2014.10a
-
대화형 개인 비서 시스템은 사람의 음성을 통해 인식된 음성 인식 결과를 분석하여 사용자에게 제공할 정보가 무엇인지 파악한 후, 정보가 포함되어 있는 앱(app)을 실행시켜 사용자가 원하는 정보를 제공하는 시스템이다. 이러한 대화형 개인 비서 시스템의 가장 중요한 모듈 중 하나는 음성 대화 인식 모듈(SLU: Spoken Language Understanding)이며, 발화의 "의미 분석"을 수행하는 모듈이다. 본 논문은 음성 인식결과가 잘못되어 의미 분석이 실패하는 것을 방지하기 위하여 음성 인식 결과에서 잘못 인식된 명사, 개체명 단어를 보정 시켜주는 미등록어(OOV:Out-of-vocabulary) 처리 모듈을 제안한다. 제안하는 미등록어 처리 모듈은 미등록어 탐색 모듈과 미등록어 변환 모듈로 구성되며, 미등록어 탐색 모듈을 통해 사용자의 발화에서 미등록어를 분류하고, 미등록어 변환 모듈을 통해 미등록어를 사전에 존재하는 유사한 단어로 변환하는 방법을 제안한다. 제안한 방법을 적용하였을 때의 실험 결과, 전체 미등록어 중 최대 52.5%가 올바르게 수정되었으며, 음성 인식 결과를 그대로 사용했을 경우 "원본 문장"과 문장 단위 67.6%의 일치율을 보인 것에 반해 미등록어 처리 모듈을 적용했을 때 17.4% 개선된 최대 85%의 문장 단위 일치율을 보였다.
-
본 논문에서는 오인식된 고유명사의 후처리 방법을 제안한다. 최근 음성 인식 후처리를 위해 통계적 방법을 이용하는 연구가 활발히 진행되어 왔다. 하지만 고유명사의 음성 인식 후처리는 대용량의 데이터 수집에 많은 비용이 필요하므로 통계적 방법을 효과적으로 적용하기 어렵다. 따라서 본 논문에서는 발음 변이 현상을 고려하여 편집 거리 알고리즘을 개선한 기법을 제안한다. 본 논문에서는 고유명사의 음성 오인식 교정 성능을 검증하였고, 그 결과 P@3의 결과가 비교 모델보다 55%의 성능 향상률을 보였다.
-
본 연구에서는 한국어와 한국수화 간의 병렬 코퍼스 제작과 함께 이에 따른 문제를 다룬다. 본 연구에서는 병렬 코퍼스를 효율적으로 제작하기 위해 키넥트와 립모션을 이용하였고, 이의 성능을 검증하기 위해 기존 연구에서 제시하고 있는 장갑을 통한 동작 인식 및 수집 방법과 본 연구에서 제시하고 있는 수집 방법을 비교하였으며, 비교 결과 장갑을 통해 수집한 결과와 유의미하게 차이가 나지 않음을 확인하였다. 이는 본 연구의 동작 수집 방식이 상대적으로 고비용인 장갑 수집 방식과 비교하여 경쟁력이 있음을 시사하고 있으며, 특히 보편적인 자료 수집 방식을 사용하는 특징까지 가지고 있어서 동시적으로 자료를 수집할 수 있어 규모가 있는 병렬 코퍼스 구축을 더욱 효율적으로 진행할 수 있을 것으로 기대된다.
-
한국어 맞춤법 검사기는 전자화된 한국어 텍스트에 나타난 오류어를 검색하여 이를 교정할 대치어를 제시하는 시스템이다. 이때 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 정확하지만, 문맥을 고려하였을 때 오류가 되는 유형으로 교정 난도가 매우 높다. 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉜다. 이때 규칙을 이용한 방법은 그 특성상 정확도가 매우 높지만, 반대로 재현율이 매우 낮다. 본 논문에서는 본 연구진이 기존에 연구하였던 규칙을 일반화하는 방식에 추가로 조건부 확률을 이용한 통계 방식을 결합하여 정확도를 유지하면서 재현율을 향상시키는 방법을 제안한다.
-
한국어 문장의 의미 분석을 위해서는 어휘 의미들의 상의어, 하의어, 반의어, 유의어 등의 의미관계뿐만 아니라 서술어의 논항이 가지는 의미제약 정보 및 의미역, 서술어와 부사 명사와 부사, 부사와 부사와의 유의미한 결합 정보 등의 다양한 의미 정보가 필요하다. 한국어 어휘지도는 울산대 한국어처리연구실에서 2002년부터 현재까지 구축해 왔으며, 이제 구축된 결과물을 API와 함께 제공한다. 본 논문은 한국어 어휘지도의 대략적인 구조 및 API 등을 소개한다.
-
비구조 텍스트로부터 지식을 추출하여 온톨로지 기반 지식베이스를 구축하는 연구가 최근 국내외로 다양하게 진행되고 있다. 이러한 목적을 달성하기 위해서는 자연어 텍스트에서 나타난 지식요소들의 다양한 속성들을 표현할 수 있는 온톨로지를 필요로 한다. 디비피디아 역시 위키피디아의 지식들을 표현하기 위하여 디비피디아 온톨로지를 사용한다. 그러나 디비피디아 온톨로지는 위키피디아의 인포박스에 기반한 온톨로지로서, 요약된 정보를 설명하기에는 적합할 수 있으나 자연어 텍스트로 표현된 다양한 지식표현을 충분히 커버하는 것은 보증되지 않는다. 본 논문에서는 자연어 텍스트로 쓰여진 지식을 디비피디아 온톨로지가 충분히 표현할 수 있는지를 검토하고, 또한 그 불완전성을 프레임넷이 어느정도까지 보완할 수 있는지를 살핀다. 이를 통해 한국어 텍스트로부터 지식베이스를 자동구축하는 온톨로지 인스턴스 자동생성 연구의 방향으로서 디비피디아 온톨로지와 프레임넷의 효용성을 전망한다.
-
본 논문은, 현존하는 영어 FrameNet 데이터를 기반으로 하여, FrameNet에 대한 전문 지식이 없는 번역가들을 통해 수행할 수 있는 한국어 FrameNet의 수동 구축 개발 과정을 제시한다. 우리 연구팀은 실제로, NLTK가 제공하는 영어 FrameNet 버전 1.5의 Full Text를 이루고 있는 5,945개의 문장들 중에서, Frame 데이터를 가진 4,025개의 문장들을 추출해내어, 번역가들에 의해 한국어로 수동번역 함으로써, 한국어 FrameNet 구축 개발을 향한 의미 있는 초석을 마련하였으며, 제시한 방법의 실효성을 입증하는 연구결과들을 웹에 공개하기도 하였다.
-
Extending Korean PropBank for Korean Semantic Role Labeling and Applying Domain Adaptation Technique한국어 의미역 결정(Semantic Role Labeling)은 주로 기계 학습에 의해 이루어지며 많은 말뭉치 자원을 필요로 한다. 그러나 한국어 의미역 결정 시스템에서 사용되는 Korean PropBank는 의미역 부착 말뭉치와 동사 격틀이 영어 PropBank의 1/8 수준에 불과하다. 따라서 본 논문에서는 한국어 의미역 결정 시스템을 위해 의미역 부착 말뭉치와 동사 격틀을 확장하여 Korean PropBank를 확장 시키고자 한다. 의미역 부착 말뭉치를 만드는 일은 많은 자원과 시간이 소비되는 작업이다. 본 논문에서는 도메인 적응 기술을 적용해보고 기존의 학습 데이터를 활용하여, 적은 양의 새로운 학습 말뭉치만을 가지고 성능 하락을 최소화 할 수 있는지 실험을 통해 알아보고자 한다.
-
의미역 결정 (Semantic Role Labeling) 은 문장 내의 술어와 이들의 논항들의 의미 관계를 결정하는 과정을 뜻한다. 의미역 결정을 하기 위해서는 대량의 말뭉치와 다양한 언어 자원이 필요한데, 많은 경우에 PropBank 말뭉치가 사용된다. 한국어 PropBank는 다른 언어에 비해 자료가 적어 그것만을 가지고 의미역 결정을 하기에 적절하지 않다. 또한 한국어 의미 분석을 위해서 지금까지는 세종 말뭉치나 의미역이 활용되어 오기도 하였다. 따라서 한국어 의미역 결정에서는 한국어 PropBank 뿐만 아닌 세종 의미역 표지 부착 말뭉치의 구축 역시 요구되는데 말뭉치 구축 작업이 수동 부착 작업이기 때문에 많은 시간과 비용이 소모된다. 본 논문에서는 이러한 문제점을 해결하기 위해 이미 구축되어 있는 한국어 PropBank 의미역을 세종 의미역으로 자동 변환하는 방법을 제시한다. 자동 변환을 위해서는 먼저 PropBank 의미역의 변환 후보 의미역을 구하여 이들 중에서 가장 적절한 의미역으로 변환한다. 자동 변환을 위해서는 크게 3 가지 특징을 활용하는데, 첫째는 변환 대상 논항의 의미 유사성이고, 둘째는 논항과 의미 관계를 가지고 있는 술어, 그리고 셋째는 논항과 결합되어 있는 조사이다. 이 세 가지 특징을 사용하여 정확한 의미역 변환을 위해 술어, 조사의 의미역 결합 확률 테이블을 구축한다.
-
기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.
-
본 논문은 Stanford의 다 단계 시브(Multi-pass Sieve) 상호참조해결을 기반으로, 한국어에 적용한 한국어 상호참조해결(선행 연구)을 이용하여 한정 명사구에 대한 처리와 확장된 대명사 상호참조해결 방법을 제안한다. 지시 관형사와 명사가 결합하여 형성되는 한정 명사구는 일반 멘션(mention)의 특징과 대명사 속성을 한 번에 갖게 된다. 이렇게 되면, 한정 명사구는 모든 시브(sieve)에서 상호참조를 진행할 수 있게 된다. 따라서 이런 특징으로 한정 명사구를 어떤 관점(멘션 또는 대명사)에서 상호참조해결하는 것이 좋은지 보인다. 또한 이런 한정 명사구의 대명사 속성을 이용하기 위해 문법적 의미적 규칙을 적용할 것을 제안한다. 그 결과, 본 논문의 선행 연구인 한국어 상호참조해결에 비하여 CoNLL 값이 약 0.8%만큼 향상되어 61.45%를 측정하였다.
-
한국어 문장의 경우 문맥상 추론이 가능하다면 용언의 격이 생략되는 현상 즉 무형대용어 (zero anaphora) 현상이 흔히 발생한다. 무형대용어를 채울 수 있는 선행어 (명사구)를 찾는 문제는 대용어 해결 (anaphora resolution) 문제와 같은 성격의 문제이다. 이러한 생략현상은 백과사전이나 위키피디아 등 백과사전류 문서에서도 자주 발생한다. 특히 선행어로 표제어가 가능한 경우 무형대용어 현상이 빈번히 발생한다. 백과사전류 문서는 질의응답 (QA) 시스템의 정답 추출 정보원으로 많이 이용되는데 생략된 표제어의 복원이 없다면 유용한 정보를 제공하기 어렵다. 본 논문에서는 생략된 표제어 복원을 위해 무형대용어의 해결을 기반으로 하는 시스템을 제안한다.
-
문장을 대상으로 특정 응용 분야에 필요한 요소를 자동으로 추출하는 정보 추출(information extraction) 과제는 자연어 처리 및 텍스트 마이닝의 중요한 과제 중 하나이다. 특히 추출해야할 요소가 한 단어가 아닌 여러 단어로 구성된 경우 추출 과정에서 고려되어야할 부분이 크게 증가한다. 또한 추출 대상이 되는 요소의 유형 또한 여러 가지인데, 감정 분석 분야를 예로 들면 화자, 객체, 속성 등 여러 유형의 요소에 대한 분석이 필요하며, 비교 마이닝 분야를 예로 들면 비교 주체, 비교 상대, 비교 술어 등의 요소에 대한 분석이 필요하다. 본 논문에서는 각각 여러 단어로 구성될 수 있는 여러 유형의 요소를 동시에 추출하는 방법을 제안한다. 제안 방법은 구현이 매우 간단하다는 장점을 가지는데, 필요한 과정은 형태소 부착과 변환 기반 학습(transformation-based learning) 두 가지이며, 파싱 혹은 청킹 같은 별도의 전처리 과정도 거치지 않는다. 평가를 위해 제안 방법을 적용하여 비교 마이닝을 수행하였는데, 비교 문장으로부터 각자 여러 단어로 구성될 수 있는 세 가지 유형의 비교 요소를 자동 추출하였으며, 실험 결과 정확도 84.33%의 우수한 성능을 산출하였다.
-
본 논문에서는 한국어 구문 분석을 위해 3차 의존 파싱 방법을 적용한 성능 결과를 제시한다. 3차 의존 파싱에서는 조부모 (grandparent) 노드 정보까지 참조함으로써 2차 자질의 한계를 넘어 보다 복잡하고 다양한 자질을 고려할 수 있다. 실험 결과 3차 의존 파싱은 기존의 2차 한국어 의존 파싱의 성능을 향상시켰다.
-
한국어 의존 파싱은 문장 내 단어의 지배소를 찾음으로써 문장의 구조적 중의성을 해소하는 작업이다. 지배소 후위 원칙은 단어의 지배소는 자기 자신보다 뒤에 위치한다는 원리로, 한국어 구문분석을 위하여 널리 사용되는 원리이다. 본 연구에서는 한국어 지배소 후위 원리를 의존 파싱을 위한 트랜지션 시스템의 제약 조건으로 적용하여 2가지 트랜지션 시스템을 제안한다. 제안 모델은 기존 트랜지션 시스템 중 널리 사용되는 arc-standard와 arc-eager 알고리즘에 지배소 후위 제약을 적용한 포워드(forward) 기반 트랜지션 시스템과, 트랜지션 시스템의 단점인 에러 전파(error propagation)를 완화시키기 위하여 arc-eager 알고리즘의 lazy-reduce 방식을 적용한 백워드(backward) 기반 트랜지션 시스템이다. 실험은 세종 구구조 말뭉치를 의존구조로 변환하여 실험하였고, 실험 결과 백워드 기반 트랜지션 시스템이 포워드 방식보다 우수한 성능을 보였다. 기존 연구와의 비교를 위하여 기존 연구를 조사하였지만 세부 실험 환경이 서로 달라서 직접적인 비교는 어려웠다. 제안하는 시스템의 최고 성능은 UAS 92.85%, LAS 90.82% 이다.
-
일반적인 기계학습 기반의 자연어처리 모듈의 개발에서 자질의 설계와 최적의 자질 조합을 구하는 작업은 많은 시간과 노력이 필요하다. 본 논문에서는 딥 러닝 기술을 전이 기반 방식의 한국어 의존 구문 분석에 적용하여 자질 튜닝 작업에 들어가는 많은 시간과 노력을 줄일 수 있음을 보인다. 또한 딥 러닝을 적용하기 위해 필요한 다양한 단어 표현(word embedding) 모델을 적용하여 최적의 단어 표현 모델을 알아내고, 성능 향상을 위해 최근에 개발된 Drop-out 및 Rectified Linear hidden Unit(ReLU) 기술을 적용한다. 실험결과, 기존 한국어 의존 구문 분석 연구들보다 높은 UAS 90.37%의 성능을 보였다.
-
본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.
-
URI spotting (탐지) 문제는 텍스트에 있는 단어열 중에서 URI로 대표되는 개체(entity)에 해당되는 것을 탐지하는 것이다. 이 문제는 두 개의 작은 문제를 순차적으로 해결하는 과제이다. 즉, 첫째는 어느 단어열이 URI에 해당하는 개체인가를 인식하는 것이고, 둘째는 개체 중의성 해소 문제로서 파악된 개체가 복수의 URI에 해당할 수 있는 의미적 모호성이 있을 때 그 URI중 하나를 선택하여 모호성을 해소하는 것이다. 이 논문은 디비피디아 URI를 대상으로 한다. URI 탐지 문제는 개체명 인식 문제와 비슷하나, URI(예를 들어 디비피디아 URI, 즉 Wikipedia 등재어)에 매핑될 수 있는 개체로 한정되므로 일반적인 개체명 인식 문제에서 단어열의 품사열이 기계학습의 자질로 들어가는 방법론과는 다른 자질을 사용할 수 있다. 이 논문에서는 한국어 텍스트를 대상으로 한국어 디비피디아 URI 탐지문제로서 SVM을 이용한 개체경계 인식 방법을 제시하여, 일반적 개체명 인식에서 나타나는 품사태거의 오류파급효과를 없애고자 한다. 또한 개체중의성 해소 문제는 의미모호성이 주변 문장들의 토픽에 따라 달라지므로, LDA를 활용하며 이를 영어 디비피디아 URI탐지에서 쓰인 방법들과 비교한다.
-
URI 중의성 해소 문제는 주어진 문서 내의 특정 단어에 연결 가능한 여러 URI가 주어졌을 때 진짜 URI 하나를 선택해내는 문제라고 할 수 있다. 이 문제는 다양한 해결법들이 존재할 수 있지만 기존에 연구된 문서의 문맥 간 유사도를 이용하여 해결하는 방법을 본 논문에서는 사용한다. 문맥 간 유사도를 이용하는 방법은 영어 디비피디아 URI spotting에서 TF*ICF방법으로 이미 연구가 되어있다. 본 논문에서는 Latent Dirichlet Allocation을 이용하여 URI 중의성 해소 문제를 다룰 것이며 그 범위를 한국어 디비피디아로 한정한다. 새로 제안하는 방법이 URI 중의성 해소 문제를 얼마나 잘 해결하며, 기존의 연구와 비교하여 얼마나 향상될 수 있는지를 분석한다. 또한 기존의 방법과 새로 제안한 방법 각자가 고유하게 풀 수 있는 문제가 존재함을 보이고, 두 방법을 병합하였을 때 보다 높은 성능에 도달할 수 있음을 전망한다.
-
서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.
-
커뮤니티 질의응답 시스템(cQA)은 기존에 구축된 '질문-답' 쌍에서 사용자의 질문과 비교하여 유사도 순으로 결과를 보여주는 시스템이다. 본 논문에서는 '국립국어원'의 질의응답 게시판에 적용 가능한 '커뮤니티 질의응답 시스템'을 소개하고, 국립국어원 질의응답 게시판의 질문 특성을 분석하여 cQA의 성능 향상을 위한 자질 추출 방법을 제시한다.
-
감성은 콘텐츠 구매과정에서 결정적인 요소로 작용하며, 영화 콘텐츠의 탐색/소비 과정에서도 콘텐츠 소비의 새로운 기준이다. 그러므로 본 연구에서는 콘텐츠의 내용과 감성을 반영하기 위한 감성분류체계를 제안하였다. 제안한 감성분류체계를 기반으로 사용자의 취향과 감성에 기반하여 콘텐츠를 분류/추천하여 개인화된 편성을 제공하는 것을 "감성 큐레이션"이라 정의하고, 이를 위한 감성기반 큐레이션 방법론을 기술하고 실험을 통해 추천 효과를 입증하였다. 큐레이션은 기존의 개인화 추천과 달리 고객 취향뿐만이 아닌, 신선함, 다양성을 제공할 수 있어야 하며, 상용 큐레이션 서비스에서는 실제 시청으로 연결되는 비율이 중요하다. 본 연구에서는 큐레이션 성능 평가를 위해 성향인지도, 신선도, 다양성에 기반한 만족도 설문조사 방법과 함께, 콘텐츠의 전체 시청률 대비 큐레이션을 통해 추천되어 증가된 시청률의 확대 비율인 Lift score 라는 새로운 평가 방법을 제안하여 그 효용성을 증명하였다.
-
본 논문은 위키피디아로부터 한국어-영어 간 병렬 문장을 추출하기 위해 이질적 언어 자원의 순차적 매칭을 적용한 유사도 계산 방법을 제안한다. 선행 연구에서는 병렬 문장 추출을 위해 언어 자원별로 유사도를 계산하여 선형 결합하였고, 토픽모델을 이용해 추정한 단어의 토픽 분포를 유사도 계산에 추가로 이용함으로써 병렬 문장 추출 성능을 향상시켰다. 하지만, 이는 언어 자원들이 독립적으로 사용되어 각 언어자원이 가지는 오류가 문장 간 유사도 계산에 반영되는 문제와 관련이 적은 단어 간의 분포가 유사도 계산에 반영되는 문제가 있다. 본 논문에서는 이질적인 언어 자원들을 이용해 순차적으로 단어를 매칭함으로써 언어 자원들의 독립적인 사용으로 각 자원의 오류가 유사도에 반영되는 문제를 해결하였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용함으로써 관련이 적은 단어의 분포가 반영되는 문제를 해결하였다. 실험을 통해, 언어 자원들을 이용해 순차적으로 매칭한 유사도 계산 방법은 선행 연구에 비해 F1-score 48.4%에서 51.3%로 향상된 성능을 보였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용한 방법은 약 10%에서 34.1%로 향상된 성능을 얻었다. 마지막으로, 제안한 유사도 방법들을 결합함으로써 선행연구의 51.6%에서 2.7%가 향상된 54.3%의 성능을 얻었다.
-
파이썬은 간결한 아름다움을 추구하는 동시에 강력한 스트링 연산이 가능한 언어다. KoNLPy는 그러한 특장점을 살려, 파이썬으로 한국어 정보처리를 할 수 있게 하는 패키지이다. 꼬꼬마, 한나눔, MeCab-ko 등 국내외에서 개발된 여러 형태소 분석기를 포함하고, 자연어처리에 필요한 각종 사전, 말뭉치, 도구 및 다양한 튜토리얼을 포함하여 누구나 손쉽게 한국어 분석을 할 수 있도록 만들었다.
-
시맨틱웹의 구현 도구로써 온톨로지가 있다. 온톨로지는 지식개념의 의미적 연결을 하는데 사용된다. 영어 위키피디아를 토대로 한 영어 DBpedia 온톨로지는 스키마(owl파일 형태)와 인스턴스 모두 잘 구축이 되어있다. 그리고 영어 DBpedia의 각 Class에 한글은 레이블의 형태로 달려있다. 하지만 한글 레이블을 가지고 있지 않은 영어 DBpedia의 Class들이 절반이 넘기 때문에 한글 Class들만으로 된 스키마 구축은 의미가 있다. 한글 Class들로 만들어진 스키마가 있다면 두 한글 온톨로지 사이의 클래스 매칭 알고리즘을 위한 실험이나 한글 온톨로지 자동 증강 알고리즘의 연구 등에 유용하게 쓰일 수 있을 것이다. 본 논문에서 구축한 한글 DBpedia 온톨로지 스키마는 영문 DBpedia 온톨로지의 계층구조와 한글 클래스와 영문 클래스 사이의 매핑정보를 바탕으로 구축되었다. 그리고 기존에 제공되는 한글 DBpedia 온톨로지 클래스의 영어매핑 정보가 있는 한글 프로퍼티와 영어매핑 정보가 없는 한글 프로퍼티를 모두 한글 클래스의 프로퍼티로 입력해주었다.
-
본 논문은 한국어 문장의 서술어와 공기관계에 있는 논항들의 의미관계를 결정하는 데에 목적이 있다. 본 논문에서는 의미역을 결정하기 위해 기존에 구축된 세종구구조말뭉치를 모단위로 하여 표준국어대사전의 문형을 적용하였다. 또한 의미역을 결정하기 위해 기존 언어학 이론에서의 의미역을 정리하여 광범위한 의미역 판별기준을 세우고 이를 실제 말뭉치에 적용함으로써 자연언어적 처리가 가능하도록 정리하였다.
-
자연어처리 분야에서 관계 추출은 중요한 연구 분야이다. 많은 관계 추출 연구는 지도 학습 방법을 사용하지만 정답을 구축하는 비용이 큰 문제가 있다. 본 논문에서는 distant supervision을 이용하여 데이터를 구축하고, suffix tree를 이용한 규칙기반 관계 추출 모델을 제안한다. Suffix tree를 이용한 관계추출의 Macro F1-measure는 84.05%로 관계 추출에서 사용이 가능함을 보였다.
-
사용자가 질의한 내용에 대한 결과를 찾기 위해 본 논문은 DBPedia에서 제공해주는 트리플 구조를 TDB에 저장하고, 사용자 질의 문장에서 트리플을 찾은 뒤 해당 문장의 규칙을 추론하여 SPARQL 쿼리를 생성한 뒤, 마지막으로 Fuseki를 이용해 결과를 출력하는 Q&A시스템을 제안한다. SPARQL 쿼리를 생성함에 있어 질의의 정답을 찾아내는 타겟이 있다는 점과 한국어의 조사와 부사부분에서 쿼리가 변형될 수 있다는 점을 통해 유동적인 쿼리를 생성한다. 그리고 DBPedia에 없는 단어가 질의에서 나타날 수 있기 때문에 이를 정제해주는 작업 또한 필요하다. 한국어는 어절순서가 고정적이지 않다는 점, 조사, 부사에 의해 문장의 의미가 변형되는 또 다른 부분을 파악하여 앞으로 시스템을 개발함에 있어 정확률을 상승시킬 예정이다.
-
본 논문은 사전 데이터를 바탕으로 한글 뜻풀이를 하여 한글 단어를 맞추는 앱 어플리케이션 '한글아 놀자'의 설계에 대하여 서술한다. '한글아 놀자'는 게임을 통하여 사용자가 쉽게 한글 단어를 학습 할 수 있도록 만들어진 앱 어플리케이션으로 기존의 유아를 대상으로 하는 유사한 어플리케이션들과 달리 특정 층을 대상으로 잡지 않아, 일반인도 흥미를 가지고 학습 할 수 있고 따라서 다양한 사용자 층을 확보 하여 한글 학습의 접근성을 향상 시킬 수 있도록 하였다. 또한 어플리케이션의 중요한 특징 중 하나로 게임을 진행 하며 잘 몰랐던 단어들은 오답 노트를 통하여 피드백을 해주고, 사용자의 선택에 따라 자신의 단어장에 추가하여 언제든지 복습해 볼 수 있도록 하여 지속적인 학습이 가능하도록 하였다. 그 외에도 '한글아 놀자'는 사전 데이터를 가지고 동작하기 때문에 일상생활에서 잘 쓰이지 않는 단어, 옛말, 사자성어등도 학습이 가능하도록 하여 한글의 활용성을 높이고 사용자가 접하는 단어의 다양성을 높이는데 주력하였다.
-
자연어 처리를 이용한 다양한 응용 시스템에서 지식베이스는 중요한 요소이다. 지식베이스의 대표적인 예로 YAGO와 디비피디아 등이 있다. YAGO는 고성능의 지식베이스지만 한국어를 지원하지 않는다는 문제점이 있다. 그리고 디비피디아는 한국어를 지원하지만 트리플의 속성이 세분화되어 있어서 사용이 어렵다. 본 논문에서는 YAGO와 디비피디아의 트리플을 매칭하여 디비피디아 트리플의 속성을 YAGO에서 사용하는 관계명으로 변환하고 MEM을 이용해 매칭되지 않은 트리플의 속성을 자동으로 분류하는 시스템을 제안한다. 제안한 방식으로 실험한 결과 F1-Measure 79.04%의 성능을 보였다.
-
음성인식 결과는 다수의 후보를 생성할 수 있다. 해당 후보들은 각각 음향모델 값과 언어모델 값을 결합한 형태의 통합 정보를 갖고 있다. 여기서 언어모델 값을 다시 계산하여 성능을 향상하는 접근 방법이 일반적인 음성인식 성능개선 방법 중 하나이며 n-gram 기반 리스코링 접근 방법이 사용되어 왔다. 본 논문은 적절한 성능 개선을 위하여, 대용량 n-gram 모델의 활용 문제점을 고려한 문장 구성 어휘의 의존 관계 분석 접근 방법 및 일정 거리 어휘쌍들의 상호정보량 값을 이용한 접근 방법을 검토한다.
-
본 논문에서는 한국어 자연언어처리 결과물들을 통일된 형식으로 표준화하기 위해서 NIF를 적용한 내용을 다룬다. 한국어 자연언어처리에 NIF 온톨로지를 적용한 이유와 적용과정에서 야기된 문제점들을 논의한다. 한국어 NLP2RDF 구축과정에서 한국어 자연언어처리에 필요한 새로운 클래스와 프로퍼티들을 추가로 정의하여 NIF 온톨로지를 변형 적용하였다.
-
본 연구는 현재 개발 진행 중인 다국어 자동통번역시스템에서 발생하는 한국어 과거시제 선어말어미 '-었'의 생성문제를 다루었다. 한국어 과거시제 선어말 어미는 영어와 독일어의 경우에는 대부분 단순과거형으로 생성될 수 있으나, 프랑스어의 경우에는 복합과거의 형식과 반과거의 형식 중 하나를 선택해야 하는 문제가 발생한다. 본 연구에서는 이러한 문제의 해결을 위해 한-프랑스어 코퍼스 분석을 통해 복합과거와 반과거의 올바른 생성을 위한 네 가지의 자질을 선정하였고, 이에 SVM 알고리즘을 적용한 분류기를 구현하였다. 현재까지의 실험결과는 84.45%의 정확률이며 현재 성능개선을 위한 연구가 계속 진행 중이다.
-
다양한 언론사로부터 기사를 제공받아 서비스하는 인터넷 포털의 뉴스에서는 수많은 중복 기사가 실시간으로 등록된다. 이로 인하여 인터넷 포털에서 관심 있는 주제의 기사를 검색하여 찾아보려는 경우 검색키워드를 포함한 기사의 수가 지나치게 많아 원하는 정보를 적절하게 얻기 어렵다. 본 논문에서는 이러한 문제점을 해결하기 위해서 검색 기사 중 유사한 문서를 군집화하고 군집에 대한 다중문서요약을 사용자에게 제시하여 검색된 기사를 효율적으로 활용할 수 있는 방법을 제시한다. 다중문서 요약에서는 뉴스 기사에 적합한 단어 가중치인 분별도(discriminability)를 제안하여 사용하여 군집화된 기사로부터 유사 문장을 군집한다. 시스템에서는 군집된 기사의 대표 문장 군집에서 대표 문장, 즉 키워드에 대한 주제별 기사의 요약문을 결과로 제시하여, 효율적인 뉴스 검색을 지원한다.
-
본 논문에서는 외국인을 대상으로 보다 쉽고 재미있게 우리말을 배울 수 있도록 도와주는 교육용 앱 소프트웨어를 제안한다. 이 앱에서는 사용자가 입력한 문장을 형태소 분석하여 용언 및 서술어를 중심으로 어형 및 문형의 올바른 사용법을 제시함으로써, 우리말의 용법을 쉽게 이해할 수 있도록 한다. 또한 제안한 방법을 음성인식을 활용한 스마트폰 앱으로 개발함으로써 사용자의 접근성 및 편의성을 높였다.
-
특허 분석에서 관심 있는 기술명, 서비스명, 제품명을 인식하도록 기계학습 기법을 사용해 개체명 인식기의 성능을 평가해 보았다. 개체인식을 위한 엔진은 스탠포드 대학의 NER과 CRF++을 사용하였다. 그 결과 F1값인 0.5612로 나타났다. 이것은 인명, 지역명, 조직명 개체를 인식하는 다른 연구에서 나타난 0.7857보다 0.2245 떨어지는 결과이다. 특허 개체명 인식에 대한 자질값 선정과 사전처리에 대한 더 많은 연구가 필요하다.
-
인터넷과 스마트기기 발전으로 정보에 대한 접근이 쉬워짐에 따라 다른 문서에 대한 표절 행위가 쉽게 이루어지고 있습니다. 그리고 표절 검사를 수행하는데 시간적, 인적, 공간적 낭비가 이루어진다. 이러한 낭비와 표절에 대한 경각심을 일으키고자 본 논문에서는 표절 검사 속도 향상을 위한 표절 원본 문서 추출(source retrieval)과 추출된 문서의 단어를 이용하는 표절 위치 탐색(text alignment)기법을 이용하여 표절구간을 찾는 방법을 제안한다. 본 논문의 표절 원본 문서 추출 및 표절 위치 탐색 기법을 활용하면 표절 검사의 시간과 정확도가 향상될 것으로 기대한다.
-
본 논문에서는 사전자원에 기반한 한국어 워드넷(Open Korean WordNet: KWN)의 반자동 구축 방법을 제안한다. 제안한 방법에서는 각 전문분야별로 분류된 영어-한국어 대역사전, 일본어-한국어 대역사전을 이용하여 영어 워드넷(Princeton WordNet 3.0)과 일본어 워드넷(Japanese WordNet 1.1)의 어휘를 번역하였다. 그리고 번역 결과의 애매성을 해소하기 위하여, (1)영어와 일본어에 대한 한국어 대역어의 중복 여부, (2)사전의 분야 정보와 워드넷의 계층구조를 고려하였다. 제안한 방법으로 117,659 개의 워드넷 synset 중 63,221 개(약 54 %)의 synset에 대한 자동번역을 수행하여 한국어 워드넷을 구축하였다. 그리고 워드넷 synset의 정의문은 한국어 사전의 정의문을 참조하여 한글화 할 수 있도록 하고, 이 과정을 지원하기 위한 정의문 추천 알고리즘을 제안한다. 제안한 방법에 기반하여 전문가들이 상호 협력하여 한국어 워드넷을 구축할 수 있는 시스템을 개발한다.
-
한국어의 경우 동사와 형용사는 문장에서의 역할이 명사와는 다르며, 동사의 의미는 동반하는 논항의 의미적, 통사적 특성에 따라 분화되므로 근본적으로 논항과 함께 고려되어야 한다. 논항이라 함은 명제를 표시하는 방법 중 하나로 관계와 논항으로 표시하는 방법이 있는데, 여기서 관계는 문장의 동사, 형용사 또는 다른 관계항에 해당하며, 논항은 특정시간, 장소, 사람, 대상을 지칭하는 것으로서 흔히 명사에 해당한다. 본 논문에서는 동사간의 의미 유사도를 추정하기 위하여, 수동으로 구축한 의미역 표지부착 말뭉치인 한국어 PropBank의 의미역인 ARG1에 해당하는 명사들을 동사의 주요 논항으로 보았다. 그리고 이들 주요 논항간의 의미 거리를 '코어넷 한국어 명사편'에서 계산하여 동사별로 이를 합산함으로써 이 계산한 값을 동사의 유사도로 추정하였다. 또한 본 연구에서 제안된 방식과 '코어넷 한국어 동사편'에서 동사간의 거리를 계산한 값 사이의 상관계수를 구하여 보았다.
-
국립국어원의 온라인 가나다 서비스는 한국어에 대한 다양한 질문과 정확한 답변을 제공한다. 만일 새롭게 등록되는 질문에 대해 유사한 질문을 자동으로 찾을 수 있다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 국립국어원 질의응답게시판의 특성을 분석하여 질문의 주제를 6가지로 분류하고, 주제 분류 정보와 벡터 유사도, 수열 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용한 결과 1위 정답 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 MRR이 0.62, 정답이 1위, 5위내에 검색될 확률은 각각 54.2%, 78.2%를 보였다.
-
음성언어처리 기술의 발전과 외국어로서의 한국어 교육에 대한 관심이 커지면서 컴퓨터를 활용한 언어교육 (CALL) 기반의 한국어 학습 시스템에 대한 연구가 활발히 진행되고 있다. 학습자의 모국어와 학습언어의 대조 분석은 양 언어의 유사점과 차이점을 찾아내어 학습자들이 무엇을 학습해야 하고, 학습자들이 보이는 오류가 어떤 것인지 판단할 수 있는 중요한 자료를 제공한다. 본 논문에서는 중국인 학습자를 위한 컴퓨터 기반 한국어 학습 시스템 개발을 위해서 선행연구의 대조분석과 실험 결과를 정리하고, 이를 토대로 중국어 학습자들이 보일 수 있는 분절음 발음 변이 양상을 예측한다.
-
본 연구에서는 질의를 기반으로 사용자의 감정상태를 예측하는 방법을 제안한다. 제안방법은 자극-감정 규칙베이스 구축, 규칙확률 값 기반 질의 랭킹, 질의 랭킹 기반 사용자 감정예측의 단계로 구성된다. 방법의 적절성을 검증하기 위하여 힘들다와 심심하다에 대한 결과로 사용자평가를 실시하였다. 힘들다의 결과에서는 힘들다 정도에 대한 점수가 높은 질의들을 지속적으로 검색하는 사용자들을 힘들다라고 판단할 수 있다고 분석되었다. 심심하다의 결과에서는 방법 간 유의미한 차이를 보이지 않았으나, 특정 개별질의의 지속적인 패턴을 분석하는 것이 좀 더 높은 점수를 얻은 것으로 평가되었다.
-
본 논문은 LOD2 커뮤니티 과제 중 하나인 NLP2RDF를 한국어에 적용하면서 고안한 프레임워크에 대해 제시하고 있다. 이 프레임워크를 통해, 한국어 NLP2RDF는 다양한 한국어 자연언어처리 도구들로 부터의 결과물 및 다양한 한국어 언어 자원에 대한 활용도 높은 이용 방법에 대한 제시 및 국제적 상호 운용성을 위해 NIF(NLP Interchange Format)[1] 규격을 준수한 RDF(Resource Description Framework)를 생성하기 위한 방법론을 소개한다. 또한 NIF(NLP Interchange Format)를 통한 포맷 통일화 과정에서 발생하는 NIF 온톨로지의 불완전성에 대한 개선 방향에 대해서도 갼략하게 제시한다.
-
의미 표지 부착 작업은 구문 표지 부착된 문장의 술어-논항 구조를 파악하여 논항에 적절한 의미역을 부착하는 과정이다. 이 작업을 통하여 생성되는 의미 표지 부착 말뭉치는 의미역 결정에 있어서 절대적으로 필요한 자원이 된다. 의미 표지 부착 말뭉치로는 세계적으로 PropBank가 널리 활용되고 있는데 이를 한국어에 적용시키기 위해서는 PropBank 의미역과 Sejong 의미역 간의 자동 변환이 필요하다. 이전에 제안되었던 이종 의미역 간의 자동변환 방법에서는 명사 계층의 구조 정보를 반영하지 않았다는 문제점이 있었다. 본 논문에서는 이러한 문제점을 보강하기 위하여 명사 계층구조를 반영하여 한국어 PropBank 의미역을 Sejong 의미역으로 자동 변환하는 방법을 제안한다. 제안하는 방법은 PropBank와 Sejong의 맵핑관계 중에서 1:N으로 맵핑되는 PropBank 의미역을 기준으로 명사 계층구조에서 변환 대상 의미역을 가지고 있는 단어와 변환 후보 의미역을 가진 단어들의 개념번호를 뽑아 두 단어 간의 거리를 측정한다. 그리고 레벨 당 가중치를 주어 유사도 계산을 하여 유사도가 적은 값으로 의미역을 자동 변환한다. 본 논문에서 제안하는 방법은 0.8의 성능을 보인다.
-
최근 온라인 뉴스는 대중의 관심사 및 트렌드에 따라서 다양한 종류의 기사들이 작성된다. 이러한 관심사 및 트렌드는 시간의 흐름에 따라 계속 변한다. 본 논문에서는 온라인 뉴스의 기사 제목을 이용하여 시간에 따라 변하는 관심사 및 트렌드와 관련된 단어를 추출하는 방법을 제안한다. 특정 기간 별 출현하는 뉴스들을 하나의 카테고리로 가정하고 자질 선택 방법에서 널리 사용되는 카이제곱 통계량을 이용하여 각 카테고리의 주요 단어를 추출한다. 실험 결과 특정 기간 별 관심사 및 트렌드와 관련된 단어들이 출현하는 것을 확인하였다.
-
지식 베이스(Knowledge Base)는 주어진 질의 문에 대한 잠재적인 답과 답에 대한 단서가 될 수 있는 구조화된 형태의 정보를 포함하고 있기 때문에 질의응답 시스템에서 매우 중요하다. 하지만 비록 DBpedia, Freebase, YAGO 등과 같이 이용 가능한 여러 개의 지식 베이스가 존재함에도 불구하고 이러한 지식 베이스에 포함되어 있는 정보는 웹(Web)상에 존재하는 정보에 비하면 매우 제한적이다. 본 논문에서는 무제한 정보 추출 기술을 이용하여 정형화되지 않은 텍스트로부터 트리플(Triple)을 추출하고, 추출된 트리플의 각 개체 및 관계 어휘를 대상 온톨로지(Ontology) 상의 어휘에 사상시킴으로써 지식 베이스를 확장 시키는 방법을 제안한다. 이를 통하여 무제한 정보 추출 방법과 명확화(Disambiguation) 기술이 지식 베이스를 확장시키는데 어떻게 사용될 수 있고, 어떠한 요소가 전체 시스템의 주된 성능 저하를 일으키며 개선되어야 하는지 알아보도록 한다.
-
한국어 자료를 자동으로 처리하기 위해서 다양한 형태소 분석기가 연구되었으나, 대부분의 형태소 분석기는 미리 등록된 명사가 아니면 제대로 분석하지 못하는 문제점을 가지고 있다. 본 논문은 기존의 형태소 분석기를 수정하여 미등록 명사를 인식하도록 하는 방법을 소개한다. 이 방법은 비록 학습 알고리즘을 포함하지 않지만 비교적 구현이 쉽고 속도가 빠르며 형태소 분석기의 정확률 향상에 도움이 되었음을 실험으로 검증하였다. 그리고 이 알고리즘을 응용하여 사람이 반자동으로 미등록 명사를 포함할 가능성이 높은 어절을 수집하는 방법을 제안한다.
-
본 논문에서는 명사간의 유사도 추정을 위하여 명사 어휘와 술어-논항 관계에 있는 동사들의 유사도를 측정하여 이를 활용하는 연구를 제안한다. 어휘 유사도 추정은 정보 통합과 정보 검색 분야에서 중요한 역할을 한다. 본 연구에서는 유사한 명사 어휘들은 유사한 문맥을 가지고 있으며 동시에 명사 어휘의 문맥에 있어 가장 중요한 문맥 정보는 명사 어휘와 직접적인 구문 관계를 가지고 있는 술어 정보임을 가정하였다. 실험을 위하여 본 연구에서 제시된 유사도와 명사 계층 클래스간의 유사도간의 상관관계를 계산하였다.
-
웹을 비롯한 다양한 곳에서 기하급수적으로 증가하고 있는 문서들로 인해, 자연어 텍스트로부터의 지식추출의 중요성이 점차 커지고 있다. 이 연구에서는 한국어로 작성된 자연어 텍스트로부터의 시간 정보 추출을 위해 개발된 시스템을 소개하고, 직접 구축한 한국어 데이터셋에 대한 성능 분석을 제공한다. 이 시스템은 사람이 직접 작성한 규칙들에 기반하여 작동하지만, 질의응답시스템 등에 적용될 수 있는 수준의 성능으로 향상시키기 위해 기계학습 기반의 시스템으로 업그레이드하는 등의 작업을 계속할 것이다.
-
국내에서 거주하는 외국인들을 대상으로 한 여러 정책들이 만들어지고 있다, 그에 따른 한국어 교육의 수요는 증가하고 있지만 그에 적합한 한국어 교육시스템의 자동화 및 발전은 미약하다. 본 논문에서는 사전예문과 획득이 용이한 말뭉치를 가공하여 적절한 수준의 문제를 자동으로 생성하는 방법을 제안한다. 자동문제생성에서는 말뭉치와 사전 예문에서 문제와 보기문항을 생성하고, 보기 리스트를 생성한다. 웹문서 검색빈도를 이용하여 생성된 보기리스트의 적합성을 분석하여 정제된 보기 리스트를 획득한다. 얻어진 보기들을 임의로 선택하여 출력함으로써 사용자들이 다양한 문제를 접할 수 있도록 한다.
-
의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제로, 기계학습에 의한 의미역을 부착하기 위해서는 의미역 부착 말뭉치를 필요로 한다. 본 논문에서 격틀 사전을 사용하여 각 서술어의 논항의 의미역을 제한하여 작업자가 빠르게 의미역 말뭉치를 구축할 수 있도록 하는 의미역 반자동 부착 도구(UTagger-SR)를 개발하였다.
-
본 논문에서는 semantic parsing과 사전 정의된 어휘-의미 패턴 질의 템플릿 방법론을 결합하여 자연어 질의로부터 RDF 지식베이스에 질의하기 위한 SPARQL 쿼리를 생성하는 방법을 제안한다. semantic parsing 접근법은 문장의 표현과 분리된 형식적 의미표현만을 포착해내므로, paraphrase 혹은 의미 변화와 무관한 어순의 변화에 강인하지만, 일부 자연어 질의문장에는 단순한 의미 및 구조를 갖는 문장도 적합한 형식적 의미표현을 생성하지 못하는 단점이 있다. 따라서 이 연구에서는 이러한 단순한 문장에 있어서는 사전 정의된 질의 템플릿을 사용하여 적합한 쿼리를 생성하되, 적합한 템플릿을 선택하는데 있어 해당 질의문장의 어휘-의미적 유형을 포착하고 해당 정보를 이용하는 방법을 이용하였으며 이를 통해 주 방법론의 약점을 보완하는 제한적인 효과를 얻을 수 있었다.