Language Specific CTC Projection Layers on Wav2Vec2.0 for Multilingual ASR

다국어 음성인식을 위한 언어별 출력 계층 구조 Wav2Vec2.0

  • Lee, Won-Jun (Pohang University of Science and Technology, Computer Science and Engineering) ;
  • Lee, Geun-Bae (Pohang University of Science and Technology, Computer Science and Engineering)
  • 이원준 (포항공과대학교 컴퓨터공학과) ;
  • 이근배 (포항공과대학교 컴퓨터공학과)
  • Published : 2021.10.14

Abstract

다국어 음성인식은 단일언어 음성인식에 비해 높은 난이도를 보인다. 하나의 단일 모델로 다국어 음성인식을 수행하기 위해선 다양한 언어가 공유하는 음성적 특성을 모델이 학습할 수 있도록 하여 음성인식 성능을 향상시킬 수 있다. 본 연구는 딥러닝 음성인식 모델인 Wav2Vec2.0 구조를 변경하여 한국어와 영어 음성을 하나의 모델로 학습하는 방법을 제시한다. CTC(Connectionist Temporal Classification) 손실함수를 이용하는 Wav2Vec2.0 모델의 구조에서 각 언어마다 별도의 CTC 출력 계층을 두고 각 언어별 사전(Lexicon)을 적용하여 음성 입력을 다른 언어로 혼동되는 경우를 원천적으로 방지한다. 제시한 Wav2Vec2.0 구조를 사용하여 한국어와 영어를 잘못 분류하여 음성인식률이 낮아지는 문제를 해결하고 더불어 제시된 한국어 음성 데이터셋(KsponSpeech)에서 한국어와 영어를 동시에 학습한 모델이 한국어만을 이용한 모델보다 향상된 음성 인식률을 보임을 확인하였다. 마지막으로 Prefix 디코딩을 활용하여 언어모델을 이용한 음성인식 성능 개선을 수행하였다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20015007) 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행되었음(IITP-2021-2020-0-01789)