Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2018-0-01405). 또한 이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발).
관계추출(Relation Extraction)이란 주어진 문장에서 엔터티간의 관계를 예측하는 것을 목표로 하는 태스크이다. 이를 위해 문장 구조에 대한 이해와 더불어 두 엔터티간의 관계성 파악이 핵심이다. 기존의 관계추출 연구는 영어 데이터를 기반으로 발전되어 왔으며 그에 반해 한국어 관계 추출에 대한 연구는 부족하다. 이에 본 논문은 한국어 문장내의 엔터티 정보에 대한 위치 정보를 활용하여 관계를 예측할 수 있는 방법론을 제안하였으며 이를 다양한 한국어 사전학습 모델(KoBERT, HanBERT, KorBERT, KoELECTRA, KcELECTRA)과 mBERT를 적용하여 전반적인 성능 비교 및 분석 연구를 진행하였다. 실험 결과 본 논문에서 제안한 엔터티 위치 토큰을 사용하였을때의 모델이 기존 연구들에 비해 좋은 성능을 보였다.
본 연구는 과학기술정보통신부 및 정보통신기술기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2018-0-01405). 또한 이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발).