Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2021.10a
- /
- Pages.444-449
- /
- 2021
- /
- 2005-3053(pISSN)
A Comparative Study on the Performance of Korean Sentence Embedding
Word2Vec, GloVe 및 RoBERTa 등의 모델을 활용한 한국어 문장 임베딩 성능 비교 연구
- Seok, Juree (Korea University) ;
- Lim, Heuiseok (Korea University)
- Published : 2021.10.14
Abstract
자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.