뷰트(Attribute) 모델로 활용하여 대화 모델의 독성 응답 생성을 감소시키고 그 차이를 실험을 통해 정량적으로 비교한다. 실험 결과 어트리뷰트 모델을 활용한 모든 실험에서 독성 응답 생성이 감소함을 확인하였다.
-
기계 독해는 단락과 질의가 주어졌을 때 단락 내 정답을 찾는 자연어 처리 태스크이다. 최근 벤치마킹 데이터셋에서 사전학습 언어모델을 기반으로 빠른 발전을 보이며 특정 데이터셋에서 인간의 성능을 뛰어넘는 성과를 거두고 있다. 그러나 이는 단락 내 범위(span)에서 추출된 정보에 관한 것으로, 실제 연산을 요구하는 질의에 대한 응답에는 한계가 있다. 본 논문에서는 기존 범위 내에서 응답이 가능할 뿐만이 아니라, 연산에 관한 이산 추론을 요구하는 단락 및 질의에 대해서도 응답이 가능한 기계 독해 모델의 효과성을 검증하고자 한다. 이를 위해 영어 DROP (Discrete Reasoning Over the content of Paragraphs, DROP) 데이터셋으로부터 1,794개의 질의응답 쌍을 Google Translator API v2를 사용하여 한국어로 번역 및 정제하여 KoDROP (Korean DROP, KoDROP) 데이터셋을 구축하였다. 단락 및 질의를 참조하여 연산을 수행하기 위한 의미 태그를 한국어 KoBERT 및 KoELECTRA에 접목하여, 숫자 인식이 가능한 KoNABERT, KoNAELECTRA 모델을 생성하였다. 실험 결과, KoDROP 데이터셋은 기존 기계 독해 데이터셋과 비교하여 단락에 대한 더욱 포괄적인 이해와 연산 정보를 요구하였으며, 가장 높은 성능을 기록한 KoNAELECTRA는 KoBERT과 비교하여 F1, EM에서 모두 19.20의 월등한 성능 향상을 보였다.
-
자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.
-
본 논문은 범용의 한국어 패러프레이즈 문장 인식 모델 개발을 위한 연구를 다룬다. 범용의 목적을 위해서 가장 걸림돌이 되는 부분 중의 하나는 적대적 예제에 대한 강건성이다. 왜냐하면 패러프레이즈 문장 인식에 대한 적대적 예제는 일반 유형의 말뭉치로 학습시킨 인식 모델을 무력화 시킬 수 있기 때문이다. 또한 적대적 예제의 유형이 다양하기 때문에 다양한 유형에 대해서도 대응할 수 있어야 하는 어려운 점이 있다. 본 논문에서는 다양한 적대적 예제 유형과 일반 유형 모두에 대해서 패러프레이즈 문장 여부를 인식할 수 있는 딥 뉴럴 네트워크 모델을 제시하고자 한다.
-
Jang, Yoonna;Lim, Jungwoo;Hur, Yuna;Yang, Kisu;Park, Chanjun;Seo, Jaehyung;Lee, Seungjun;Lim, Heuiseok 453
대화형 에이전트가 일관성 없는 답변, 재미 없는 답변을 하는 문제를 해결하기 위하여 최근 페르소나 기반의 대화 분야의 연구가 활발히 진행되고 있다. 그러나 한국어로 구축된 페르소나 대화 데이터는 아직 구축되지 않은 상황이다. 이에 본 연구에서는 영어 원본 데이터에서 한국어로 번역된 데이터를 활용하여 최초의 페르소나 기반 한국어 대화 모델을 제안한다. 전처리를 통하여 번역 품질을 향상시킨 데이터에 사전 학습 된 한국어 모델인 KoBERT와 KoELECTRA를 미세조정(fine-tuning) 시킴으로써 모델에게 주어진 페르소나와 대화 맥락을 고려하여 올바른 답변을 선택하는 모델을 학습한다. 실험 결과 KoELECTRA-base 모델이 가장 높은 성능을 보이는 것을 확인하였으며, 단순하게 사용자의 발화만을 주는 것 보다 이전 대화 이력이 추가적으로 주어졌을 때 더 좋은 성능을 보이는 것을 확인할 수 있었다. -
대화 시스템은 인공지능과 사람이 자연어로 의사 소통을 하는 시스템으로 크게 목적 지향 대화와 일상대화 시스템으로 연구되고 있다. 목적 지향 대화 시스템의 경우 날씨 확인, 호텔 및 항공권 예약, 일정 관리 등의 사용자가 생활에 필요한 도메인들로 이루어져 있으며 각 도메인 별로 목적에 따른 시나리오들이 존재한다. 이러한 대화는 사용자에게 명확한 발화을 제공할 수 있으나 자연스러움은 떨어진다. 일상 대화의 경우 다양한 도메인이 존재하며, 시나리오가 존재하지 않기 때문에 사용자에게 자연스러운 발화를 제공할 수 있다. 또한 일상 대화의 경우 검색 기반이나 생성 기반으로 시스템이 개발되고 있다. 검색 기반의 경우 발화 쌍에 대한 데이터베이스가 필요하지만, 생성 기반의 경우 이러한 데이터베이스가 없이 모델의 Language Modeling (LM)으로 부터 생성된 발화에 의존한다. 따라서 모델의 성능에 따라 발화의 품질이 달라진다. 최근에는 사전학습 모델이 자연어처리 작업에서 높은 성능을 보이고 있으며, 일상 대화 도메인에서도 역시 높은 성능을 보이고 있다. 일상 대화에서 가장 높은 성능을 보이고 있는 사전학습 모델은 Auto Regressive 기반 생성모델이고, 한국어에서는 대표적으로 KoGPT2가 존재한다. 그러나, KoGPT2의 경우 문어체 데이터만 학습되어 있기 때문에 대화체에서는 낮은 성능을 보이고 있다. 본 논문에서는 대화체에서 높은 성능을 보이는 한국어 기반 KoDialoGPT2를 개발하였고, 기존의 KoGPT2보다 높은 성능을 보였다.
-
본 연구에서는 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph)에 기반한 반자동 언어데이터 증강(Semi-automatic Symbolic Propagation: SSP) 방식에 입각하여, 핀테크 분야의 CS(Customer Service) 챗봇 NLU(Natural Language Understanding)을 위한 주석 학습 데이터를 효과적으로 생성하고, 이를 기반으로 RASA 오픈 소스에서 제공하는 DIET(Dual Intent and Entity Transformer) 아키텍처를 활용하여 핀테크 CS 챗봇 NLU 시스템을 구현하였다. 실 데이터을 통해 확인된 핀테크 분야의 32가지의 토픽 유형 및 38가지의 핵심 이벤트와 10가지 담화소 구성에 따라, DECO-LGG 데이터 생성 모듈은 질의 및 불만 화행에 대한 양질의 주석 학습 데이터를 효과적으로 생성하며, 이를 의도 분류 및 Slot-filling을 위한 개체명 인식을 종합적으로 처리하는 End to End 방식의 멀티태스크 트랜스포머 모델 DIET로 학습함으로써 DIET-only F1-score 0.931(Intent)/0.865(Slot/Entity), DIET+KoBERT F1-score 0.951(Intent)/0.901(Slot/Entity)의 성능을 확인하였으며, DECO-LGG 기반의 SSP 생성 데이터의 학습 데이터로서의 효과성과 함께 KoBERT에 기반한 DIET 모델 성능의 우수성을 입증하였다.
-
본 연구는 패션앱 후기글에 나타나는 구매자의 의견에 대한 '평가분석(Evaluation Analysis: EA)'을 수행하여, 이를 기반으로 상품의 검색 및 추천을 수행하는 의류 검색추천 챗봇을 개발하는 LICO 프로젝트의 언어데이터 구축의 일환으로 수행되었다. '평가분석 트리플(EAT)'과 '평가기반요청 쿼드러플(EARQ)'의 구성요소들에 대한 주석작업은, 도메인 특화된 단일형 핵심어휘와 다단어(MWE) 핵심패턴들을 FST 방식으로 구조화하는 DECO-LGG 언어자원에 기반하여 반자동 언어데이터 증강(SSP) 방식을 통해 진행되었다. 이 과정을 통해 20여만 건의 후기글 문서(230만 어절)로 구성된 EVAD 평가주석데이터셋이 생성되었다. 여성의류 도메인의 평가분석을 위한 '평가속성(ASPECT)' 성분으로 14가지 유형이 분류되었고, 각 '평가속성'에 연동된 '평가내용(VALUE)' 쌍으로 전체 35가지의 {ASPECT-VALUE} 카테고리가 분류되었다. 본 연구에서 구축된 EVAD 평가주석 데이터의 성능을 평가한 결과, F1-Score 0.91의 성능 평가를 획득하였으며, 이를 통해 향후 다른 도메인으로의 확장된 적용 가능성이 유효함을 확인하였다.
-
유의어 추천을 구현하기 위해서는 각 단어 사이의 유사도를 계산하는 것이 필수적이다. 하지만, 기존의 단어간 유사도를 계산하는 여러 방법들은 데이터셋에 등장하지 않은 단어에 대해 유사도를 계산 할 수 없다. 이 논문에서는 이를 해결하기 위해 언어모델의 PPL을 활용하여 단어간 유사도를 계산하였고, 이를 통해 유의어를 추천했을 때 MRR 41.31%의 성능을 확인했다.
-
본 논문은 용어의 비통일성과 문서의 다양성으로 인해 발생하는 건설분야 전문가들의 의사소통 문제를 해결하기 위한 Con-Talky를 제안한다. Con-Talky는 자연언어처리의 대표적인 기술인 형태소분석, 의존구문분석, 의미역 결정 기술을 융합하여 건설분야의 "설계기준문서"를 시각화하고 핵심 정보추출을 자동으로 해주는 플랫폼이다. 해당 플랫폼을 이용하여 토목분야 전문가들의 의사소통 문제를 완화시킬 수 있으며 용어의 비통일성 및 표준화에도 기여할 수 있다. 또한 본 논문은 국내 건설 및 토목분야에 최초로 자연언어처리 기술을 적용한 논문이다. 해당 분야의 연구를 활성화 하기 위해 건설분야에 특화된 단일 말뭉치와 트리플 데이터를 자체 제작함과 동시에 전면 공개하였다.
-
최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.
-
본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.
-
표준어와 방언사이에는 위계가 존재하지 않고 열등하지 않다는 사상을 기반으로 방언을 보존하기 위한 다양한 노력들이 이루어지고있다. 또한 동일한 국가내에서 표준어와 방언간의 의사소통이 잘 이루어져야한다. 본 논문은 방언 연구보존과 의사소통의 중요성을 바탕으로 한국어 방언 기계번역 연구를 진행하였다. 대표적인 방언 중 하나인 제주어와 더불어 강원어, 경상어, 전라어, 충청어 기반의 기계번역 연구를 진행하였다. 공개된 AI Hub 데이터를 바탕으로 Transformer기반 copy mechanism을 적용하여 방언 기계번역의 성능을 높이는 모델링 연구를 진행하였으며 모델배포의 효율성을 위하여 Many-to-one기반 universal한 방언 기계번역기를 개발하였고 이를 one-to-one 모델과의 성능비교를 진행하였다. 실험결과 copy mechanism이 방언 기계번역 모델에 매우 효과적인 요소임을 알 수 있었다.
-
감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.
-
본 연구에서는 음운 변동에서 나타나는 오류가 어떤 변수에 영향을 받는지 확인하여 음운 변동 연구 및 교육의 기초 자료를 제공하고자 하는 데에 목적이다. 이를 위해 유음화 발음 데이터를 이용하여 성별, 유음화의 방향, 품사, 단어의 빈도, 단어의 음절수와 유음화의 발음 적격 유무를 변수로 설정하였다. 유음화 적격률에 영향을 줄 수 있는 독립변수를 찾기 위해 카이제곱 검정과 다중공선성의 팽창계수를 먼저 확인하였다. 이후 다중 로지스틱 회귀분석과 오즈비를 통해 유의한 예측인자를 검토하였다. 그 결과 5개의 독립 변수 중 성별과 유음화의 방향, 품사가 결과를 오류에 영향을 주는 주요한 인자가 되는 것을 확인할 수 있었다.
-
최근 언어 모델은 분류, 기계 독해, 생성 등의 태스크에서 성공적인 결과를 보여주고 있다. 본 논문에서는 최근 많은 관심을 받고 있는 인코더-디코더 구조의 언어 모델인 BART, T5 그리고 PALM을 위키피디아 한국어 데이터 집합으로 사전 학습한 후 기계 독해와 문서 생성 요약 태스크에 대하여 미세 조정을 하고 성능 비교를 한다.
-
최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.
-
최근 한국어 자연어처리 과제에서 대형 언어 모델을 통해 다양한 언어처리 작업에 대한 연구가 활발히 이루어지고 있다. 특히 동형이의어를 구분하는 작업은 문장의 문법성을 정확히 판단하고 비교해야 되기 때문에 어려운 작업이다. KE-T5는 큰 규모의 한국어를 통해 학습된 한국어 대형 언어 모델로 대부분의 자연어처리 과제에서 활용할 수 있으며 복잡한 언어처리 작업에서 높은 성능을 기대할 수 있다. 본 논문에서는 큰 규모의 한국어를 통해 학습된 KE-T5를 활용하여 동형이의어 구별 문제를 수행하고 평가한다.
-
개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.
-
FASCODE-EVAL1은 고객과 시스템간의 의상 추천 대화 문맥과 해당 문맥의 요구사항을 고려한 의상셋 추천 목록으로 구성된다. 의상셋 추천 목록은 3개의 의상셋 후보로 구성되고, 문맥과 관련성이 높은 순서로 정렬된다. 해당 정렬을 찾는 방식으로 의상 추천 시스템 평가를 진행한다. 대화 문맥는 텍스트로 되어 있고, 의상 아이템은 텍스트로 구성된 자질 정보와 의상 이미지 정보로 구성된다. 본 논문은 FASCODE-EVAL 문제를 해결하기 위하여 트랜스포머 기반의 사전학습 언어모델을 이용하고, 텍스트 정보와 이미지 정보를 해당 언어모델에 통합하는 방법을 보여준다. FASCODE-EVAL 실험결과는 기존 공개된 결과들보다 우수한 성능을 보여준다.
-
챗봇과 같은 대화형 에이전트 사용이 증가하면서 채팅에서의 혐오 표현 사용도 더불어 증가하고 있다. 혐오 표현을 자동으로 탐지하려는 노력은 다양하게 시도되어 왔으나, 챗봇 데이터를 대상으로 한 혐오 표현 탐지 연구는 여전히 부족한 실정이다. 이 연구는 혐오 표현을 포함한 챗봇-사용자 대화 데이터 35만 개에 한국어 말뭉치로 학습된 KoELETRA 기반 혐오 탐지 모델을 적용하여, 챗봇-사람 데이터셋에서의 혐오 표현 탐지의 성능과 한계점을 검토하였다. KoELECTRA 혐오 표현 분류 모델은 챗봇 데이터셋에 대해 가중 평균 F1-score 0.66의 성능을 보였으며, 오탈자에 대한 취약성, 맥락 미반영으로 인한 편향 강화, 가용한 데이터의 정확도 문제가 주요한 한계로 포착되었다. 이 연구에서는 실험 결과에 기반해 성능 향상을 위한 방향성을 제시한다.
-
최근 국외에서 사실 검증 연구가 활발하게 이루어지고 있지만 한국어의 경우 데이터 집합의 부재로 인하여 사실 검증 연구가 이루어지는데 큰 어려움을 겪고 있다. 이러한 어려움을 해소하고자 자동 생성 모델을 통하여 데이터 집합을 생성하는 시도도 있으나 생성 모델의 특성 상 부정확한 데이터가 생성되어 사실 검증 연구의 퀄리티를 떨어뜨린다는 문제점이 있다. 이러한 문제점을 해소하기 위해 수동으로 구축한 100건의 데이터 집합으로 최근에 이루어진 퓨-샷(Few-Shot) 사실 검증을 확장한 학습이 필요없는 제로-샷(Zero-Shot) 질의 응답에 대한 사실 검증 연구를 제안한다.
-
띄어쓰기에 대한 오류는 한국어 처리 전반에 영향을 주므로 자동 띄어쓰기는 필수적인 요소이다. 글쓴이의 대부분은 띄어쓰기 오류를 범하지 않으므로 글쓴이의 의도가 띄어쓰기 시스템에 반영되어야 한다. 그러나 대부분의 자동 띄어쓰기 시스템은 모든 띄어쓰기 정보를 제거하고 새로이 공백문자를 추가하는 방법으로 띄어쓰기를 수행한다. 이런 문제를 완화하기 위해서 본 논문에서는 기계학습에서 글쓴이의 의도가 반영된 자질을 추가하는 방법을 제안한다. 실험을 위해서 CRFs(Conditional Random Fields)를 사용하여 기존 시스템과 사용자의 의도를 반영한 띄어쓰기 시스템과의 성능을 비교하고 분석한다.
-
다양한 SNS 플랫폼이 등장하고, 이용자 수가 급증함에 따라 온라인에서 얻을 수 있는 정보의 활용 가치가 높아지고 있다. 문장은 자연어 처리 시스템의 기본적인 단위이므로 주어진 문서로부터 문장의 경계를 인식하는 작업이 필수적이다. 공개된 문장 경계 인식기는 SNS 문서에서 좋은 성능을 보이지 않는다. 본 논문에서는 문어체로 구성된 일반 문서뿐 아니라 SNS 문서에서 사용할 수 있는 문장 경계 인식기를 제안한다. 본 논문에서는 SNS 문서에 적용하기 위해 다음과 같은 두 가지를 개선한다. 1) 학습 말뭉치를 일반문서와 SNS 문서 두 영역으로 확장하고, 2) 이모티콘을 사용하는 SNS 문서의 특징을 반영하는 어절의 유형을 자질로 추가하여 성능을 개선한다. 실험을 통해서 추가된 자질의 기여도를 분석하고, 또한 기존의 한국어 문장 경계 인식기와 제안한 모델의 성능을 비교·분석하였다. 개선된 모델은 일반 문서에서 99.1%의 재현율을 보이며, SNS 문서에서 88.4%의 재현율을 보였다. 두 영역 모두에서 문장 경계 인식이 잘 이루어지는 것을 확인할 수 있었다.
-
본 논문은 한국어에서 형태소 복원을 위한 새로운 방법을 제안한다. 일반적으로 기계학습 기반 형태소 분석에서 형태소 복원은 기분석 사전과 약간의 경험규칙을 이용한다. 이와 같은 방법은 모호성을 해결하기 위해 사전에 모든 정보를 저장하는 것이 불가능할 뿐 아니라 단음절 이형태의 모호성을 해결할 수 없을 것이다. 이러한 문제를 완화하기 위해 본 논문에서는 생성된 모호성을 Viterbi 알고리즘을 이용해서 해소한다. 본 논문의 형태소 복원 과정은 기본적으로 기분석 사전과 약간의 경험규칙을 이용하여 형태소 복원 후보를 찾고 여러 후보가 있을 경우(모호성의 생성), 그 결과를 Viterbi 알고리즘으로 이형태를 결정한다. 실험을 위해 모두의 말뭉치(형태 분석)를 사용하고, 평가는 NER 방식으로 평가한다. 그 결과 품사 부착에 대해 96.28%정도의 성능을 보여주었다.
-
본 논문에서는 Multi-Head Attention 대신 Spatial Gating Unit을 사용하는 GMLP[1]에 작은 Attention 신경망을 추가한 모델을 구성하여 뉴스와 위키피디아 데이터로 사전학습을 실시하고 한국어 다운스트림 테스크(감성분석, 개체명 인식)에 적용해 본다. 그 결과, 감성분석에서 Multilingual BERT보다 0.27%높은 Accuracy인 87.70%를 보였으며, 개체명 인식에서는 1.6%높은 85.82%의 F1 Score를 나타내었다. 따라서 GMLP가 기존 Transformer Encoder의 Multi-head Attention[2]없이 SGU와 작은 Attention만으로도 BERT[3]와 견줄만한 성능을 보일 수 있음을 확인할 수 있었다. 또한 BERT와 추론 속도를 비교 실험했을 때 배치사이즈가 20보다 작을 때 BERT보다 1에서 6배 정도 빠르다는 것을 확인할 수 있었다.
-
한국어의 품사 태깅 문제는 입력 어절의 형태소 분석 후보들로부터 통계적으로 적절한 품사 태그를 가지는 후보들을 찾는 방식으로 해결하여 왔다. 어절을 형태소 단위로 분리하고 품사를 부착하는 기존의 방식은 품사태그 정보를 딥러닝 feature로 사용할 때 문장의 의미를 이해하는데 복잡도를 증가시키는 요인이 된다. 본 연구에서는 품사 태깅 문제를 단순화 하여 한 어절을 Head와 Tail이라는 두 가지 유형의 형태소 토큰으로 분리하여 Head와 Tail에 대해 품사를 부착한다. Head-Tail 품사 태깅 방법을 Sequence-to-Sequence 문제로 정의하여 Transformer를 이용한 Head-Tail 품사 태거를 설계하고 구현하였다. 학습데이터로는 KCC150 말뭉치의 품사 태깅 말뭉치 중에서 788만 문장을 사용하고, 실험 데이터로는 10만 문장을 사용하였다. 실험 결과로 토큰 정확도는 99.75%, 태그 정확도는 99.39%, 토큰-태그 정확도는 99.31%로 나타났다.
-
비디오 질의 응답은 입력으로 주어진 비디오와 질문에 적절할 정답을 제공하기 위해 텍스트, 이미지 등 다양한 정보처리가 요구되는 대표적인 multi-modal 문제이다. 질의 응답 시스템은 질의 응답의 성능을 높이기 위해 다수의 서로 다른 응답 모듈을 사용하기도 하며 생성된 정답 후보군 중 가장 적절할 정답을 선택하는 정답 선택 모듈이 필요하다. 정답 선택 모듈은 응답 모듈의 서로 다른 관점을 고려하여 응답 선택을 선택할 필요성이 있다. 하지만 응답 모듈이 black-box 모델인 경우 정답 선택 모듈은 응답 모듈의 parameter와 예측 분포를 통해 지식을 전달 받기 어렵다. 그리고 학습 데이터셋은 응답 모듈이 학습에 사용했기 때문에 과적합 문제로 각 모듈의 관점을 학습하기엔 어려우며 학습 데이터셋 이외 비교적 적은 데이터셋으로 학습해야 하는 문제점이 있다. 본 논문에서는 정답 선택 성능을 높이기 위해 전이 학습 기반의 멀티모달 퓨전 정답 선택 모델을 제안한다. DramaQA 데이터셋을 통해 성능을 측정하여 제안된 모델의 우수성을 실험적으로 증명하였다.
-
NLTKo는 한국어 분석 도구들을 NLTK에 결합하여 사용할 수 있게 만든 도구이다. NLTKo는 전처리 도구, 토크나이저, 형태소 분석기, 세종 의미사전, 분류 및 기계번역 성능 평가 도구를 추가로 제공한다. 이들은 기존의 NLTK 함수와 동일한 방법으로 사용할 수 있도록 구현하였다. 또한 세종 의미사전을 제공하여 한국어 동의어/반의어, 상/하위어 등을 제공한다. NLTKo는 한국어 자연어처리를 위한 교육에 도움이 될 것으로 믿는다.
-
알츠하이머병 치매와 조현병 진단을 위한 2단계 분류 모델을 제안한다. 정상군과 환자군의 발화에 나타난 페어 언어 모델 간의 Perplexity 차이에 기반한 분류와 기존 단일 BERT 모델의 미세조정(fine-tuning)을 이용한 분류의 통합을 시도하였다. Perplexity 기반의 분류 성능이 알츠하이머병, 조현병 모두 우수한 결과를 보임을 확인 하였고, 조현병 분류 모델의 성능이 소폭 증가하였다. 향후 설명 가능한 인공지능 기법을 적용에 따른 성능 향상을 기대할 수 있었다.
-
스미싱은 SMS 문자를 통해 피해자를 현혹시켜 개인정보나 금전 등을 갈취하는 범죄이다. 발전하는 스미싱 범죄 수법에 대응하기 위해선 새로운 스미싱 범죄 사례에서 데이터를 추출하고, 추출한 데이터를 기존 시스템에 통합하여 빠르게 대응할 수 있어야 한다. 본 연구에서는 빠른 스미싱 대응을 위해 전처리를 하지 않은 SMS 문자 텍스트에서 지식베이스를 자동으로 추출하고 저장하는 자동 지식베이스 추출 모듈을 제안하며, 추출 시스템 지식베이스를 바탕으로 입력된 SMS가 스미싱인지 판별하는 스미싱 SMS 탐지 모듈을 통합한 자동 지식베이스 추출 기반 스미싱 SMS 탐지 시스템을 제시한다. 제시된 스미싱 SMS 탐지 모델은 UCI SMS Spam Collection Dataset을 기준으로 90.9 (F1 score)의 성능을 보여주었다.
-
기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 하지만 대부분의 기계독해 데이터는 간결한 답변 추출을 다루며, 이는 실제 애플리케이션에서 유용하지 않을 수 있다. 실제 적용 단계에서는 짧고 간결한 답변 뿐 아니라 사용자에게 자세한 정보를 제공해줄 수 있는 긴 길이의 답변 제공도 필요하다. 따라서 본 논문에서는 짧은 답변과 긴 답변 모두 추출할 수 있는 모델을 제안한다. 실험을 통해 Baseline과 비교하여 짧은 답변 추출에서는 F1 score 기준 0.7%, 긴 답변 추출에는 1.4%p의 성능 향상을 보이는 결과를 얻었다.
-
감성분석이란 텍스트에 들어있는 의견이나 감성, 평가, 태도 등의 주관적인 정보를 컴퓨터를 통해 분석하는 과정이다. 본 논문은 다양한 감성분석 실험 중 감성이 드러나는 부분을 파악하여 서술어 중심의 구 혹은 절 단위로 감성 표현 영역을 추출하는 모델을 개발하고자 한다. 제안하는 모델은 BERT에 classification layer와 CRF layer를 결합한 것이고 baseline은 일반 BERT 모델이다. 실험 결과는 기존의 baseline 모델의 f1-score이 33.44%이고 제안한 BERT+CRF 모델의 f1-score이 40.99%이다. BERT+CRF 모델이 7.55% 더 좋은 성능을 보인다.
-
패러프레이즈란 어떤 문장을 같은 의미를 가지는 다른 단어들을 사용하여 표현한 것들을 의미한다. 이는 정보 검색, 다중 문서 요약, 질의응답 등 여러 자연어 처리 분야에서 중요한 역할을 한다. 특히, 양질의 패러프레이즈 코퍼스를 얻는 것은 많은 시간 및 비용이 소요된다. 이러한 문제점을 해소하기 위해 본 논문에서는 문장 유사도를 이용한 패러프레이즈 쌍을 구축하고, 또 구축한 패러프레이즈 쌍을 이용하여 기계 학습을 통해 새로운 패러프레이즈을 생성한다. 제안 방식으로 생성된 패러프레이즈 쌍은 기존의 구축되어 있는 코퍼스 내 나타나는 표현들로만 구성된 페러프레이즈 쌍이라는 단점이 존재한다. 이러한 단점을 해소하기 위해 기계 학습을 이용한 실험을 진행하여 새로운 표현에 대한 후보군을 추출하는 방법을 적용하여 새로운 표현이라고 볼 수 있는 후보군들을 추출하여 기존의 코퍼스 내 새로운 표현들이 생성된 것을 확인할 수 있었다.
-
한국어 통합 지식베이스를 생성하기 위해 필수적인 분류체계(taxonomy)를 구축하는 방식을 제안한다. 위키데이터를 기반으로 분류 후보군을 추출하고, 상하위 관계를 통해 방향 비순환 그래프(Directed Acyclic Graph)를 구성한 뒤, 국부적 도달 중심성(local reaching centrality) 등의 정보를 활용하여 정제함으로써 246 개의 분류와 314 개의 상하위 관계를 갖는 분류체계를 생성한다. 워드넷(WordNet), 디비피디아(DBpedia) 등 기존 링크드 오픈 데이터의 분류체계 대비 깊이 있는 계층 구조를 나타내며, 다중 상위 분류를 지닐 수 있는 비트리(non-tree) 구조를 지닌다. 또한, 위키데이터 속성에 기반하여 위키데이터 정보가 있는 인스턴스(instance)에 자동으로 분류를 부여할 수 있으며, 해당 방식으로 실험한 결과 99.83%의 분류 할당 커버리지(coverage) 및 99.81%의 분류 예측 정확도(accuracy)를 나타냈다.
-
다중추론 질의응답 태스크는 하나의 문서만 필요한 기존의 단일추론 질의응답(Single-hop QA)을 넘어서 복잡한 추론을 요구하는 질문에 응답하는 것이 목표이다. IRQA에서는 검색 모델의 역할이 중요한 반면, 주목받고 있는 Dense Retrieval 모델 기반의 다중추론 질의응답 검색 모델은 찾기 어렵다. 본 논문에서는 검색분야에서 좋은 성능 보이고 있는 Dense Retrieval 모델의 다중추론을 위한 사전학습 방법을 제안하고 관련 한국어 데이터 셋에서 이전 방법과의 성능을 비교 측정하여 학습 방법의 유효성을 검증하고 있다. 이를 통해 지식 베이스, 엔터티 링킹, 개체명 인식모듈을 비롯한 다른 서브모듈을 사용하지 않고도 다중추론 Dense Retrieval 모델을 학습시킬 수 있음을 보였다.
-
레코드 연결의 대표적인 문제 중 하나는 레코드 간 비교 비용이 크다는 것이다. 이러한 문제를 해결하기 위해서는 레코드 연결에 필수적으로 블로킹 단계가 포함되어야 한다. 블로킹이란 같은 레코드일 가능성이 높은 대상들을 그룹화하여 비교연산을 수행할 대상을 선정하는 단계를 말한다. 블로킹의 목적은 최대한 결과의 recall을 희생시키지 않으면서 비교 연산 횟수 최소화하는 것이다. 메타 블로킹은 가중치 그래프를 블로킹에 적용함으로써 전통적인 블로킹 방식의 한계를 극복하고 더 좋은 성능을 나타내는 모델이다. 본 논문에서는 메타블로킹에서 주목하지 않았던 블록 생성방식을 데이터베이스 속성에 따라 블록을 생성하는 방식으로 개선하고 그에 맞는 가중치 계산식을 제안하였다. 또한 키 기반 블로킹, 메타블로킹, 속성인지 메타블로킹으로 생성된 블로킹 결과에 대한 성능을 측정 및 비교하였다.
-
주어진 정보를 자연어로 변환하는 작업은 대화 시스템의 핵심 모듈임에도 불구하고 학습 데이터의 제작 비용이 높아 공개된 데이터가 언어에 따라 부족하거나 없다. 이에 본 연구에서는 텍스트-투-그래프(text-to-graph) 작업인 관계 추출에 쓰이는 데이터의 입출력을 반대로 지정하여 그래프-투-텍스트(graph-to-text) 생성 작업에 이용하는 역 관계 추출(reverse relation extraction, RevRE) 기법을 소개한다. 이 기법은 학습 데이터의 양을 늘려 영어 그래프-투-텍스트 작업의 성능을 높이고 지식 묘사 데이터가 부재한 한국어에선 데이터를 재생성한다.
-
최근 자연어 처리 분야에서 사전 학습된 언어 모델은 다양한 응용 태스크에 적용되어 성능을 향상시켰다. 하지만 일반적인 말뭉치로 사전 학습된 언어 모델의 경우 중공업 분야처럼 전문적인 분야의 응용 태스크에서 좋은 성능을 나타내지 못한다. 때문에 본 논문에서는 이러한 문제점을 해결하기 위해 중공업 말뭉치를 이용한 RoBERTa 기반의 중공업 분야에 특화된 언어 모델 HeavyRoBERTa를 제안하고 이를 통해 중공업 말뭉치 상에서 Perplexity와 zero-shot 유의어 추출 태스크에서 성능을 개선시켰다.
-
KoBERT는 한국어 자연어처리 분야에서 우수한 성능과 확장성으로 인해 높은 위상을 가진다. 하지만 내부에서 이뤄지는 연산과 패턴에 대해선 아직까지 많은 부분이 소명되지 않은 채 사용되고 있다. 본 연구에서는 KoBERT의 핵심 요소인 self-attention의 패턴을 4가지로 분류하며 특수 토큰에 가중치가 집중되는 현상을 조명한다. 특수 토큰의 attention score를 층별로 추출해 변화 양상을 보이고, 해당 토큰의 역할을 attention 매커니즘과 연관지어 해석한다. 이를 뒷받침하기 위해 한국어 분류 작업에서의 실험을 수행하고 정량적 분석과 함께 특수 토큰이 갖는 의미론적 가치를 평가한다.
-
기계 독해는 주어진 지문 내에서 질문에 대한 답을 기계가 찾아 답하는 문제이다. 딥러닝에서는 여러 데이터셋을 학습시킬 때에 이전에 학습했던 데이터의 weight값이 점차 사라지고 사라진 데이터에 대해 테스트 하였을때 성능이 떨어진 결과를 보인다. 이를 과거에 학습시킨 데이터의 정보를 계속 가진 채로 새로운 데이터를 학습할 수 있는 Continual learning을 통해 해결할 수 있고, 본 논문에서는 이 방법을 MRC에 적용시켜 학습시킨 후 한국어 자연어처리 Task인 Korquad 1.0의 MRC dev set을 통해 성능을 측정하였다. 세 개의 데이터셋중에서 랜덤하게 5만개를 추출하여 10stage를 학습시킨 50K 모델에서 추가로 Continual Learning의 Learning without Forgetting를 사용하여 학습시킨 50K-LWF 모델이 F1 92.57, EM 80.14의 성능을 보였고, BERT 베이스라인 모델의 성능 F1 91.68, EM 79.92에 비교하였을 때 F1, EM 각 0.89, 0.22의 향상이 있었다.
-
자연어 처리의 다양한 task 들을 잘 수행하기 위해서 텍스트 내에서 적절한 용어를 골라내는 것은 중요하다. 텍스트에서 적절한 용어들을 자동으로 추출하기 위해 다양한 모델들을 학습시켜 용어의 특성을 잘 반영하는 n 그램을 추출할 수 있다. 본 연구에서는 기존에 존재하는 신경망 모델들을 조합하여 자동 용어 추출 성능을 개선할 수 있는 방법들을 제시하고 각각의 결과들을 비교한다.
-
의미역 결정은 문장 속에서 서술어와 그 논항의 관계를 파악하며, '누가, 무엇을, 어떻게, 왜' 등과 같은 의미역 관계를 찾아내는 자연어 처리 기법이다. 최근 수행되고 있는 의미역 결정 연구는 주로 말뭉치를 활용하여 딥러닝 학습을 하는 방식으로 연구가 이루어지고 있다. 최근 구글에서 개발한 사전 훈련된 Bidirectional Encoder Representations from Transformers (BERT) 모델이 다양한 자연어 처리 분야에서 상당히 높은 성능을 보이고 있다. 본 논문에서는 한국어 의미역 결정 성능 향상을 위해 한국어의 언어적 특징을 고려하며 사전 학습된 SNU KR-BERT를 사용하면서 한국어 의미역 결정 모델의 성능을 살펴보였다. 또한, 본 논문에서는 BERT 모델에서 과연 어떤 히든 레이어(hidden layer)에서 한국어 의미역 결정을 더 잘 수행하는지 알아보고자 하였다. 실험 결과 마지막 히든 레이어 임베딩을 활용하였을 때, 언어 모델의 성능은 66.4% 였다. 히든 레이어 별 언어 모델 성능을 비교한 결과, 마지막 4개의 히든 레이어를 이었을 때(concatenated), 언어 모델의 성능은 67.9% 이였으며, 11번째 히든 레이어를 사용했을 때는 68.1% 이였다. 즉, 마지막 히든 레이어를 선택했을 때보다 더 성능이 좋았다는 것을 알 수 있었다. 하지만 각 언어 모델 별 히트맵을 그려보았을 때는 마지막 히든 레이어 임베딩을 활용한 언어 모델이 더 정확히 의미역 판단을 한다는 것을 알 수 있었다.
-
현재 BERT와 같은 대용량의 코퍼스로부터 학습된 사전 학습 언어 모델을 자연어 응용 태스크에 적용하기 위해 일반적으로 널리 사용되는 방법은 Fine-tuning으로 각 응용 태스크에 적용 시 모델의 모든 파라미터를 조정하기 때문에 모든 파라미터를 조정하는데 필요한 시간적 비용과 함께 업데이트된 파라미터를 저장하기 위한 별도의 저장공간이 요구된다. 언어 모델이 커지면 커질수록 저장 공간의 비용이 증대됨에 따라 이러한 언어모델을 효율적으로 튜닝 할 수 있는 방법들이 연구되었다. 본 연구에서는 문장의 입력 임베딩에 연속적 태스크 특화 벡터인 prefix를 추가하여 해당 prefix와 관련된 파라미터만 튜닝하는 prefix-tuning을 한국어 네이버 감성 분석 데이터 셋에 적용 후 실험결과를 보인다.
-
정보 추출이 가능한 대화 상태 추적(Information-Extractive Dialog State Tracking)은 상담 목적에 맞는 대화를 시스템이 유도하여 사용자로 부터 정보를 추출할 수 있도록 대화 상태를 추적하는 연구로써, 사용자에게 적합한 상담이 이루어지도록 하기 위해 제안되었다. 이 논문에서는 상담 대화에서는 내담자의 발화는 상담자에 의해 유도되는 점을 착안하여 시스템이 대화를 주도하는 모델을 제안한다. 시스템 액션과 사용자 발화를 이용해 슬롯, 밸류로 구성된 대화 상태를 추적하고 이를 대화 정책에 반영하여 이어질 대화를 주도한다. 추적한 대화 상태와 기존 대화 상태를 비교하여 대화 시스템의 성능을 보인다.
-
기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.
-
개체명 인식은 주어진 문장 안의 고유한 의미가 있는 단어들을 인명, 지명, 단체명 등의 미리 정의된 개체의 범주로 분류하는 문제이다. 최근 연구에서는 딥 러닝, 대용량 언어 모델을 사용한 연구들이 활발하게 연구되어 높은 성능을 보이고 있다. 하지만 이러한 방법은 대용량 학습 말뭉치와 이를 처리할 수 있는 높은 연산 능력을 필요로 하며 모델의 실행 속도가 느려서 실용적으로 사용하기 어려운 문제가 있다. 본 논문에서는 얕은 기계 학습 기법을 적용한 ManiFL을 사용한 개체명 인식 시스템을 제안한다. 형태소의 음절, 품사 정보, 직전 형태소의 라벨만을 자질로 사용하여 실험하였다. 실험 결과 F1 score 기준 90.6%의 성능과 초당 974 문장을 처리하는 속도를 보였다.