Korean Fake News Detection with User Graph

사용자 그래프 기반 한국어 가짜뉴스 판별 방법

  • Kang, MyungHoon (Department of Urban Sociology, University of Seoul) ;
  • Seo, Jaehyung (Department of Computer Science and Engineering, Korea University) ;
  • Lim, Heuiseok (Department of Computer Science and Engineering, Korea University)
  • 강명훈 (서울시립대학교 도시사회학과) ;
  • 서재형 (고려대학교 컴퓨터학과) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • Published : 2021.10.14

Abstract

최근 급격한 정보기술의 발달로 가짜뉴스가 사회문제로 대두되고 있다. 한국어 가짜뉴스 문제를 딥러닝으로 해결하기 위해서 기존의 연구들은 본문 기반의 가짜뉴스 탐지를 진행하였으며 최근에는 기사 본문 외의 보조적 정보를 활용하는 방법으로 연구가 진행되고 있다. 그러나 기존의 방식과 개선된 방식들 모두 적절한 가짜뉴스 탐지 방법을 제시하지 못하여 모델이 산출한 가짜뉴스 표현 벡터의 품질을 보장할 수 없었다. 또한 한국어 가짜뉴스 문제를 해결함에 있어서 적절한 공개 데이터셋 또한 제공되지 않았다. 따라서 본 논문은 한국어 가짜뉴스 탐지 문제에서 독자 반응정보를 추가하여 효과적인 학습을 할 수 있는 '사용자 그래프 기반 한국어 가짜뉴스 판별 방법'과 해당 모델이 적절히 학습할 수 있는 간이 데이터셋 구축 방법을 제안한다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업니다 (NRF-2021R1A6A1A03045425). 또한 이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구입니다 (No.2021-0-01081, AI 기반 실시간 온라인 마케팅 성과 예측 시스템).