Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1F1A1061433).
한국어의 품사 태깅 문제는 입력 어절의 형태소 분석 후보들로부터 통계적으로 적절한 품사 태그를 가지는 후보들을 찾는 방식으로 해결하여 왔다. 어절을 형태소 단위로 분리하고 품사를 부착하는 기존의 방식은 품사태그 정보를 딥러닝 feature로 사용할 때 문장의 의미를 이해하는데 복잡도를 증가시키는 요인이 된다. 본 연구에서는 품사 태깅 문제를 단순화 하여 한 어절을 Head와 Tail이라는 두 가지 유형의 형태소 토큰으로 분리하여 Head와 Tail에 대해 품사를 부착한다. Head-Tail 품사 태깅 방법을 Sequence-to-Sequence 문제로 정의하여 Transformer를 이용한 Head-Tail 품사 태거를 설계하고 구현하였다. 학습데이터로는 KCC150 말뭉치의 품사 태깅 말뭉치 중에서 788만 문장을 사용하고, 실험 데이터로는 10만 문장을 사용하였다. 실험 결과로 토큰 정확도는 99.75%, 태그 정확도는 99.39%, 토큰-태그 정확도는 99.31%로 나타났다.
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1F1A1061433).