Robust Sentence Boundary Detection for Korean SNS Documents

한국어 SNS 문서에 적합한 문장 경계 인식

  • Yeom, Haram (Dept. of Computer Engineering and Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University) ;
  • Kim, Jae-Hoon (Dept. of Computer Engineering and Interdisciplinary Major of Maritime AI Convergence, Korea Maritime & Ocean University)
  • 염하람 (한국해양대학교, 컴퓨터공학과 및 해양인공지능융합전공) ;
  • 김재훈 (한국해양대학교, 컴퓨터공학과 및 해양인공지능융합전공)
  • Published : 2021.10.14

Abstract

다양한 SNS 플랫폼이 등장하고, 이용자 수가 급증함에 따라 온라인에서 얻을 수 있는 정보의 활용 가치가 높아지고 있다. 문장은 자연어 처리 시스템의 기본적인 단위이므로 주어진 문서로부터 문장의 경계를 인식하는 작업이 필수적이다. 공개된 문장 경계 인식기는 SNS 문서에서 좋은 성능을 보이지 않는다. 본 논문에서는 문어체로 구성된 일반 문서뿐 아니라 SNS 문서에서 사용할 수 있는 문장 경계 인식기를 제안한다. 본 논문에서는 SNS 문서에 적용하기 위해 다음과 같은 두 가지를 개선한다. 1) 학습 말뭉치를 일반문서와 SNS 문서 두 영역으로 확장하고, 2) 이모티콘을 사용하는 SNS 문서의 특징을 반영하는 어절의 유형을 자질로 추가하여 성능을 개선한다. 실험을 통해서 추가된 자질의 기여도를 분석하고, 또한 기존의 한국어 문장 경계 인식기와 제안한 모델의 성능을 비교·분석하였다. 개선된 모델은 일반 문서에서 99.1%의 재현율을 보이며, SNS 문서에서 88.4%의 재현율을 보였다. 두 영역 모두에서 문장 경계 인식이 잘 이루어지는 것을 확인할 수 있었다.

Keywords