2020.10a
-
문서 검색은 오래 연구되어 온 자연어 처리의 중요한 분야 중 하나이다. 기존의 키워드 기반 검색 알고리즘 중 하나인 BM25는 성능에 명확한 한계가 있고, 딥러닝을 활용한 의미 기반 검색 알고리즘의 경우 문서가 압축되어 벡터로 변환되는 과정에서 정보의 손실이 생기는 문제가 있다. 이에 우리는 BERT Sparse라는 새로운 문서 검색 모델을 제안한다. BERT Sparse는 쿼리에 포함된 키워드를 활용하여 문서를 매칭하지만, 문서를 인코딩할 때는 BERT를 활용하여 쿼리의 문맥과 의미까지 반영할 수 있도록 고안하여, 기존 키워드 기반 검색 알고리즘의 한계를 극복하고자 하였다. BERT Sparse의 검색 속도는 BM25와 같은 키워드 기반 모델과 유사하여 실시간 서비스가 가능한 수준이며, 성능은 Recall@5 기준 93.87%로, BM25 알고리즘 검색 성능 대비 19% 뛰어나다. 최종적으로 BERT Sparse를 MRC 모델과 결합하여 open domain QA환경에서도 F1 score 81.87%를 얻었다.
-
관계 추출은 주어진 문장이나 문서에 존재하는 개체들 간의 의미적 관계를 찾아내는 작업을 말한다. 최근 문서 수준 관계 추출 말뭉치인 DocRED가 공개되면서 문서 수준 관계 추출에 대한 연구가 활발히 진행되고 있다. 또한 사전 학습된 Masked Language Model(MLM)이 자연어처리 분야 전체에 영향력을 보이면서 관계 추출에서도 MLM을 사용하는 연구가 진행되고 있다. 그러나 문서 수준의 관계 추출은 문서의 단위가 길기 때문에 Self-attention을 기반으로 하는 MLM을 사용하면 모델의 계산량이 증가하는 문제가 있다. 본 논문은 이 점을 보완하기 위해 관계 추출에 필요한 문장을 선별하는 간단한 전처리 방법을 제안한다. 또한 문서의 길이에 상관없이 관계 추출에 필요한 어휘 정보를 자동으로 습득 할 수 있는 Relation-Context Co-attention 방법을 제안한다. 제안 모델은 DocRED 말뭉치에서 Dev F1 62.01%, Test F1 59.90%로 높은 성능을 보였다.
-
신조어는 자연어처리에 있어 대단히 중요하며, 시스템의 전체 성능에 직접적인 영향을 미친다. 일단위, 주단위로 신규 발생하는 어휘들에 대해, 자동으로 신규성 및 중요도가 측정되어 제공된다면, 자연어처리 연구 및 상용시스템 개발에 큰 도움이 될 것이다. 이를 위해, 본 연구는 한국어 말뭉치 KorNewVocab을 새로이 제시한다. 먼저, 신조어가 가져야 할 세부 중요 조건을 1)신규 어휘 2)인기 어휘 3)지속 사용 어휘로 정의하고, 이 조건을 만족하는 신조어 말뭉치를 2019.01~2019.08까지의 뉴스기사를 중심으로 신조어 412개와 4,532 문장으로 구성된 신조어 말뭉치를 구축하였다. 또한, 본 말뭉치의 구축에 활용된 반자동 신규어휘 검출 및 중요도 측정 방법에 대해 소개한다.
-
개체 연결이란 문서에서 등장한 멘션(Mention)들을 지식 기반(Knowledge Base)상의 하나의 개체에 연결하는 문제를 말한다. 개체 연결은 개체를 찾는 멘션 탐지(mention detection)과정과 인식된 멘션에 대해 중의성을 해결하여 하나의 개체를 찾는 개체 중의성 해결(Entity disambiguation)과정으로 구성된다. 본 논문에서는 개체 정보를 강화하기 위해 wikipedia2vec정보를 결합하여 Entity 정보를 강화하고 문장 내에 모든 개체 정보를 활용하기 위해 집합적 개체를 정의하고 그래프 구조를 표현하기 위해 GNN을 활용하여 기존보다 높은 성능을 이끌어내었다.
-
본 논문에서는 BERT가 합성된 새로운 Transformer 구조를 제안한 선행연구를 보완하기 위해 cardinality residual connection을 적용한 새로운 구조의 모델을 제안한다. Transformer의 인코더와 디코더의 셀프어텐션에 BERT를 각각 합성한 모델의 잔차연결을 수정하여 학습 속도와 번역 성능을 개선하고자 한다. 그리고 가중치를 다르게 부여하는 실험으로 어텐션을 선택하는 효과적인 방법을 제시하고 원문의 언어에 맞는 BERT를 사용하는 이유를 설명한다. IWSLT14 독일어-영어 말뭉치와 AI hub에서 제공하는 영어-한국어 말뭉치를 이용한 실험에서는 제안하는 방법의 모델이 기존 모델에 비해 더 나은 학습 속도와 번역 성능을 보였다.
-
Kim, Sung-Ju;Suh, Soo-Bin;Park, Jin-Seong;Park, Sung-Hyun;Jeon, Dong-Hyeon;Kim, Seon-Hoon;Kim, Kyung-Duk;Kang, In-Ho 32
문장의 의미를 잘 임베딩하는 문장 인코더를 만들기 위해 비지도 학습과 지도 학습 기반의 여러 방법이 연구되고 있다. 지도 학습 방식은 충분한 양의 정답을 구축하는데 어려움이 있다는 한계가 있다. 반면 지금까지의 비지도 학습은 단일 형식의 말뭉치에 한정해서 입력된 현재 문장의 다음 문장을 생성 또는 예측하는 형식으로 문제를 정의하였다. 본 논문에서는 위키피디아, 뉴스, 지식 백과 등 문서 형태의 말뭉치에 더해 지식인이나 검색 클릭 로그와 같은 구성이 다양한 이종의 대량 말뭉치를 활용하는 자기 지도 학습 방법을 제안한다. 각 형태의 말뭉치에 적합한 자기 지도 학습 문제를 설계하고 학습한 경우 KorSTS 데이셋의 비지도 모델 성능 평가에서 기준 모델 대비 7점 가량의 성능 향상이 있었다. -
본 논문에서는 Joint CTC/Attention 모델에 CTC ratio scheduling을 이용한 end-to-end 한국어 음성인식을 연구하였다. Joint CTC/Attention은 CTC와 attention의 장점을 결합한 모델로서 attention, CTC 단일 모델보다 좋은 성능을 보여주지만, 학습이 진행될수록 CTC가 attention의 학습을 저해하는 요인이 된다. 본 논문에서는 이러한 문제를 해결하기 위해, 학습 진행에 따라 CTC의 비율(ratio)를 줄여나가는 CTC ratio scheduling 방법을 제안한다. CTC ratio scheduling를 이용하여 학습한 결과물은 기존 Joint CTC/Attention, 단일 attention 모델 대비 좋은 성능을 보여주는 것을 확인하였다.
-
TTS(Text-to-Speech) 시스템을 위해서는 한글 이외의 문자열을 한글로 변환해줄 필요가 있다. 이러한 문자열에는 숫자, 특수문자 등의 문자열이 포함되어 있다. 특히 숫자의 경우, 숫자가 사용되는 문맥에 따라 그 발음방법이 달라지는 문제점이 있다. 본 논문에서는 기존의 규칙기반과 한정된 문맥 정보만을 활용할 수 있는 방법이 아닌, 딥러닝을 이용한 방법으로 문맥에 따라 발음방법이 달라지는 숫자 음역의 모호성을 해소하는 방법을 소개한다.
-
문서 요약은 주어진 문서에서 핵심 내용만을 남긴 간결한 요약문을 생성하는 일로 자연어처리의 주요 분야 중 하나이다. 최근 방대한 데이터로부터 심층 신경망 표상을 학습하는 기술의 발전으로 문서 요약 기술이 급진적으로 진화했다. 이러한 데이터 기반 접근 방식에는 모델의 학습을 위한 양질의 데이터가 필요하다. 그러나 한국어와 같이 잘 알려지지 않은 언어에 대해서는 데이터의 획득이 쉽지 않고, 이를 구축하는 것은 많은 시간과 비용을 필요로 한다. 본 논문에서는 한국어 문서 요약을 위한 대용량 데이터셋을 소개한다. 데이터셋은 206,822개의 기사-요약 쌍으로 구성되며, 요약은 표제 형식의 여러 문장으로 되어 있다. 우리는 구축한 학습 데이터의 적합성을 검증하기 위해 수동 평가 및 여러 주요 속성에 대해 분석하고, 기존 여러 문서 요약 시스템에 학습 및 평가하여 향후 문서 요약 벤치마크 데이터셋으로써 기준선을 제시한다. 데이터셋은 https://github.com/hong8e/KHS.git의 스크립트를 통해 내려받을 수 있다.
-
사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.
-
기계 독해는 입력 받은 질문과 문단의 관계를 파악하여 알맞은 정답을 예측하는 자연어처리 태스크로 양질의 많은 데이터 셋을 필요로 한다. 기계 독해 학습 데이터 구축은 어려운 작업으로, 문서에서 등장하는 정답과 정답을 도출할 수 있는 질문을 수작업으로 만들어야 한다. 이러한 문제를 해결하기 위하여, 본 논문에서는 정답이 속한 문서로부터 질문을 자동으로 생성해주는 BERT 기반의 Sequence-to-sequence 모델을 이용한 한국어 질문 생성 모델을 제안한다. 또한 정답이 속한 문서와 질문의 언어가 같고 정답이 속한 문장의 주변 단어가 질문에 등장할 확률이 크다는 특성에 따라 BERT 기반의 Sequence-to-sequence 모델에 복사 메카니즘을 추가한다. 실험 결과, BERT + Transformer 디코더 모델의 성능이 기존 모델과 BERT + GRU 디코더 모델보다 좋았다.
-
텍스트 스타일 변환은 문장 내 컨텐츠는 유지하면서 문장의 스타일을 변경하는 것이다. 스타일의 정의가 모호하기 때문에 텍스트 스타일 변환에 대한 연구는 대부분 지도 학습으로 진행되어왔다. 본 논문에서는 병렬 데이터 구축이 되지 않은 데이터를 학습하기 위해 비병렬 데이터를 이용하여 스타일 변환을 시도한다. 트랜스포머 기반의 문장 생성기를 이용하여 문장을 생성하고, 해당 스타일을 분류하는 판별기로 이루어진 모델을 제안한다. 제안 모델을 통해, 감정 변환의 성능은 정확도(Accuracy) 56.9%, self-BLEU 0.393(긍정→부정), 0.366(부정→긍정), 유창성(fluency) 798.23(긍정→부정), 1381.05(부정→긍정)을 보였다. 본 연구는 비병렬 데이터에 대해 스타일 변환을 적용함으로써, 병렬 데이터가 없는 다양한 도메인에도 적용가능 할 것이다.
-
오픈북 질의응답 문제는 올바른 정답을 고르기 위해 사람들끼리 공유하고 있는 상식정보가 필요한 질의로 이루어져있다. 기계가 사람과 달리 상식 정보를 이용하여 결론을 도출하는 상식 추론을 하기 위해서는 적절한 상식 정보를 논리적으로 사용하여야 한다. 본 연구에서는 적절한 상식정보의 선택과 논리적 추론을 위하여, 질의에 대한 Abstract Meaning Representation (AMR) 그래프를 이용하여 적절한 상식 정보를 선택하고 그의 해석을 용이하게 만들었다. 본 연구에서 제안한 상식 그래프 경로 학습 모델은 오픈북 질의응답 문제에서 대표적 언어모델인 BERT의 성능보다 약 7%p 높은 55.02%의 정확도를 달성하였다.
-
법률 전문 지식이 없는 사람들이 법률 정보 검색을 성공적으로 하기 위해서는 일반 용어를 검색하더라도 전문 용어가 사용된 법령정보가 검색되어야 한다. 하지만 현 판례 검색 시스템은 사용자 선호도 검색이 불가능하며, 일반 용어를 사용하여 검색하면 사용자가 원하는 전문 자료를 도출하는 데 어려움이 있다. 이에 본 논문에서는 일반용어가 사용된 질의문과 전문용어가 사용된 판례를 자동으로 연결해 주고자 하였다. 질의문과 연관된 판례를 자동으로 연결해 주기 위해 전문용어가 사용된 전문가 답변을 바탕으로 문서분류에 높은 성능을 보이는 Doc2Vec을 이용한다. Doc2Vec 문서 임베딩 기법을 이용하여 전문용어가 사용된 전문가 답변과 유사한 답변을 제안하여 비슷한 주제의 답변들끼리 분류하였다. 또한 전문가 답변과 유사도가 높은 판례를 제안하여 질의문에 해당하는 판례를 자동으로 연결하였다.
-
딥러닝 모델의 성능은 데이터의 품질과 양에 의해 향상된다. 그러나 데이터 구축은 많은 비용과 시간을 요구한다. 특히 전문 도메인의 데이터를 구축할 경우 도메인 지식을 갖춘 작업자를 활용할 비용과 시간이 더욱 제약적이다. 능동 학습 기법은 최소한의 데이터 구축으로 모델의 성능을 효율적으로 상승시키기 위한 방법이다. 다양한 데이터셋이 능동 학습 기법으로 구축된 바 있으나, 아직 전문 도메인의 한국어 데이터를 구축하는 연구는 활발히 수행되지 못한 것이 현실이다. 본 논문에서는 능동학습기법을 통해 금융 도메인의 개체명 인식 코퍼스를 구축하였고, 이를 통해 다음의 기여가 있다: (1) 금융 도메인 개체명 인식 코퍼스 구축에 능동 학습 기법이 효과적임을 확인하였고, (2) 이를 통해 금융 도메인 개체명 인식기를 개발하였다. 본 논문이 제안하는 방법을 통해 8,043문장 데이터를 구축하였고, 개체명 인식기의 성능은 80.84%로 달성되었다. 또한 본 논문이 제안하는 방법을 통해 약 12~25%의 예산 절감 효과가 있음을 실험으로 보였다.
-
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
-
본 연구는 딥 러닝 기반 의존 구문 분석에서, 학습에 적용하는 손실 함수에 따른 성능을 평가하였다. Pointer Network를 이용한 Left-To-Right 모델을 총 세 가지의 손실 함수(Maximize Golden Probability, Cross Entropy, Local Hinge)를 이용하여 학습시켰다. 그 결과 LH 손실 함수로 학습한 모델이 선행 연구와 같이 MGP 손실 함수로 학습한 것에 비해 UAS/LAS가 각각 0.86%p/0.87%p 상승하였으며, 특히 의존 거리가 먼 경우에 대하여 분석 성능이 크게 향상됨을 확인하였다. 딥러닝 의존 구문 분석기를 구현할 때 학습모델과 입력 표상뿐만 아니라 손실 함수 역시 중요하게 고려되어야 함을 보였다.
-
의존 구문 분석은 입력된 문장 내의 어절 간의 의존 관계를 예측하기 위한 자연어처리 태스크이다. 최근에는 BERT와 같은 사전학습 모델기반의 의존 구문 분석 모델이 높은 성능을 보이고 있다. 본 논문에서는 추가적인 성능 개선을 위해 ALBERT, ELECTRA 언어 모델을 형태소 분석과 BPE를 적용해 학습한 후, 인코딩 과정에 사용하였다. 또한 의존소 어절과 지배소 어절의 특징을 specific하게 추상화 하기 위해 두 개의 트랜스포머 인코더 스택을 추가한 의존 구문 분석 모델을 제안한다. 실험결과 제안한 모델이 세종 코퍼스에 대해 UAS 94.77 LAS 94.06의 성능을 보였다.
-
의존구조 말뭉치는 자연언어처리 분야에서 문장의 의존관계를 파악하는데 널리 사용된다. 이러한 말뭉치는 일반적으로 오류가 없다고 가정하지만, 현실적으로는 다양한 오류를 포함하고 있다. 이러한 오류들은 성능 저하의 요인이 된다. 이러한 문제를 완화하려고 본 논문에서는 XGBoost와 교차검증을 이용하여 이미 구축된 구문분석 말뭉치로부터 오류를 탐지하는 방법을 제안한다. 그러나 오류가 부착된 학습말뭉치가 존재하지 않으므로, 일반적인 분류기로서 오류를 검출할 수 없다. 본 논문에서는 분류기의 결과를 분석하여 오류를 검출하는 방법을 제안한다. 성능을 분석하려고 표본집단과 모집단의 오류 분포의 차이를 분석하였고 표본집단과 모집단의 오류 분포의 차이가 거의 없는 것으로 보아 제안된 방법이 타당함을 알 수 있었다. 앞으로 의미역 부착 말뭉치에 적용할 계획이다.
-
한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔으며 현재 가장 높은 성능을 보이고 있는 그래프 기반 파서인 Biaffine 어텐션 모델은 입력 시퀀스를 다층의 LSTM을 통해 인코딩 한 후 각각 별도의 MLP를 적용하여 의존소와 지배소에 대한 표상을 얻고 이를 Biaffine 어텐션을 통해 모든 의존소에 대한 지배소의 점수를 얻는 모델이다. 위의 Biaffine 어텐션 모델은 별도의 High-Order 정보를 활용하지 않는 first-order 파싱 모델이며 학습과정에서 어떠한 트리 관련 손실을 얻지 않는다. 본 연구에서는 같은 부모를 공유하는 형제 노드에 대한 점수를 모델링하고 정답 트리에 대한 조건부 확률을 모델링 하는 Second-Order TreeCRF 모델을 한국어 의존 파싱에 적용하여 실험 결과를 보인다.
-
딥러닝은 자연어처리 분야에서 우수한 성능을 보이고 있다. 하지만 우수한 성능을 달성하려면 많은 학습 데이터와 오랜 학습 시간이 필요하다. 우리는 딥러닝과 기호 규칙을 함께 사용하는 뉴럴-심볼릭 방법을 이용하여 딥러닝만으로 학습한 모델의 성능을 능가하는 방법을 제안한다. 딥러닝의 한계를 극복하기 위해서 관계추출에서 규칙 결과와 딥러닝 결과와의 불일치도를 추가한 구조를 설계하였다. 제안한 구조는 한국어 데이터에 대해서 우수한 성능을 보였으며, 빠른 성능 수렴이 이루어지는 것을 확인하였다.
-
이벤트 추출은 텍스트에서 구조화된 이벤트를 분석하는 것이다. 본 논문은 대화문에서 발생하는 다양한 종류의 이벤트를 다루기 위해 이벤트 스키마를 프레임넷으로 정한다. 대화문에서의 이벤트 논항은 이벤트가 발생하는 문장 뿐만 아니라 다른 문장 또는 대화에 참여하는 발화자에서 발생할 수 있다. 대화문 주석 데이터의 부재로 대화문에서의 프레임 파싱 연구는 진행되지 않았다. 본 논문이 제안하는 모델은 대화문에서의 이벤트 논항 구간이 주어졌을 때, 논항 구간의 역할을 식별하는 모델이다. 해당 모델은 이벤트를 유발한 어휘, 논항 구간, 논항 역할 간의 관계를 학습한다. 대화문 주석 데이터의 부족을 극복하기 위해 문어체 주석 데이터인 한국어 프레임넷을 활용하여 전이학습을 진행한다. 이를 통해 정확도 51.21%를 달성한다.
-
A Technique for Improving Relation Extraction Performance using Entity Information in Language Model관계 추출은 문장에서 두 개의 엔티티가 주어졌을 때 두 개의 엔티티에 대한 의미적 이해를 통해 관계를 분류하는 작업이다. 이와 같이 관계 추출에서 관계를 분류하기 위해서는 두 개의 엔티티에 대한 정보가 필요하다. 본 연구에서는 관계 추출을 하기 위해 문장에서 엔티티들의 표현을 다르게하여 관계 추출의 성능을 비교 실험하였다. 첫번째로는 문장에서 [CLS] 토큰(Token)으로 관계를 분류하는 Standard 엔티티 정보 표현과 두번째로는 엔티티의 앞과 뒤에 Special Token을 추가하여 관계를 분류하는 Entity-Markers 엔티티 정보 표현했다. 이를 기반으로 문장의 문맥 정보를 학습한 사전 학습(Pre-trained)모델인 BERT-Large와 ALBERT-Large를 적용하여 실험을 진행하였다. 실험 결과 Special Token을 추가한 Entity-Markers의 성능이 높았으며, BERT-Large에서 더 높은 성능 결과를 확인하였다.
-
엔터티 링킹은 주어진 문서 상에서 엔터티가 내포된 부분에 어떤 엔터티가 연결되어야 하는 지를 판단하는 작업이다. 따라서, 이 과정에서 엔터티의 표상을 얻어내는 것이 엔터티 링킹의 성능에 큰 영향을 끼치게 된다. 이 논문에서는 RELIC을 통해 엔터티 임베딩을 얻어내고, 이를 엔터티 링킹에 적용시킨 결과 0.57%p의 성능 향상을 이루었다.
-
사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.
-
한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.
-
최근 음성인식 분야에서 신경망 기반의 종단간 모델이 제안되고 있다. 해당 모델들은 음성을 직접 입력받아 전사된 문장을 생성한다. 음성을 직접 입력받는 모델의 특성상 데이터의 품질이 모델의 성능에 많은 영향을 준다. 본 논문에서는 이러한 종단간 모델의 문제점을 해결하고자 음성인식 결과를 후처리하기 위한 멀티모달 기반 모델을 제안한다. 제안 모델은 음성과 전사된 문장을 입력 받는다. 입력된 각각의 데이터는 Encoder를 통해 자질을 추출하고 주의집중 메커니즘을 통해 Decoder로 추출된 정보를 전달한다. Decoder에서는 전달받은 주의집중 메커니즘의 결과를 바탕으로 후처리된 토큰을 생성한다. 본 논문에서는 후처리 모델의 성능을 평가하기 위해 word error rate를 사용했으며, 실험결과 Google cloud speech to text모델에 비해 word error rate가 8% 감소한 것을 확인했다.
-
대명사 참조해결은 문서 내에 등장하는 대명사와 이에 대응되는 선행사를 찾는 자연어처리 태스크이다. 기계 독해는 문단과 질문을 입력 받아 질문에 해당하는 알맞은 정답을 문단 내에서 찾아내는 태스크이며, 최근에는 주로 BERT 기반의 모델이 가장 좋은 성능을 보이고 있다. 이러한 BERT 기반 모델의 성공에 따라, 최근 여러 연구에서 자연어처리 태스크를 기계 독해 문제로 변환하여 해결하는 연구들이 진행되고 있다. 본 논문에서는 최근 여러 자연어처리에서 뛰어난 성능을 보이고 있는 BERT 기반 기계 독해 모델을 이용하여 한국어 대명사 참조해결 연구를 진행하였다. 사전 학습 된 기계 독해 모델을 사용하여 한국어 대명사 참조해결 데이터로 fine-tuning하여 실험한 결과, 개발셋에서 EM 78.51%, F1 84.79%의 성능을 보였고, 평가셋에서 EM 70.78%, F1 80.19%의 성능을 보였다.
-
문서 요약(text summarization)은 주어진 문서로부터 중요하고 핵심적인 정보를 포함하는 요약문을 만들어 내는 작업으로, 기계 번역 작업에서 주로 사용되는 Sequence-to-Sequence 모델을 사용한 end-to-end 방식의 생성(abstractive) 요약 모델 연구가 활발히 진행되고 있다. 최근에는 BERT와 MASS 같은 대용량 단일 언어 데이터 기반 사전학습(pre-training) 모델을 이용하여 미세조정(fine-tuning)하는 전이 학습(transfer learning) 방법이 자연어 처리 분야에서 주로 연구되고 있다. 본 논문에서는 MASS 모델에 복사 메커니즘(copying mechanism) 방법을 적용하고, 한국어 언어 생성(language generation)을 위한 사전학습을 수행한 후, 이를 한국어 문서 요약에 적용하였다. 실험 결과, MASS 모델에 복사 메커니즘 방법을 적용한 한국어 문서 요약 모델이 기존 모델들보다 높은 성능을 보였다.
-
자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.
-
문서 요약은 길이가 긴 원본 문서에서 의미를 유지한 채 짧은 문서나 문장을 얻어내는 작업을 의미한다. 딥러닝을 이용한 자연어처리 기술들이 연구됨에 따라 end-to-end 방식의 자연어 생성 모델인 sequence-to-sequence 모델을 문서 요약 생성에 적용하는 방법들이 연구되었다. 본 논문에서는 여러 자연어처리 분야에서 높은 성능을 보이고 있는 BERT 모델을 이용한 자연어 생성 모델에 복사 메커니즘과 강화 학습을 추가한 문서 요약 모델을 제안한다. 복사 메커니즘은 입력 문장의 단어들을 출력 문장에 복사하는 기술로 학습데이터에서 학습되기 힘든 고유 명사 등의 단어들에 대한 성능을 높이는 방법이다. 강화 학습은 정답 단어의 확률을 높이기 위해 학습하는 지도 학습 방법과는 달리 연속적인 단어 생성으로 얻어진 전체 문장의 보상 점수를 높이는 방향으로 학습하여 생성되는 단어 자체보다는 최종 생성된 문장이 더 중요한 자연어 생성 문제에 효과적일 수 있다. 실험결과 기존의 BERT 생성 모델 보다 복사 메커니즘과 강화 학습을 적용한 모델의 Rouge score가 더 높음을 확인 하였다.
-
최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.
-
말뭉치는 기계학습 및 심층학습을 위한 필수 자원이다. 한국어 개체명의 경우 학습에 사용할 잘 정제된 개체명 부착 말뭉치가 충분하지 않다. 말뭉치 정제 작업은 시간적, 경제적으로 많은 비용이 소모된다. 따라서 본 논문에서는 적은 양의 말뭉치를 이용하여 말뭉치를 자동적으로 확장하는 방법을 제안한다. 특별히 소규모 말뭉치에 속하는 문장의 단어에 대한 형제어들을 선정하여 형제어의 확률추출을 기반으로 대체함으로써 새로운 문장을 생성함으로써 말뭉치 확장하는 방법이다. 본 논문에서는 확장된 말뭉치를 이용해서 대부분의 시스템에서 성능이 향상됨을 확인할 수 있었다. 앞으로 단어의 삭제 및 삽입 등 다양한 방법으로 좀 더 다양한 문장을 생성할 수 있을 것으로 생각합니다.
-
다중 지문 기계독해는 질문과 여러 개의 지문을 입력받고 입력된 지문들에서 추출된 정답 중에 하나의 정답을 출력하는 문제이다. 다중 지문 기계독해에서는 정답이 있을 단락을 선택하는 순위화 방법에 따라서 성능이 크게 달라질 수 있다. 본 논문에서는 단락 안에 정답이 있을 확률을 예측하는 단락 재순위화 모델과 선택된 단락에서 서술형 정답을 위한 세부적인 정답의 경계를 예측하는 세부 단락 선별 기법을 제안한다. 단락 순위화 모델 학습의 경우 모델 학습을 위해 각 단락의 출력에 softmax와 cross-entroy를 이용한 손실 값과 sigmoid와 평균 제곱 오차의 손실 값을 함께 학습하고 키워드 매칭을 함께 적용했을 때 KorQuAD 2.0의 개발셋에서 상위 1개 단락, 3개 단락, 5개 단락에서 각각 82.3%, 94.5%, 97.0%의 재현율을 보였다. 세부 단락 선별 모델의 경우 입력된 두 단락을 비교하는 duoBERT를 이용했을 때 KorQuAD 2.0의 개발셋에서 F1 83.0%의 성능을 보였다.
-
본 연구는 COVID-19 질의 응답 태스크를 위한 Poly-encoder 기반의 태스크를 제안하였다. COVID-19 질의 응답 시스템은 사람들에게 최신 정보에 대해 빠르고 신뢰성이 높은 정보를 전달하는 특성을 가져야한다. 검색 기반 질의 응답 시스템은 pairwise 연산을 기반으로 수행되는데, Poly-encoder는 사전 학습된 트랜스포머(transformer)기반의 pairwise 연산 방법론 중 기존 Cross-encoder와 Bi-encoder보다 실사용 및 성능이 뛰어남을 보였다 [1]. 특히, Poly-encoder는 정확도가 높으면서도 빠른 응답속도를 가지며 검색기반의 각종 태스크에서 좋은 성능을 보였다. 따라서 본 연구는 COVID-19를 위한 Poly-encoder기반의 질의 응답 태스크를 위하여 기존 질의 응답 태스크와 페르소나 기반의 질의 응답 태스크로 두 가지 유형의 태스크를 생성하여 모델을 학습하였다. 또한 신뢰성 있는 리소스정보로부터 모델에 최신 정보 반영을 위하여 자동 크롤러를 구축하여 데이터를 수집하였다. 마지막으로 전문가를 통한 데이터셋을 구축하여 질문-응답과 질의어-질문에 대한 모델 검증을 수행하였다.
-
최근 딥러닝 기술의 발전에 힘입어 오픈 도메인 QA 시스템의 발전은 가속화되고 있다. 특히 IR 시스템(Information Retrieval)과 추출 기반의 기계 독해 모델을 결합한 접근 방식(IRQA)의 경우, 문서와 질문 각각을 연속 벡터로 인코딩하는 IR 시스템(Dense Retrieval)의 연구가 진행되면서 검색 성능이 전통적인 키워드 기반 IR 시스템에 비해 큰 폭으로 상승하였고, 이를 기반으로 오픈 도메인 질의응답의 성능 또한 개선 되었다. 본 논문에서는 경량화 된 BERT 모델을 기반으로 하여 Dense Retrieval 모델 ORQA와 REALM을 사전 학습하고, 한국어 오픈 도메인 QA에서 QA 성능과 검색 성능을 도출한다. 실험 결과, 키워드 기반 IR 시스템 BM25를 기반으로 했던 이전 IRQA 실험결과와 비교하여 더 적은 문서로 더 나은 QA 성능을 보였으며, 검색 결과의 경우, BM25의 성능을 뛰어넘는 결과를 보였다.
-
기존의 자연어 의미 표상 방법은 크게 나눠보았을 때 두 가지가 있다. 첫 번째로, 전통적인 기호 기반 의미 표상 방법론이다. 이 방법론들은 논리적이고 해석가능하다는 장점이 있으나, 구축에 시간이 많이 들고 정작 기호 자체의 의미를 더욱 미시적으로 파악하기 어렵다는 단점이 있었다. 반면, 최근 대두된 분산 표상의 경우 단어 하나하나의 의미는 상대적으로 잘 파악하는 반면, 문장 등의 복잡한 구조의 의미를 나타내는 데 있어 상대적으로 약한 측면을 보이며 해석가능하지 않다는 단점이 있다. 본 논문에서는 이 둘의 장점을 섞어서 서로의 단점을 보완하는 새로운 의미 표상을 제안하였으며, 이 표상이 유의미하게 문장의 의미를 담고 있음을 비지도 문장 군집화 문제를 통해 간접적으로 보였다.
-
한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.
-
Abstract Meaning Representation(AMR)은 문장의 의미를 그래프 구조로 인코딩하여 표현하는 의미 형식표현으로 문장의 각 노드는 사건이나 개체를 취급하는 개념으로 취급하며 간선들은 이러한 개념들의 관계를 표현한다. AMR 파싱은 주어진 문장으로부터 AMR 그래프를 생성하는 자연어 처리 태스크이다. AMR 그래프의 각 개념은 추상 표현으로 문장 내의 토큰과 명시적으로 정렬되지 않는 어려움이 존재한다. 이러한 문제를 해결하기 위해 별도의 사전 학습된 정렬기를 이용하여 해결하거나 별도의 정렬기 없이 Sequence-to-Sequence 계열의 모델로 입력 문장으로부터 그래프의 노드를 생성하는 방식으로 연구되어 왔다. 본 논문에서는 문장의 입력 시퀀스와 부분 생성 그래프 사이에서 반복 추론을 통해 새로운 노드와 기존 노드와의 관계를 구성하여 점진적으로 그래프를 구성하는 모델을 한국어 AMR 데이터 셋에 적용하여 Smatch 점수 39.8%의 실험 결과를 얻었다.
-
현재 한글 언어학 영역에서는 많은 언어 분석 연구가 수행되었다. 또한 소프트웨어공학의 요구공학 영역에서는 명료한 요구사항 정의와 분석이 필요하고, 비정형화된 요구사항 명세서로부터 테스트 케이스 추출이 매우 중요한 이슈이다. 즉, 자연어 기반의 요구사항 명세서로부터 원인-결과 그래프(Cause-Effect Graph)를 통한 의사 결정 테이블(Decision Table) 기반 테스트케이스(Test Case)를 자동 생성하는 방법이 거의 없다. 이런 문제를 해결하기 위해 '한글 언어 의미 분석 기법'을 '요구공학 영역'에 적용하는 방법이 필요하다. 본 논문은 비정형화된 요구사항으로부터 테스트케이스 생성하는 과정의 중간 단계인 요구사항에서 문장 의미 모델(Sentence Semantic Model)을 자동 생성하는 방법을 제안 한다. 이는 요구사항으로부터 생성된 원인-결과 그래프의 정확성을 검증할 수 있다.
-
엔터티 링킹을 위해서는 엔터티 링킹을 수행 할 후보 엔터티의 정보를 얻어내는 것이 필요하다. 하지만, 엔터티 정보를 획득하기 어려운 경우, 엔터티 링킹을 수행 할 수 없다. 이 논문에서는 이를 해결하기 위해 데이터셋으로부터 엔터티의 가상 엔터티 설명문을 작성하고, 이를 통해 엔터티 링킹을 수행함으로써 엔터티 정보가 없는 환경에서도 2.58%p밖에 성능 하락이 일어나지 않음을 보인다.
-
본 논문은 의미역 주석(Semantic Role Labeling) 자원인 FrameNet을 준구어 말뭉치인 드라마 대본에 주석하는 과정과 주석 결과에 대해 서술한다. 본 논문에서는 프레임 - 프레임 논항 구조의 주석 범위를 한 문장에서 여러 발화로 이루어진 장면 (Scene) 단위의 대본으로 확장하여 문장 내에서 생략된 프레임 논항(Null-Instantiated Frame Elements)을 장면 단위 대본 내의 다른 발화에서 복원하였다. 본 논문은 프레임 자동 분석기를 통해 동일한 드라마의 한국어, 영어 대본에 FrameNet 주석을 한 드라마 대본을 선발된 주석자에 의해 대상 어휘 적합성 평가, 프레임 적합성 평가, 생략된 프레임 논항 복원을 실시하고, 자동 주석된 대본과 주석자 작업 후의 대본 결과를 비교한 결과와 예시를 제시한다. 주석자가 자동 주석된 대본 중 총 2,641개 주석 (한국어 1,200개, 영어 1,461개)에 대하여 대상 어휘 적합성 평가를 실시하여 한국어 190개 (15.83%), 영어 226개 (15.47%)의 부적합 대상 어휘를 삭제하였다. 프레임 적합성 평가에서는 대상 어휘에 자동 주석된 프레임의 적합성을 평가하여 한국어 622개 (61.68%), 영어 473개 (38.22%)의 어휘에 대하여 새로운 프레임을 부여하였다. 생략된 프레임 논항을 복원한 결과 작업된 평균 프레임 논항 개수가 한국어 0.780개에서 2.519개, 영어 1.290개에서 2.253개로 증가하였다.
-
개체 연결 태스크는 문장 내에 등장하는 멘션(Mention)들을 위키피디아(Wikipedia)와 같은 지식 베이스 상의 실제 개체에 연결하는 태스크이다. 본 논문에서는 각 멘션을 시멘틱(Semantic)으로 분류하여 각 시멘틱별 추가 학습을 진행할 수 있는 Adapter Memory Network 모델을 제안한다. 이는 각 시멘틱 별 학습을 하나의 통합된 과정으로 진행하도록 하는 모델이며, 본 논문에서는 Adapter Memory Network 모델을 통해 기존 개체 연결 태스크에서 높은 성능을 보이는 NIL 멘션 탐지와 개체 연결의 통합 모델의 성능을 향상시켰음을 보인다.
-
사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.
-
인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.
-
상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.
-
자연언어처리 문제에서 딥러닝 모델이 좋은 성능을 보이고 있고 딥러닝 결과는 구조화된 결과를 내놓는 경우가 많다. 딥러닝 모델 결과가 구조적인 형태를 가지는 경우 후처리 통해 특정 구조에 맞는 제약을 가해주는 경우가 일반적이다. 본 논문에서는 이러한 제약을 규칙에 기반하지 않고 직접 학습을 통해 얻고자 하였다.
-
사전 학습을 기반으로 하는 BERT계열의 모델들이 다양한 언어 및 자연어 처리 태스크들에서 뛰어난 성능을 보이고 있지만, masked language model의 경우 입력 문장의 15%만 마스킹을 함으로써 학습 효율이 떨어지고 미세 조정 시 마스킹 토큰이 등장하지 않는 불일치 문제도 존재한다. 이러한 문제를 효과적으로 해결한 ELECTRA는 영어 벤치마크에서 기존의 언어모델들 보다 뛰어난 성능을 보여주었지만 한국어에 대한 관련 연구는 부족한 실정이다. 본 연구에서는 ELECTRA를 한국어 코퍼스에 대해 학습시키고, 다양한 한국어 자연어 이해 태스크들에 대해 실험을 진행한다. 실험을 통해 ELECTRA의 모델 크기별 성능 평가를 진행하였고, 여러 한국어 태스크들에 대해서 평가함으로써 ELECTRA 모델이 기존의 언어 모델들보다 좋은 성능을 보인다는 것을 입증하였다.
-
문장 부호는 그 중요성에 비해 자연어 처리 분야에서 모델의 학습 효율을 위해 삭제되는 등 잘 연구되지 않았던 분야이다. 본 논문에서는 대한민국 정부에서 공식적으로 공개한 연설문을 수집한 말뭉치를 바탕으로 한국어의 문장 부호를 처리하는 BERT 기반의 fine-tuning 모델을 제시한다. BERT 기반 모델에서 토큰별로 예측하는 본 모델은 쉼표와 마침표만을 예측하는 경우 0.81, 물음표까지 예측하는 경우 0.66, 느낌표까지 예측하는 경우 0.52의 F1-Score를 보였다.
-
검색 엔진에 입력되는 질의 중 입력 빈도는 낮지만 상대적으로 길이가 긴 질의를 롱테일 질의라고 일컫는다. 롱테일 질의가 전체 검색 로그에서 차지하는 비중은 높은 반면, 그 형태가 매우 다양하고 검색 의도가 상세하며 개별 질의의 양은 충분하지 않은 경우가 많기 때문에 해당 질의에 대한 적절한 검색어를 추천하는 것은 어려운 문제다. 본 논문에서는 롱테일 질의 입력 시 적절한 검색어 추천을 제공하기 위하여 질의-문서 클릭 정보를 활용한 추출기반 모델 및 Seq2seq와 GPT-2 기반 생성모델을 활용한 질의 확장 방법론을 제안한다. 실험 및 결과 분석을 통하여 제안 방법이 기존에 대응하지 못했던 롱테일 질의를 자연스럽게 확장할 수 있음을 보였다. 본 연구 결과를 실제 서비스에 접목함으로써 사용자의 검색 편리성을 증대하는 동시에, 언어 모델링 기반 질의 확장에 대한 가능성을 확인하였다.
-
대화 시스템은 사용자의 입력 발화에 대해 적절하고 의미 있는 응답을 생성하는 시스템으로 seq2seq 구조를 갖는 대화 모델이 주로 연구되고 있다. 그러나 seq2seq 기반 대화 모델은 입력 발화와 관련성이 떨어지는 응답을 생성하거나 모든 입력 발화와 어울리지만 무미건조한 응답을 생성하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 입력 발화에서 고려해야 하는 키워드를 찾고 그 키워드를 반영하는 응답을 생성하는 모델을 제안한다. 제안 모델은 주어진 입력 발화에서 self-attention을 사용해 각 토큰에 대한 키워드 점수를 구한다. 키워드 점수가 가장 높은 토큰을 대화의 주제 또는 핵심 내용을 포함하는 키워드로 정의하고 응답 생성 과정에서 키워드와 관련된 응답을 생성하도록 한다. 본 논문에서 제안한 대화 모델의 실험 결과 문법과 입력 발화와 생성한 응답의 관련성 측면에서 성능이 향상되었음을 알 수 있었다. 특히 관련성 점수는 본 논문에서 제안한 모델이 비교 모델보다 약 0.25점 상승했다. 실험 결과를 통해 본 논문이 제안한 모델의 우수성을 확인하였다.
-
논문 초록은 논문의 내용을 요약해 제시함으로써 독자들의 연구결과물에 대한 빠른 검색과 이해를 도모한다. 초록의 구성은 대부분 전형적인 경우가 많기 때문에, 초록의 구조를 자동 분석하여 색인해두면 유사구조 초록을 검색하거나 생성하는 등의 연구효율화에 기여할 수 있다. 허세훈 외 (2019)는 초록 자동구조화를 위한 말뭉치 SPA2019 및 기계학습기반의 자동구조화 방법을 제시하였다. 본 연구는, 기존 SPA2019 의 구조화 오류를 바로잡고, SPA2019 에서 추출한 1,346 개의 초록데이터와 2,385 개의 초록데이터를 추가한 SPA2020 말뭉치를 새로이 소개한다. 또한, 다양한 선학습 기반 트랜스포머들을 활용하여 초록 자동구조화를 수행하였으며, 그 결과 BERT-0.86%, RoBERTa-0.86%, ALBERT-0.84%, XLNet-0.86%, DistilBERT-0.85% 등의 자동구조화 성능을 보임을 확인하였다.
-
본 연구에서는 한국어 의미 표상 자원 구축과 의미 파싱 성능 향상을 위한 데이터 자동 증강 방법을 제안하고 수동 구축 결과 대비 자동 변환 정확도를 보인다. 지도 학습 기반의 AMR 파싱 모델이 유의미한 성능에 도달하려면 대량의 주석 데이터가 반드시 필요하다. 본 연구에서는 기성 언어 분석 기술 또는 기존에 구축된 말뭉치의 주석 정보를 바탕으로 Semi-AMR 데이터를 변환해내는 알고리즘을 제시하며, 자동 변환 결과는 Gold-standard 데이터에 대해 Smatch F1 0.46의 일치도를 보였다. 일정 수준 이상의 정확도를 보이는 자동 증강 데이터는 주석 프로젝트에 소요되는 비용을 경감시키는 데에 활용될 수 있다.
-
자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.
-
온라인 공간에서 특정인, 혹은 특정 집단의 사람들을 대상으로 한 혐오 표현은 당사자에게 정신적 고통을 미칠 뿐 아니라 이를 보는 이에게도 간접적인 불쾌함을 유발한다. 이에 관한 문제의식은 사회적으로 공감대가 형성된 바 있지만, 아직 한국어에서는 많은 연구들이 혐오 표현 자체의 논의에 집중하고 있으며, 이는 실제로 관찰되는 혐오 표현들의 자동 탐지 및 예방에는 효과적인 정보를 제공하지 못하는 것이 사실이다. 이에 우리는 실제 온라인 댓글들을 탐구하여 혐오, 모욕 및 사회적 편견을 탐지할 수 있는 모델 학습에 필요한 코퍼스 구축 가이드라인을 제작하였다. 구체적인 사례를 동반한 가이드라인과 크라우드소싱을 바탕으로 약 9천 3백 문장 가량의 코퍼스를 구축하였으며, 해당 데이터에 관한 개요와 함께 우리의 접근 방식이 어떤 점에서 기존의 담론과 연관되어 있는지에 대한 분석을 제시한다.
-
본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.
-
감성 분석은 문장의 감성을 분석해 긍정 또는 부정으로 분류하는 작업을 의미한다. 문장에 담긴 감성을 파악해야 하기 때문에 문장 전체를 이해하는 것이 중요하다. 그러나 한 문장에 긍정과 부정의 이중 극성이 동존하는 문장은 감성 분석에 혼동이 생길 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 단어의 감성 점수 예측을 통해 감성 단어 등장 순서를 고려한 감성 분석 모델을 제안한다. 또한 최근 다양한 자연어 처리 분야에서 좋은 성능을 보이는 사전 학습 언어 모델을 활용한다. 실험 결과 감성 분석 정확도 90.81%로 기존 모델들에 비해 가장 좋은 성능을 보였다.
-
연설문은 구어체와 문어체 두 가지 특성을 모두 갖고 있는 복합적인 데이터 형태이다. 발화자의 문장 표현, 배열, 그리고 결합에 따라 그 구조가 다르기 때문에, 화자 별 갖는 문체적 특성 또한 모두 다르다. 국정을 다루는 정치인들의 연설문은 국정 현황을 포함한 다양한 주요 문제점을 다룬다. 그러면 발화자의 문서 내 문체적 특성을 고려할 경우, 해당 문서가 어느 정치인의 연설문인지 파악 할 수 있는가? 본 연구에서는 대한민국 정책 브리핑 사이트로부터 한국어 기반 사전 학습된 언어 모델을 활용하여 연설문에 대한 미세조정을 진행함으로써 발화자 예측 분류 모델을 생성하고, 그 가능성을 입증하고자 한다. 본 연구는 5-cross validation으로 모델 성능을 평가하였고 KoBERT, KoGPT2 모델에서 각각 90.22%, 84.41% 정확도를 보였다.
-
본 연구에서는 한국어 감성분석 성능 향상을 위한 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph) 패턴문법 기술 프레임에 의존파서 및 LSTM을 적용하는 하이브리드 방법론을 제안하였다. 본 연구에 사용된 DECO-LGG 언어자원을 소개하고, 이에 기반하여 의미 정보를 의존파서(D-PARS)와 페어링하는 한편 OOV(Out Of Vocabulary)의 문제를 LSTM을 통해 해결하여 자질기반 감성분석 결과를 제시하였다. 부트스트랩 방식으로 반복 확장될 수 있는 LGG 언어자원 및 알고리즘을 통해 수행되는 자질기반 감성분석 프로세스는 전용 플랫폼 DecoFESA를 통해 그 범용성을 확장하였다. 실험을 위해서 네이버 쇼핑몰의 '화장품 구매 후기글'을 크롤링하였으며, DecoFESA 플랫폼을 통해 현재 구축된 DECO-LGG 언어자원 기반의 감성분석 성능을 평가하였다. 이를 통해 대용량 언어자원의 구축과 이를 활용하기 위한 어휘 시퀀스 처리 알고리즘의 구현이 보다 정확한 자질기반 감성분석 결과를 제공할 수 있음을 확인하였다.
-
Choi, Gi-Hyeon;Kim, Hark-Soo;Yang, Seong-Yeong;Jeong, Jae-Hong;Lim, Tae-Gu;Kim, Jong-Hoon;Park, Chan-Kyu 327
순차적 문장 분류는 여러 문장들을 입력으로 받아 각 문장들에 대하여 사전 정의된 라벨을 할당하는 작업을 말한다. 일반적인 문장 분류와 대조적으로 기준 문장과 주변 문장 사이의 문맥 정보가 분류에 큰 영향을 준다. 따라서 입력 문장들 사이의 문맥 정보를 반영하는 과정이 필수적이다. 최근, 사전 학습 기반 언어 모델의 등장 이후 여러 자연 언어 처리 작업에서 큰 성능 향상이 있었다. 앞서 언급하였던 순차적 문장 분류 작업의 특성상 문맥 정보를 반영한 언어 표현을 생성하는 사전 학습 기반 언어 모델은 해당 작업에 매우 적합하다는 가설을 바탕으로 ELECTRA 기반 순차적 분류 모델을 제안하였다. PUBMED-RCT 데이터 셋을 사용하여 실험한 결과 제안 모델이 93.3%p로 가장 높은 성능을 보였다. -
개체명 인식이란 문장에서 인명, 지명, 기관명 등과 같이 고유한 의미를 갖는 단어를 찾아 개체명을 분류하는 작업이다. 딥러닝을 활용한 연구가 수행되면서 개체명 인식에 RNN(Recurrent Neural Network)과 CRF(Condition Random Fields)를 결합한 연구가 좋은 성능을 보이고 있다. 그러나 CRF는 시간 복잡도가 분류해야 하는 클래스(Class) 개수의 제곱에 비례하고, 최근 RNN과 Softmax 모델보다 낮은 성능을 보이는 연구도 있었다. 본 논문에서는 CRF의 단점을 보완한 LAN(Label Attention Network)와 사전 학습 언어 모델인 음절 단위 ELECTRA를 활용하는 개체명 인식 모델을 제안한다.
-
음절 기반 모델은 음절 하나가 모델의 입력이 되며, 형태소 분석을 기반으로 하는 모델에서 발생하는 에러 전파(error propagation)와 미등록어 문제를 회피할 수 있다. 개체명 인식은 주어진 문장에서 고유한 의미를 갖는 단어를 찾아 개체 범주로 분류하는 자연어처리 태스크이며, 슬롯 필링(slot filling)은 문장 안에서 의미 정보를 추출하는 자연어이해 태스크이다. 본 논문에서는 자동차 도메인 슬롯 필링 데이터셋을 구축하며, 음절 단위로 한국어 개체명 인식과 슬롯 필링을 수행하고, 성능 향상을 위하여 한국어 대용량 코퍼스를 음절 단위로 사전학습한 ELECTRA 모델 기반 학습방법을 제안한다. 실험 결과, 국립국어원 문어체 개체명 데이터셋에서 F1 88.93%, ETRI 데이터셋에서는 F1 94.85%, 자동차 도메인 슬롯 필링에서는 F1 94.74%로 우수한 성능을 보였다. 이에 따라, 본 논문에서 제안한 방법이 의미있음을 알 수 있다.
-
개체명 인식은 주어진 문장 내에서 OOV(Out of Vocaburary)로 자주 등장하는 고유한 의미가 있는 단어들을 미리 정의된 개체의 범주로 분류하는 작업이다. 최근 개체명이 문장 내에서 OOV로 등장하는 문제를 해결하기 위해 외부 리소스를 활용하는 연구들이 많이 진행되었다. 본 논문은 의미역, 의존관계 분석에 한국어 어휘지도를 이용한 자질을 추가하여 성능 향상을 보인 연구들을 바탕으로 이를 한국어 개체명 인식에 적용하고 평가하였다. 실험 결과, 한국어 어휘지도를 활용한 자질을 추가로 학습한 모델이 기존 모델에 비해 평균 1.83% 포인트 향상하였다. 또한, CRF 단일 모델만을 사용했음에도 87.25% 포인트라는 높은 성능을 보였다.
-
농식품 가격을 안정적으로 제공하기 위해 농식품 가격 변동에 대한 요인 분석이 필요하다. 본 연구는 농식품 가격 변동의 요인 분석을 위해 인과관계 템플릿을 정의하고, 요약을 위한 개체명 인식 방법을 적용한다. 농식품 일일동향 데이터에 대한 평가에서 딥러닝 기반 BiLSTM-CRF 실험 결과 F1-점수 0.93으로 베이스라인 Bi-LSTM 실험 결과 0.75에 비해 높은 성능을 보였다.
-
관용구는 둘 이상의 단어가 결합하여 특정한 뜻을 생성한 어구로 기계번역 시 종종 오역이 발생한다. 이는 관용구가 지닌 함축적인 의미를 정확하게 번역할 수 없는 기계번역의 한계를 드러낸다. 따라서 신경망 기계 번역(Neural Machine Translation)에서 관용구를 효과적으로 학습하려면 관용구에 특화된 번역 쌍 데이터셋과 학습 방법이 필요하다. 본 논문에서는 한-영 관용구 기계번역에 특화된 데이터셋을 이용하여 신경망 기계번역 모델에 관용구를 효과적으로 학습시키기 위해 특정 토큰을 삽입하여 문장에 포함된 관용구의 위치를 나타내는 방법을 제안한다. 실험 결과, 제안한 방법을 이용하여 학습하였을 때 대부분의 신경망 기계 번역 모델에서 관용구 번역 품질의 향상이 있음을 보였다.
-
자연어 처리 응용 시스템이 패러프레이즈 표현을 얼마나 정확하게 포착하는가에 따라 응용 시스템의 성능 측면에서 차이가 난다. 따라서 자연어 처리의 응용 분야 전반에서 패러프레이즈 표현에 대한 중요성이 커지고 있다. 시스템의 성능 향상을 위해서는 모델을 학습시킬 충분한 말뭉치가 필요하다. 특히 이러한 패러프레이즈 말뭉치를 구축하기 위해서는 정확한 패러프레이즈 추출이 필수적이다. 따라서 본 연구에서는 패러프레이즈를 추출을 위한 언어 자원으로 키프레이즈 데이터셋을 제안하고 이를 기반으로 유사한 의미를 전달하는 패러프레이즈 관계의 문장을 추출하였다. 구축한 키프레이즈 데이터셋을 패러프레이즈 추출에 활용한다면 본 연구에서 수행한 것과 같은 간단한 방법으로 패러프레이즈 관계에 있는 문장을 찾을 수 있다는 것을 보였다.
-
글로벌 시대를 맞이하여 언어의 장벽을 해소하기 위하여 기계번역 연구들이 전 세계적으로 이루어지고 있다. 딥러닝의 등장으로 기존 규칙 및 통계기반 방법론에 비하여 눈에 띄는 성능향상을 이루어내고 있으며 많은 연구들이 이루어지고 있다. 인공신경망 기반 기계번역 모델을 만들 때 가장 중요한 요소는 병렬 말뭉치의 양과 질이다. 본 논문은 한-영 대용량의 말뭉치를 수집하고 병렬 말뭉치 필터링 기법을 적용하여 데이터의 양과 질을 충족시켰으며 한-영 기계번역 관련 객관적인 테스트셋인 Iwslt 16, Iwslt 17을 기준으로 기존 한-영 기계번역 관련 연구 중 가장 좋은 성능을 보였다.
-
동시통역은 원천텍스트의 의미를 잘 전달하는 것 뿐만 아니라, 순차통역이나 번역과 달리, 지연 시간없이 즉각적으로 번역하는 것이 매우 중요하다. 따라서 적절한 길이의 지점에서 원천텍스트를 분절해야 한다. 그러나 발화자마다 발화 속도가 서로 다르며, 이 발화 속도는 전체 발화에서 늘 일정하지 않기 때문에, 분절단위의 적절한 길이를 설정하는 것은 상당히 어려운 과제이다. 본 연구에서는 발화자마다 발화 속도가 다른 상황과 발화가 진행되는 동안 실시간으로 발화 속도가 변화하는 상황에 적응 가능한 동시통역 분절 방법론(개인화 기법)을 제안한다. 이를 위해 본 논문에서는 먼저 동시통역 데이터를 이용하여 기준 발화 속도를 설정하였다. 그 다음 이를 원천 발화의 현재 속도와 비교하여 실시간으로 해당 발화자에게 있어 최적의 분절길이가 얼마인지 계산한다. 제안한 개인화 기법의 효력을 검증하기 위해 실험을 진행하였고, 그 결과 개인화를 적용하면 분절 성능이 높아졌다.
-
cross-texting은 실수로 의도하지 않은 상대방에게 메세지를 잘못 전송하는 것을 말한다. 휴대폰 메신저 사용이 활발해짐에 따라 이 같은 실수가 빈번하게 발생하는데 메신저에서 제공하는 기능은 대체로 사후 해결책에 해당하고 사용자가 사전에 실수를 발견하기는 어렵다. 본 논문에서는 사용자가 작성한 문장의 형식적 자질를 분석하여 현재 참여중인 대화에서 작성한 문장이 cross-texting인지를 판별하는 모델을 제안했다. 문장에서 높임법, 표층적 완성도 자질을 추출하고 이를 통해 특정 사용자의 대화를 모델링하여 주어진 문장이 대화에 부합하는지 여부를 판단한다. 이같은 방식은 채팅방의 이전 기록만으로도 사용자가 작성한 문장이 cross-texting인지 여부를 쉽게 판단할 수 있는 힌트를 제공할 수 있다. 실제 메신저 대화 말뭉치를 이용해 제작한 데이터에서 94% 정확도로 cross-texting을 탐지했다.
-
본 연구에서는 AI 어시스턴트의 음악청취 도메인 내 요청문을 인식 및 처리하기 위해 한국어와 중국어를 중심으로 도메인 사전 및 패턴문법 언어자원을 구축하고 그 결과를 비교분석 하였다. 이를 통해 향후 다국어 언어자원 구축의 접근 방법을 모색할 수 있으며, 궁극적으로 패턴 기반 문법으로 기술한 언어자원을 요청문 인식에 직접 활용하고 또한 주석코퍼스 생성을 통해 기계학습 성능 향상에 도움을 줄 수 있을 것으로 기대된다. 본 연구에서는 우선 패턴문법의 구체적인 양상을 살펴보기에 앞서, 해당 도메인의 요청문 유형의 카테고리를 결정하는 과정을 거쳤다. 이를 기반으로 한국어와 중국어 요청문의 실현 양상과 패턴유형을 LGG 프레임으로 구조화한 후, 한국어와 중국어 패턴문법 간의 통사적, 형태적, 어휘적 차이점을 비교분석 하여 음악청취 도메인 요청문의 언어별 생성 구조 차이점을 관찰할 수 있었다. 구축한 패턴문법은 개체명을 변수(X)로 설정하는 경우, 한국어에서는 약 2,600,600개, 중국어에서는 약 11,195,600개의 표현을 인식할 수 있었다. 결과적으로 본 연구에서 제안한 언어자원의 언어별 차이에 대한 통찰을 통해 다국어 차원의 요청문 인식 자원과 기계학습 데이터로서의 효용을 확인하였다.
-
말뭉치를 구성하고 있는 문장들 사이의 관계가 반영된 시각화는 말뭉치 전체의 구조나 유사의미 문장군의 분포 등을 파악하는데 매우 유용하게 활용될 수 있다. 본 연구에서는, 유사한 의미를 가지는 문장들은 서로 가까이에 분포하도록 시각화되어야 한다는 제어조건을 사용자가 제공했을 때, 해당 조건이 만족되도록 2차원 공간에 말뭉치의 각 문장을 시각화하는 기법을 소개한다.
-
산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.
-
뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.
-
본 논문은 아고다 사이트의 호텔 정보를 크롤링하여 사용자의 선호 호텔을 구글에서 제공하는 Tensorflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 호텔을 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 해외(베트남) 호텔을 취향에 맞게 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 파악하고 최적의 호텔 정보를 추천하는 기능을 제공한다. 본 애플리케이션에 사용된 선호 호텔 예측 모델은 약 84%의 정확도를 보이며 추천 별점으로 표시되어 사용자가 각 호텔에 대해 얼마만큼 선호도를 갖는지 알 수 있다.
-
최근 한국어 형태소 분석 및 품사 태깅에 관한 연구는 주로 표층형에 대해 형태소 분리와 품사 태깅을 먼저하고, 추가 언어자원을 사용하여 후처리로 형태소 원형과 품사를 복원해왔다. 본 연구에서는 형태소 분석 및 품사 태깅을 두 단계로 나누어, Sequence-to-Sequence를 활용하여 형태소 원형 복원을 먼저 하고, 최근 자연어처리의 다양한 분야에서 우수한 성능을 보이는 BERT를 활용하여 형태소 분리 및 품사 태깅을 하였다. 본 논문에서는 두 단계를 파이프라인으로 연결하였고, 제안하는 형태소 분석 및 품사 태깅 파이프라인 모델은 음절 정확도가 98.39%, 형태소 정확도 98.27%, 어절 정확도 96.31%의 성능을 보였다.
-
해양에서의 선박사고 발생 횟수는 매년 꾸준히 증가하고 있다. 한국해양안전심판원에서는 이러한 사례들의 판결을 관련 인력들이 공유할 수 있도록 재결서를 제작하여 발간하고 있다. 그러나 선박사고는 2019년 기준 2,971건이 발생하여, 재결서만으로 관련 인력들이 다양한 사건들의 판례를 익히기엔 어려움이 따른다. 따라서 본 논문에서는 문장 표상 기법을 이용한 다중 작업 학습을 이용하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하는 실험을 진행하였다. USE, KorBERT 두 가지의 모델을 2010~2019년 재결서 데이터로 학습하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하였으며 그에 따른 정확도를 비교한 결과, KorBERT 문장 표상을 사용한 분류 모델이 가장 정확도가 높음을 확인했다.
-
다중 도메인 목적 지향 대화에서 기존 딥 러닝을 이용한 대화 상태 추적(Dialog state tracking)은 여러 턴 동안 누적된 사용자와 시스템 간 대화를 입력 받아 슬롯 밸류(Slot value)를 추출하는 모델들이 연구되었다. 하지만 이 모델들은 대화가 길어질수록 연산량이 증가한다. 이에 본 논문에서는 다중 도메인 대화에서 누적된 대화의 history 없이 슬롯 밸류를 추출하는 방법을 제안한다. 하지만, 단순하게 history를 제거하고 현재 턴의 발화만 입력 받는 방법은 문맥 정보의 손실로 이어진다. 따라서 본 논문에서는 도메인 상태(Domain state)를 도입하여 매 턴 마다 대화 상태와 함께 추적하는 모델을 제안한다. 도메인 상태를 같이 추적함으로써 현재 어떠한 도메인에 대하여 대화가 진행되고 있는지를 파악한다. 또한, 함축된 문맥 정보를 담고 있는 이전 턴의 대화 상태와 도메인 상태를 현재 턴의 발화와 같이 입력 받아 정보의 손실을 줄였다. 대표적인 데이터 셋인 MultiWOZ 2.0과 MultiWOZ 2.1에서 실험한 결과, 대화의 history를 사용하지 않고도 대화 상태 추적에 있어 좋은 성능을 보이는 것을 확인하였다. 또한, 시스템 응답과 과거 발화에 대한 의존성을 제거하여 end-to-end 대화 시스템으로의 확장이 좀 더 용이할 것으로 기대된다.
-
딥러닝(Deep-learning) 기반의 자연어 이해(Natural Language Understanding) 기술들은 최근에 상당한 성과를 성취했다. 하지만 딥러닝 기반의 자연어 이해 기술들은 내적인 동작들과 결정에 대한 근거를 설명하기 어렵다. 본 논문에서는 벡터를 그래프로 변환함으로써 신경망의 내적인 의미 표현들을 설명할 수 있도록 한다. 먼저 인간과 기계 모두가 이해 가능한 표현방법의 하나로 그래프를 주요 표현방법으로 선택하였다. 또한 그래프의 구성요소인 노드(Node) 및 엣지(Edge)의 결정을 위한 Element-Importance Inverse-Semantic-Importance(EI-ISI) 점수와 Element-Element-Correlation(EEC) 점수를 심층신경망의 훈련방법 중 하나인 드랍아웃(Dropout)을 통해 계산하는 방법을 제안한다. 다양한 실험들을 통해, 본 연구에서 제안한 벡터-그래프(Vector2graph) 변환 프레임워크가 성공적으로 벡터의 의미정보를 유지하면서도, 설명 가능한 그래프를 생성함을 보인다. 더불어, 그래프 기반의 새로운 시각화 방법을 소개한다.
-
오픈 도메인 질의응답은 주로 관련된 문서를 검색하고 문서 집합에서 정답을 찾는 방식으로 문제를 해결하는 검색 기반 질의응답 방법을 사용한다. 이러한 검색 기반 질의응답은 정답이 검색된 문서 집합에 존재하지 않는 경우 정답을 찾을 수 없다는 한계가 존재하게 된다. 본 연구에서는 NIL-Aware 방법을 이용하여 Unanswerable한 질문인 경우 문서 자원이 아닌 지식 베이스 자원을 활용하는 뉴로-심볼릭 지식 베이스 질의응답과의 결합 모델을 제안하고 한국어 질의응답 데이터에 적용함으로 제안하는 결합 방법의 유의미성을 확인한다.
-
최근 자연어 처리에서는 사전 학습과 전이 학습을 통하여 다양한 과제에 높은 성능 향상을 성취하고 있다. 사전 학습의 대표적 모델로 구글의 BERT가 있으며, 구글에서 제공한 다국어 모델을 포함해 한국의 여러 연구기관과 기업에서 한국어 데이터셋으로 학습한 BERT 모델을 제공하고 있다. 하지만 이런 BERT 모델들은 사전 학습에 사용한 말뭉치의 특성에 따라 이후 전이 학습에서의 성능 차이가 발생한다. 본 연구에서는 소셜미디어에서 나타나는 구어체와 신조어, 특수문자, 이모지 등 일반 사용자들의 문장에 보다 유연하게 대응할 수 있는 한국어 뉴스 댓글 데이터를 통해 학습한 KcBERT를 소개한다. 본 모델은 최소한의 데이터 정제 이후 BERT WordPiece 토크나이저를 학습하고, BERT Base 모델과 BERT Large 모델을 모두 학습하였다. 또한, 학습된 모델을 HuggingFace Model Hub에 공개하였다. KcBERT를 기반으로 전이 학습을 통해 한국어 데이터셋에 적용한 성능을 비교한 결과, 한국어 영화 리뷰 코퍼스(NSMC)에서 최고 성능의 스코어를 얻을 수 있었으며, 여타 데이터셋에서는 기존 한국어 BERT 모델과 비슷한 수준의 성능을 보였다.
-
토큰화(Tokenization)는 사람이 작성한 자연어 문장을 기계가 잘 이해할 수 있도록 최소 단위인 토큰으로 분리하는 작업을 말하여, 이러한 토큰화는 자연어처리 전반적인 태스크들의 전처리에 필수적으로 사용되고 있다. 최근 자연어처리 분야에서 높은 성능을 보이며, 다양한 딥러닝 모델에 많이 활용되고 있는 SentencePiece 토큰화는 여러 단어에서 공통적으로 출현하는 부분단어들을 기준으로, BPE 알고리즘을 이용하여 문장을 압축 표현하는 토큰화 방법이다. 본 논문에서는 한국어 기반 특허 문헌의 초록 자연어 데이터를 기반으로 SentencePiece를 비롯한 여러 토큰화 방법에 대하여 소개하며, 해당 방법을 응용한 기계번역 (Neural Machine Translation) 태스크를 수행하고, 토큰화 방법별 비교 평가를 통해 특허 분야 자연어 데이터에 최적화된 토큰화 방법을 제안한다. 그리고 본 논문에서 제안한 방법을 사용하여 특허 초록 한-영 기계번역 태스크에서 성능이 향상됨을 보였다.
-
최근 성공적인 문법 오류 교정 연구들에는 복잡한 인공신경망 모델이 사용되고 있다. 그러나 이러한 모델을 훈련할 수 있는 공개 데이터는 필요에 비해 부족하여 과적합 문제를 일으킨다. 이 논문에서는 적대적 훈련 방법을 적용해 문법 오류 교정 분야의 과적합 문제를 해결하는 방법을 탐색한다. 모델의 비용을 증가시키는 경사를 이용한 fast gradient sign method(FGSM)와, 인공신경망을 이용해 모델의 비용을 증가시키기 위한 변동을 학습하는 learned perturbation method(LPM)가 실험되었다. 실험 결과, LPM은 모델 훈련에 효과가 없었으나, FGSM은 적대적 훈련을 사용하지 않은 모델보다 높은 F0.5 성능을 보이는 것이 확인되었다.
-
기술의 발전과 함께 사용자에게 가까이 자리 잡은 소셜 네트워크 서비스는 이미지, 동영상, 텍스트 등 활용 가능한 데이터의 수를 폭발적으로 증가시켰다. 작성자의 감정을 포함하고 있는 텍스트 데이터는 시장 조사, 주가 예측 등 다양한 분야에서 이용할 수 있으며, 이로 인해 긍부정의 이진 분류가 아닌 다중 감정 분석의 필요성 또한 높아지고 있다. 본 논문에서는 딥러닝 기반 감정 분류에 심리학 이론의 기반 감정 모델을 활용한 결합 모델과 단일 모델을 비교한다. 학습을 위해 AI Hub에서 제공하는 데이터와 노래 가사 데이터를 복합적으로 사용하였으며, 결과에서는 대부분의 경우에 결합 모델이 높은 결과를 보였다.
-
본 연구는 적대적 예제에 강건한 한국어 패러프레이즈 문장 인식 기술을 다룬다. 구글에서 적대적 예제를 포함하는 PAWS-X 다국어 말뭉치를 공개하였다. 이로써, 한국어에서도 적대적 예제를 다룰 수 있는 실마리가 제공되었다. PAWS-X는 개체 교환형을 대표로 하는 적대적 예제를 포함하고 있다. 이 말뭉치만으로도 개체 교환형 이외의 적대적 예제 타입을 위한 인식 모델을 구축할 수 있을지, 다앙한 타입의 실(real) 패러프레이즈 문장 인식에서도 적용할 수 있는지, 학습에 추가적인 타입의 패러프레이즈 데이터가 필요한지 등에 대해 다양한 실험을 통해 알아보고자 한다.
-
문서 요약은 입력 문서의 핵심 내용을 파악하여 짧고 간결한 문장으로 나타내는 과정이다. 최근에는 문서 요약을 위해 사전 학습된 언어 모델을 이용하는 방식이 여럿 제안되고 있지만, 이러한 언어 모델들은 문서 요약의 특성을 고려하지 않고 설계된 입력 노이즈 방식을 사용하는 한계점이 있다. 본 논문에서는 한국어 문서 추상 요약에 사전 학습 언어 모델인 BART를 도입하고, 입력 문서에 무작위 문장을 삽입하는 노이징 방식을 추가하여 문서 추상 요약 모델의 언어 이해 능력을 향상시키는 방법론을 제안한다. 실험 결과, BART를 도입한 문서 요약 모델의 결과는 다른 요약 모델들의 결과에 비해 전반적으로 품질 향상을 보였으며, BART와 함께 무작위 문장을 삽입하는 노이징 방법은 적은 비율로 삽입하는 경우 추가적인 성능 향상을 보였다.
-
매일 게시되는 다양한 프로야구 관련 기사에는 경기 결과, 각종 기록, 선수의 부상 등 다양한 정보가 뒤섞여있어, 사용자가 원하는 정보를 찾아내는 과정이 매우 번거롭다. 본 논문에서는 문서 검색과 기계 독해를 이용하여 야구 분야에 대한 Q&A 시스템을 제안한다. 기사를 형태소 분석하고 BM25 알고리즘으로 얻은 문서 가중치로 사용자 질의에 적합한 기사들을 선정하고 KorQuAD 1.0과 직접 구축한 프로야구 질의응답 데이터셋을 이용해 학습시킨 BERT 모델 기반 기계 독해로 답변 추출을 진행한다. 야구 특화 데이터 셋을 추가하여 학습시켰을 때 F1 score, EM 모두 15% 내외의 정확도 향상을 보였다.
-
대역사전의 구축은 저자원 언어쌍 간의 기계번역의 품질을 높이는데 있어 중요하다. 대역사전 구축을 위해 기존에 제시된 방법론 중 단어 임베딩을 기반으로 하는 방법론 대부분이 영어-프랑스어와 같이 형태적 및 구문적으로 유사한 언어쌍 사이에서는 높은 성능을 보이지만, 영어-중국어와 같이 유사하지 않은 언어쌍에 대해서는 그렇지 못하다는 사실이 널리 알려져 있다. 본 논문에서는 단어 임베딩을 기반으로 부트스트래핑을 통해 대역사전을 구축하는 방법론을 제안한다. 제안하는 방법론은 소량의 seed 사전으로부터 시작해 반복적인 과정을 통해 대역사전을 자동으로 구축하게 된다. 이후, 본 논문의 방법론을 이용해 한국어-영어 언어쌍에 대한 실험을 진행하고, 기존에 대역사전 구축 용도로 많이 활용되고 있는 도구인 Moses에 사용된 방법론과 F1-Score 성능을 비교한다. 실험 결과, F1-Score가 약 42%p 증가함을 확인할 수 있었으며, 초기에 입력해준 seed 사전 대비 7배 크기의 대역사전을 구축하였다.
-
시각적 질의응답(Visual Question Answering, VQA)은 주어진 이미지에 연관된 다양한 질문에 대한 올바른 답변을 예측하는 기술이다. 해당 기술은 컴퓨터 비전-자연어 처리 연구분야에서 활발히 연구가 진행되고 있으며, 질문의 의도를 정확히 파악하고, 주어진 이미지에서 관련 단서 정보를 찾는 것이 중요하다. 또한, 서로 이질적인 특성을 지닌 정보(이미지 객체, 객체 위치, 질문)를 통합하는 과정도 중요하다. 본 논문은 질문의 의도에 알맞은 정보를 효율적으로 사용하기 위해 멀티 모달 입력 이미지 객체, 객체 위치, 질문)에 대한 Multi-modal Message Aggregation (MMA) 제안하며 이를 통해 한국어 시각적 질의응답 KVQA에서 다른 모델보다 더 좋은 성능을 확인하였다.
-
개체명 인식에 적용된 대부분의 신경망 모델들에서 CRFs와 결합을 통해 성능 향상을 하였다. 그러나 최근 대용량 데이터로 사전 학습한 모델을 활용하는 경우, 기 학습된 많은 유의미한 파라미터들로 인해 CRFs의 영향력이 비교적 작아졌다. 따라서 본 논문에서는 한국어 대용량 말뭉치로 사전 학습한 ELECTRA 모델에서의 CRFs 가 개체명 인식에 미치는 영향을 확인해보고자 한다. 모델의 입력 단위로 음절 단위와 Wordpiece 단위로 사전 학습된 두 가지의 모델을 사용하여 미세 조정을 통해 개체명 인식을 학습하였다. 실험을 통해서 두 모델에 대하여 각각 CRFs 층의 유무에 따른 성능을 비교해 보았다. 그 결과로 ELECTRA 기반으로 사전 학습된 모델에서 CRFs를 통한 F1-점수 향상을 보였다.
-
'-느라고'의 후행절 부정 의미 제약에 대하여 연구자들마다 의견을 달리하고 있지만 대부분의 교육 교재는 다수의 연구 내용을 반영하여 '-느라고'의 후행절에 부정 의미 제약이 있다고 제시하고 있다. 하지만 교육 교재에서 후행절에 부정 의미의 제약이 없다는 연구 내용이 배제되어야 한다면 이를 위한 심층적인 논의가 필요하며 타당한 근거가 있음을 밝혀야 한다. 본 연구는 '-느라고'의 후행절 부정 의미 제약에 대해 상반된 주장이 나오게 된 것에 주목하여 실제로 '-느라고'가 후행절 부정 의미 제약을 갖는지, 만약 제약을 갖지 않는다면 그 이유는 무엇인지 밝히고자 하였다. 이를 위해 세종 문어 원시 말뭉치에서 '-느라고'의 문장 1,601개를 추출하고 혹시 있을지 모를 통시적 변화를 제거하기 위해 교육 교재들이 집필된 2000년대의 문장만 선별하여 후행절의 의미를 확인하였다. 그 결과 323개의 문장 중 98개 문장, 33.3%가 후행절에 부정적인 의미를 갖지 않고 있는 것을 확인되었다. 이는 '-느라고'가 단순히 후행절 부정 의미 제약을 갖는다고 할 수 있는 수치가 아니었다. 부정 제약의 범위를 파악하기 위해 문장의 의미를 살펴 목적의 의미를 갖는 '-느라고'와 이유의 의미를 갖는 '-느라고'로 분류하였다. 이렇게 분류한 '-느라고'의 후행절을 다시 분석한 결과 이유의 '-느라고'에서는 후행절 부정 제약이 실현되고 있었지만 목적의 '-느라고'에서는 부정 제약이 발견되지 않았다. 따라서 '-느라고'가 이유와 목적의 의미를 가지며 이유의 '-느라고'로 실현될 때에만 부정 의미 제약을 갖는다는 보다 심층적이고 구체적인 연구 결과 얻어 냈다.
-
AI와 사용자간의 대화를 통해 사용자의 요구사항을 파악하고, 해당 요구사항에 적합한 상품을 추천하는 형상을 인터랙션 기반 추천 시스템의 한 예로 볼 수 있다. 우리는 해당 시스템 개발을 위하여 의상 코디셋 추천을 위한 대화 기반 데이터셋을 구축하였다. 데이터셋은 대화와 의상 추천 절차를 반복하여 사용자가 원하는 의상셋을 찾아가는 내용으로 구성된다. 그리고, AI의 코디셋 추천 기술 검증을 위해 두가지 의상 추천 평가셋을 제안한다. 본 논문은 대화 데이터셋 및 관련 평가셋의 개발 절차 및 구성에 대하여 기술하고, 관련된 실험 결과 일부를 보여준다.
-
키워드 구문 추출(Keyphrase extraction)은 각 문서에서 내용과 주제를 포괄하는 핵심 단어 또는 구문을 추출하는 것을 말한다. 이는 뉴스나 논문에서 중요한 정보를 추출하는 데 매우 중요한 역할을 한다. 본 논문에서는 기존 catSeq 모델에 한국어로 학습한 RoBERTa 언어 모델을 적용하고 개체 연결 정보를 활용해 기존 키워드 생성 디코더와 개체 연결된 단어의 키워드 여부 분류 디코더, 즉 듀얼 디코더를 사용하는 모델을 제안하고 직접 구축한 한국어 키워드 추출 데이터에 대한 각 모델의 성능을 비교한다.
-
최근 언어 모델(Language model)의 기술이 발전함에 따라, 자연어처리 분야의 많은 연구들이 좋은 성능을 내고 있다. 정해진 주제 없이 인간과 잡담을 나눌 수 있는 오픈 도메인 대화 시스템(Open-domain dialogue system) 분야에서 역시 이전보다 더 자연스러운 발화를 생성할 수 있게 되었다. 언어 모델의 발전은 응답 선택(Response selection) 분야에서도 모델이 맥락에 알맞은 답변을 선택하도록 하는 데 기여를 했다. 하지만, 대화 모델이 답변을 생성할 때 일관성 없는 답변을 만들거나, 구체적이지 않고 일반적인 답변만을 하는 문제가 대두되었다. 이를 해결하기 위하여 화자의 개인화된 정보에 기반한 대화인 페르소나(Persona) 대화 데이터 및 태스크가 연구되고 있다. 페르소나 대화 태스크에서는 화자마다 주어진 페르소나가 있고, 대화를 할 때 주어진 페르소나와 일관성이 있는 답변을 선택하거나 생성해야 한다. 이에 우리는 대용량의 코퍼스(Corpus)에 사전 학습(Pre-trained) 된 언어 모델을 활용하여 더 적절한 답변을 선택하는 페르소나 대화 시스템에 대하여 논의한다. 언어 모델 중 자기 회귀(Auto-regressive) 방식으로 모델링을 하는 GPT-2, DialoGPT와 오토인코더(Auto-encoder)를 이용한 BERT, 두 모델이 결합되어 있는 구조인 BART가 실험에 활용되었다. 이와 같이 본 논문에서는 여러 종류의 언어 모델을 페르소나 대화 태스크에 대해 비교 실험을 진행했고, 그 결과 Hits@1 점수에서 BERT가 가장 우수한 성능을 보이는 것을 확인할 수 있었다.
-
뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.
-
질의 난이도 분석 문제는 자연어 질의문을 답변할 때 어려움의 정도를 측정하는 문제이다. 질의 난이도 분석 문제는 문서 독해, 의학 시험, 비디오 질의 등과 같은 다양한 데이터셋에서 연구되어 왔다. 본 논문에서는 질의문과 질의문에 응답하기 위한 정보들 간의 관계를 파악하는 것으로 질의 난이도 분석 문제를 접근하여 이를 BERT와 Dual Multi-head Attention을 사용하여 모델링 하였다. 본 논문에서 제안하는 모델의 우수성을 증명하기 위하여 최근 자연언어이해 부분에서 높은 성능을 보여주는 기 학습 언어 모델과 이전 연구의 질의 난이도 분석 모델과의 성능을 비교하였고, 제안 모델은 대표적인 비디오 질의 응답 데이터셋인 DramaQA의 Memory Complexity에서 99.76%, Logical Complexity에서는 89.47%의 정확도로 가장 높은 질의 난이도 분석 성능을 보여주었다.
-
Park, Jeiyoon;Yang, Kisu;Park, Yewon;Lee, Moongi;Lee, Sangwon;Lim, Sooyeon;Cho, Jaehoon;Lim, Heuiseok 507
오픈 도메인 대화에서 텍스트에 나타난 태도나 성향과 같은 화자의 주관적인 감정정보를 분석하는 것은 사용자들에게서 풍부한 응답을 이끌어 내고 동시에 제공하는 목적으로 사용될 수 있다. 하지만 한국어 감성분석에서 기존의 대부분의 연구들은 긍정과 부정 두개의 클래스 분류만을 다루고 있고 이는 현실 화자의 감정 정보를 정확하게 분석하기에는 어려움이 있다. 또한 최근에 오픈한 다중클래스로된 한국어 대화 감성분석 데이터셋은 중립 클래스가 전체 데이터셋의 절반을 차지하고 일부 클래스는 사용하기에 매우 적은, 다시 말해 클래스 간의 데이터 불균형 문제가 있어 다루기 굉장히 까다롭다. 이 논문에서 우리는 일곱개의 클래스가 존재하는 한국어 대화에서 세션들을 효율적으로 분류하는 기법들에 대해 논의한다. 우리는 극심한 클래스 불균형에도 불구하고 76.56 micro F1을 기록하였다. -
구묶음은 문장을 겹치지 않는 문장 구성 성분으로 나누는 과정으로, 구묶음 방법에 따라 구문분석, 관계 추출 등 다양한 하위 태스크에 사용할 수 있다. 본 논문에서는 문장의 키워드를 추출하기 위한 구묶음 방식을 제안하고, 키워드 단위 구묶음 데이터를 구축하기 위한 가이드라인을 제작하였다. 해당 가이드라인을 적용하여 구축한 데이터와 BERT 기반의 모델을 이용하여 학습 및 평가를 통해 구축된 데이터의 품질을 측정하여 78점의 F1점수를 얻었다. 이후 패턴 통일, 형태소 표시 여부 등 다양한 개선 방법의 적용 및 재실험을 통해 가이드라인의 개선 방향을 제시한다.
-
본 논문에서는 목적 지향 대화 시스템을 위한 대화 상태 추적 시스템과 사용자 시뮬레이터를 설계 및 제안한다. 사용자 시뮬레이터는 작성된 대화 상태 추적 시스템을 평가하기 위한 용도로 사용된다. 본 논문에서 제안하는 대화 상태 추적 시스템은 대화 기록과 함께 사전에 학습된 대화 기록 및 규칙/통계 기반 추론 시스템의 추론 결과를 입력으로 받는다. 그리고 입력된 발화 기록 중 마지막 사용자 발화의 사용자 목표와 개체명 그리고 다음 시스템 발화의 화행을 추론한다. 또한, 작성된 대화 상태 추적기의 성능을 평가하고 분석하기 위해, 주어진 환경에서 시스템과 대화를 수행하며 대화 시스템의 성능을 평가하는 사용자 시뮬레이터를 구현 및 적용하였다. 본 연구에서 수행된 실험과 분석을 통해, 규칙 및 통계 기반의 기반 시스템을 이용해 목표 시스템의 성능 개선이 가능함을 보인다. 또한, 제안하는 사용자 시뮬레이터는 규칙과 통계를 이용해 평가 코퍼스 없이 여러 상황에 대해 대화 시스템의 성능을 평가할 수 있다.
-
챗봇은 발화에 대해 컴퓨터가 자동으로 응답하는 시스템이다. 현재 챗봇은 전체 주제에 대한 잡담(chit-chat)보다는 특정 주제에 관한 대화를 목적으로 많이 개발되고 있다. 하지만 개개인이 필요로 하는 챗봇 용도에 적합한 학습 데이터는 부족하다. 이러한 상황에서 챗봇 학습을 위해 필요한 주제의 말뭉치를 대량으로 구축하는 것은 시간과 비용이 많이 소모되어 현실적으로 어렵다. 따라서 학습에 필요한 소량의 말뭉치만 사용하더라도 주제에 적합한 응답을 할 수 있는 챗봇이 필요하다. 이에 본 논문은 챗봇의 목적과 관련 없는 대량의 말뭉치와 소량의 주제 기반 말뭉치를 이용하여 높은 성능을 끌어낼 수 있는 주제 임베딩 방법을 제안한다.
-
인공신경망 기반 기계번역(Neural Machine Translation, NMT)이란 딥러닝(Deep learning)을 이용하여 출발 언어의 문장을 도착 언어 문장으로 번역해주는 시스템을 일컫는다. NMT는 종단간 학습(end-to-end learning)을 이용하여 기존 기계번역 방법론의 성능을 앞지르며 기계번역의 주요 방법론으로 자리잡게 됐다. 이러한 발전에도 불구하고 여전히 개체(entity), 또는 전문 용어(terminological expressions)의 번역은 미해결 과제로 남아있다. 개체나 전문 용어는 대부분 명사로 구성되는데 문장 내 명사는 주체, 객체 등의 역할을 하는 중요한 요소이므로 이들의 정확한 번역이 문장 전체의 번역 성능 향상으로 이어질 수 있다. 따라서 본 논문에서는 지식그래프(Knowledge Graph)를 이용하여 심볼릭 지식을 NMT와 결합한 뉴럴심볼릭 방법론을 제안한다. 또한 지식그래프를 활용하여 NMT의 성능을 높인 선행 연구 방법론을 한영 기계번역에 이용할 수 있도록 구조를 설계한다.
-
다양한 발화를 모델링하는 요구는 자연어 처리 분야에서 꾸준히 있었으며 단어, 구 또는 문장과 동등한 의미 콘텐츠를 자동으로 식별하고 생성하는 것은 자연어 처리의 중요한 부분이다. 본 논문에서는 포인터 생성 네트워크(Pointer Generate Nework)를 이용하여 패러프레이즈 생성 모델을 제안한다. 제안한 모델의 성능을 측정하기 위해 사람이 직접 구축한 유사 문장 코퍼스를 이용하였으며, 토큰 단위의 BLEU-4 0.250, ROUGE_L 0.455, CIDEr 2.190의 성능을 보였다. 하지만 입력 문장과 동일한 문장을 출력하는 문제점이 존재하여 빔서치(beam search)를 적용하여 입력 문장과 비교하여 생성 문장을 선택하는 방식을 적용하였다. 입력 문장과 동일한 문장을 제외한 문장으로 평가를 진행했으며, 토큰 단위의 BLEU-4 0.234, ROUGE_L 0.459, CIDEr 2.041의 성능을 보였으나, 패러프레이즈 생성 데이터 양이 크게 증가하였다. 본 연구는 문장 간의 의미적으로 동일한 정보를 정확하게 추출할 수 있게 됨으로써 정보 추출, 온톨로지 생성에 도움이 될 것이다. 또한 이러한 기법이 챗봇에서 사용자의 의도 탐지 및 MRC와 같은 자연어 처리의 여러 분야에 유용한 자원으로 사용될 것이다.
-
코로나 19와 관련한 다양한 정보 확인 욕구를 충족하기 위해 한국어 뉴스 데이터 기반의 질의응답 챗봇을 설계하고 구현하였다. BM25 기반의 문서 검색기, 사전 언어 모형인 KoBERT 기반의 문서 독해기, 정답 생성기의 세 가지 모듈을 중심으로 시스템을 설계하였다. 뉴스, 위키, 통계 정보를 수집하여 웹 기반의 챗봇 인터페이스로 질의응답이 가능하도록 구현하였다. 구현 결과는 http://demo.tmkor.com:36200/mrcv2 페이지에서 접근 및 사용을 할 수 있다.
-
자연어 처리에서 기계번역은 가장 많이 사용되고 빠르게 발전하고 있다. 기계번역에 있어서 사람의 평가가 가장 정확하고 중요하지만 많은 시간과 비용이 발생된다. 이에 기계번역을 자동 평가하는 방법들이 많이 제안되어 사용되고 있지만, 한국어 특성을 잘 반영한 자동평가 방법은 연구되지 않고 있다. BLEU와 같은 자동평가 방법을 많이 사용하고 있지만 언어의 특성 차이로 인해 원하는 평가결과를 얻지 못하는 경우가 발생하며, 특히 특허나 논문과 같은 기술문서의 번역에서는 더 많이 발생한다. 이에 본 논문에서는 단어의 정밀도와 어순이 평가에 영향이 있는 RIBES를 가지고 특허 기계 번역에서 영어→한국어로 기계 번역된 결과물의 자동평가에 대해 사람의 평가와 유사한 결과를 얻기 위해 tokenization 과정에서 복합 형태소 분리를 통한 평가방법을 제안하고자 한다.
-
우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.
-
최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.
-
본 논문에서는 한국어 입력 텍스트의 의미를 반영하는 색상 팔레트를 생성하는 방법을 제안한다. 기존 영문 모델에서 한국어의 특수성을 고려하여 입력 방법과 형태소 분석, 임베딩 등 여러 조건을 달리한 접근을 시도하고 최종적으로 두개의 모델을 선정하여 평가를 진행한다. 정량적 평가인 단일 팔레트 다양성 평가와 정성적 평가인 사용자 평가를 진행하였으며 결과 기존 영문 버전보다 다양성이 높았고 사용자가 실제 팔레트 보다 생성된 팔레트를 선호하는 비율도 향상되었다. 이번 연구로 한국어 임베딩을 활용하여 팔레트를 생성하였을 때 보다 다양한 색상과 의미적으로도 적합한 색상을 선정함을 확인할 수 있었다.
-
본 연구에서는 블랙박스로 알려진 딥러닝 모델에 설명 근거를 제공할 수 있는 설명자 모델을 적용해 보았다. 영화평 감성 분석을 위해 MLP, CNN으로 구성된 딥러닝 모델과 결정트리의 앙상블인 Gradient Boosting 모델을 이용하여 감성 분류기를 구축하였다. 설명자 모델로는 기울기(gradient)을 기반으로 하는 IG와 레이어 사이의 가중치(weight)을 기반으로 하는 CAM, 그리고 설명가능한 대리 모델을 이용하는 LIME과 입력 속성에 대한 선형모델을 추정하는 SHAP을 사용하였다. 설명자 모델의 특성을 보기 위하여 히트맵과 관련성 높은 N개의 속성을 추출해 보았다. 설명자가 제공하는 기여도에 따라 입력 속성을 제거해 가며 분류기 성능 변화를 측정하는 정량적 평가도 수행하였다. 또한, 사람의 판단 근거와의 일치도를 살펴볼 수 있는 '설명 근거 정확도'라는 새로운 평가 방법을 제안하여 적용해 보았다.
-
시맨틱 파싱은 주어진 자연어 발화를 domain specific language(DSL)를 따르는 프로그램으로 변환하는 방법이다. 시맨틱 파서가 다형성을 가지는 DSL을 사용할 경우, 적은 수의 토큰으로 다양한 프로그램을 출력할 수 있지만, 탐색 공간이 넓어진다는 문제가 있다. 본 연구에서는 해당 문제를 완화하기 위해 다형성을 가지는 DSL의 타입 시그니처를 제한하는 방법을 제안한다. 해당 방법은 sequence-to-sequence 기반의 시맨틱 파싱 성능을 향상시키는데 효율적임을 보였다.
-
일관된 발화를 생성함에 있어 인격데이터(persona)의 도입을 이용한 연구가 활발히 진행되고 있지만, 한국어 데이터셋의 부재와 데이터셋 생성의 어려움이 문제점으로 지적된다. 본 연구에서는 인격데이터를 포함하지 않고 일관된 발화를 생성할 수 있는 방법으로 다중 대화 시스템에서 사전 학습된 자연어 추론(NLI) 모델을 도입하는 방법을 제안한다. 자연어 추론 모델을 이용한 관계 분석을 통해 과거 대화 내용 중 발화 생성에 이용할 대화를 선택하고, 자가 참조 모델(self-attention)과 다중 어텐션(multi-head attention) 모델을 활용하여 과거 대화 내용을 반영한 발화를 생성한다. 일관성 있는 발화 생성을 위해 기존 NLI데이터셋으로 수행할 수 있는 새로운 학습모델 nMLM을 제안하고, 이 방법이 일관성 있는 발화를 만드는데 기여할 수 있는 방법에 대해 연구한다.
-
제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.
-
현재까지 한국어 맞춤법 교정 Task는 대부분 규칙기반 및 통계기반 방식의 연구가 진행되었으며 최근 딥러닝 기반의 한국어 맞춤법 교정에 대한 연구가 진행되고 있다. 맞춤법 교정에서 문법적 또는 철자적으로 틀린 부분을 교정하는 것도 중요하지만 올바른 문장이 입력으로 들어왔을 때 교정을 진행하지 않고 올바른 문장을 출력으로 내보내는 것 또한 중요하다. 규칙기반 맞춤법 교정기 같은 경우 문장의 구조를 흐트러트리지 않고 규칙에 부합하는 오류 부분만 고쳐낸다는 장점이 있으나 신경망 기반의 한국어 맞춤법 교정 같은 경우 Neural Machine Translation(NMT)의 고질적인 문제점인 반복 번역, 생략, UNK(Unknown) 때문에 문장의 구조를 흐트러트리거나 overcorrection(과교정) 하는 경우가 존재한다. 본 논문은 이러한 한계점을 극복하기 위하여 Correct to Correct Mechanism을 제안하며 이를 통해 올바른 문장이 입력으로 들어왔을 시 올바른 문장을 출력하는 성능을 높인다.
-
본 연구에서는 가짜 뉴스 탐지를 위한 데이터를 구축하고, 내용 기반의 탐지를 위한 시스템을 제안하였으며, 뉴스의 각 요소 정보가 탐지 성능에 미치는 영향을 확인하였다. 이는 기존의 내용 기반 가짜 뉴스 탐지 방법론들의 단점을 보완할 뿐 아니라 뉴스의 요소 정보가 진위 판별에 미치는 영향을 확인하기 위함이었다. 이를 위해 직접 구축한 뉴스 데이터의 제목과 본문을 따로 인코딩하여 판별하였고, 각 요소를 배제한 실험을 통해 뉴스 제목이 가장 중요한 요소 정보임을 확인하였다. 결과적으로 자극적인 제목으로 이목을 끌려는 가짜 뉴스의 속성을 정량적으로 확인할 수 있었다.
-
담화에서 의미를 전달하는 데 문제가 없을 경우에는 문장성분을 생략하여 표현한다. 생략된 문장성분을 무형대용어(zero anaphora)라고 한다. 무형대용어를 복원하기 위해서는 무형대용어 탐지와 무형대용어 해결이 필요하다. 무형대용어 탐지란 문장 내에서 생략된 필수성분을 찾는 것이고, 무형대용어 해결이란 무형대용어에 알맞은 문장성분을 찾아내는 것이다. 본 논문에서는 담화에서의 무형대용어 탐지 및 해결을 위한 말뭉치 생성 방법을 제안한다. 먼저 기존의 세종 구어 말뭉치에서 어휘지도를 이용하여 무형대용어를 복원한다. 이를 위해 본 논문에서는 동형이의어 부착과 어휘지도를 이용해서 무형대용어를 복원하고 복원된 무형대용어에 대한 오류를 수정하고 그 선행어(antecedent)를 수동으로 결정함으로써 무형대용어 해결 말뭉치를 생성한다. 총 58,896 문장에서 126,720개의 무형대용어를 복원하였으며, 약 90%의 정확률을 보였다. 앞으로 심층학습 등의 방법을 활용하여 성능을 개선할 계획이다.
-
빅데이터 시대에서 대용량 문서의 의미를 자동으로 파악하기 위해서는 문서 내에서 주제 및 내용을 포괄하는 핵심 단어가 키워드 단위로 추출되어야 한다. 문서에서 키워드가 될 수 있는 단위는 복합명사를 포함한 단어가 될 수도, 그 이상의 묶음이 될 수도 있다. 한국어는 언어적 특성상 구묶음 개념이 적용되는 데, 이를 통해 주요 키워드가 될 수 있는 말덩이 추출이 가능하다. 따라서 본 연구에서는 문서에서 단어뿐만 아니라 다양한 단위의 키워드 묶음을 태깅하는 가이드라인 정의를 비롯해 태깅도구를 활용한 코퍼스 구축 방법론을 고도화하고, 그 방법론을 실제로 뉴스 도메인에 적용하여 주석 말뭉치를 구축함으로써 검증하였다. 본 연구의 결과물은 텍스트 문서의 내용을 파악하고 분석이 필요한 모든 텍스트마이닝 관련 기술의 기초 작업으로 활용 가능하다.