2015.10a
-
최근에 ISO/TC 37/SC 4 산하의 Working Group 2 Semantic annotation에서 자연언어의 의미주석에 관한 4 개의 국제표준을 완성하여 출판하였다. 그 중에서 2 개의 국제표준 ISO 24617-1 SemAF-Time(ISO-TimeML)[1]과 24617-7 ISOspace[2]를 간략히 소개하는 것이 이 발표의 목적이다. 자연언어 텍스트에서 전자는 사건과 관련된 시간 정보를 주석처리하고, 후자는 사건(event), 특히 운동(motion)과 관련된 공간 정보를 주석 처리하는 주석체계(annotation scheme)들을 구축, 기술하는 명세언어(specification language)이다. 이 표준들은 또한 ISO 24612:2012 LAF (Linguistic annotation framework)[3]의 제약조건들을 준수하며 언어 주석체계를 구축하였다. 오늘의 발표는 이들 두 개의 국제표준에 준한 주석체계들 ASisoTime과 ASisoSpace가 LAF를 따라 어떻게 구축되었는지 그 추상통사구조(abstract syntax)를 명시하고, 의미주석체계로서의 이들 주석체계의 타당성을 보이기 위하여 주석기반의 의미형식(semantic form)들을 체계적으로 도출하는 과정을 또한 보이도록 한다.
-
의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 구구조 정보와 의존 구조 정보 등의 다양한 자질에 대한 실험이 있었다. 논항은 구문 구조에서 얻을 수 있는 서술어와 논항 관계에 많은 영향을 받지만 구문 구조가 변경되어도 변하지 않는 논항의 의미로 인해 의미역 결정에 어려운 점이 있다. 본 논문에서는 한국어 의미역 결정 문제를 위해 Korean Propbank 말뭉치와 직접 구축한 의미역 말뭉치를 학습 말뭉치로 사용하였다. 본 논문에서는 이전에 연구된 구문 정보와 그 외의 자질들에 대한 성능을 검증하였다. 본 논문에서 제시하는 자질들의 성능을 검증하기 위해 CRF를 사용하였고, 제시된 새로운 자질을 사용하여 논항의 인식 및 분류에서 76.25%(F1)의 성능을 보였다.
-
Choi, Yong-Seok;Choi, Han-Na;Shin, Ji-Hye;Jeong, Chang-Min;An, Jung-Yeon;Yoo, Chae-Young;Im, Chae-Eun;Lee, Kong-Joo 15
본 논문은 낚시성 기사 제목과 비낚시성 기사 제목을 판별하기 위한 시스템을 제시한다. 서포트 벡터 머신(SVM)을 이용하여 기사 제목을 분류하며, 분류하는 기준은 딥러닝 기법중의 하나인 워드임베딩(Word Embedding), 군집화 알고리즘 중 하나인 K 평균 알고리즘(K-means)을 이용한다. 자질로서 기사 제목의 단어를 사용하였으며, 정확도가 83.78%이다. 결론적으로 낚시성 기사 제목에는 낚시를 유도하는 특별한 단어들이 존재함을 알 수 있다. -
기계학습 기반의 의미역 인식에서 주로 어휘, 구문 정보가 자질로 주로 쓰이지만, 의미 정보를 분석하는 의미역 인식은 단어의 의미 정보 또한 매우 주요한 정보이다. 그러나, 기존 연구에서는 의미 정보를 활용할 수 있는 방법이 제한되어 있기 때문에, 소수의 연구만 진행되었다. 본 논문에서는 동형이의어 수준의 의미 애매성 해소 기술, 고유 명사에 대한 개체명 인식 기술, 의미 정보에 기반한 필터링, 유의어 사전을 이용한 클러스터 및 기존 프레임 정보를 확장하는 방법을 제안한다. 제안하는 방법은 기존 연구 대비 뉴스 도메인인 Korean Propbank는 3.14, 위키피디아 문서 기반의 WiseQA 평가셋인 GS 3.0에서는 6.57의 성능 향상을 보였다.
-
본 논문에서는 한국어 트리플 생성 시스템의 정확도를 향상시키기 위한 distant supervision 기반의 신뢰도 측정 방법을 제안한다. 기존의 많은 패턴 기반의 트리플 생성 시스템에는 distant supervision의 기본 가정으로 인해 다수의 오류 패턴이 발생할 여지가 크다. 기존의 연구에서는 오류 패턴을 제거하기 위하여 발생 빈도, 공기 횟수 등의 통계에 기반하여 간접적으로 신뢰도를 측정하였다. 본 논문에서는 한국어 패턴과 영어 프로퍼티 사이의 의미 유사도를 측정함으로써 통계에 기반한 방법보다 더 정확한 신뢰도 측정 방법을 제안한다. 비지도 학습 방법인 워드임베딩을 활용하여 어휘의 의미를 학습하고, 이들 사이의 유사도를 측정한다. 한국어 패턴과 영어 프로퍼티의 어휘 불일치 문제를 해결하기 위하여 정준상관분석을 활용하였다. 실험 결과에 따르면 본 논문에서 제안한 패턴 신뢰도 측정 방법은 통계 기반의 방법에 비해 정확률이 9%나 더 높은 트리플 집합을 생성함을 보여주어, 의미 유사도를 반영한 신뢰도 측정이 기존의 통계 기반 신뢰도 측정보다 고품질 트리플 생성에 더 적합함을 확인하였다.
-
본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질의 유형 정보를 이용한 LDA 기반 질의 확장 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출한다. UMLS와 위키피디아를 사용하여 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 질의와 관련된 병명을 이용하여 추가 증상, 검사 방법, 치료 방법 정보를 확장 질의로 선택한다. 또한, LDA를 실행한 후, Word-Topic 클러스터에서 질의와 관련된 클러스터를 추출하고 Document-Topic 클러스터에서 초기 검색 결과와 관련이 높은 클러스터를 추출한다. 추출한 Word-Topic 클러스터와 Document-Topic 클러스터 중 같은 번호를 가지고 있는 클러스터를 찾는다. 그 후, Word-Topic 클러스터에서 의학 용어를 추출하여 확장 질의로 선택한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014 테스트 컬렉션에 대해 비교 평가한다.
-
본 논문은 영어-한국어 교차언어 정보검색의 질의어 번역에 대한 중요한 자원으로 활용되는 병렬 말뭉치의 품질 향상을 위해서, 위키피디아의 비교 말뭉치로부터 자동으로 병렬 문장을 추출하여 활용하는 기법을 제안한다. 기존 연구에서 질의어 번역을 위해 위키피디아의 이중 어휘 사전 및 동의어, 다의어 정보를 구축하고, 기 기축된 병렬 말뭉치와 함께 활용하여 여러 의미를 가진 번역 후보 단어들 중, 최적의 단어를 선택하는 방법을 이용하고 있다. 여기서 활용되는 병렬 말뭉치는 질의어 번역에서 가장 중요한 자원이다. 하지만, 기 구축된 병렬 말뭉치는 양이 적거나, 특정 영역을 중심으로 구성되어 있는 문제가 있다. 이러한 문제를 해결하기 위해, 본 논문은 위키피디아로부터 자동 병렬 문장 추출 기법을 이용, 대량의 영어-한국어 간 병렬 말뭉치를 구축하고, 이를 교차언어 정보검색을 위한 질의어 번역에 적용하여 개선을 보인다. 실험의 성능 비교를 위해서 NTCIR-5 데이터를 이용하였으며 기 구축된 세종 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 31.5%, R-P 33.0%에서, 새롭게 구축한 위키피디아 병렬 말뭉치를 활용한 질의어 번역의 성능이 MAP 34.6%, R-P 34.6%로, 각각 MAP 3.1%와 R-P 1.6%의 성능 향상을 보였다.
-
무제한 정보추출은 주로 영어를 대상으로 연구가 진행 되었지만, 최근에는 영어가 아닌 다른 언어에 대한 적용이 시도되고 있다. 본 논문에서는 관계 어휘의 유형을 동사형과 명사형 2가지로 정의하고, 각 유형별로 구문 분석 결과 기반의 서로 다른 방법론을 적용하는 한국어 대상 무제한 정보추출 시스템을 소개한다. 동사형 관계 어휘에 대해서는 의존 관계 기반의 추출 규칙을 적용하고, 명사형 관계 어휘에 대해서는 대량의 말뭉치로부터 자동으로 학습한 의존 관계 구조 기반의 추출 패턴을 적용한다. 임의의 100개 문장에 대해서 수행한 결과는 산출된 전체 트리플에 대해 0.8이상의 정밀도를 보임으로써 본 논문에서 제안하는 방법의 효용성을 증명하였다.
-
본 논문에서는 가추적 추론에 기만한 질의응답 기술을 활용하여 O/X 퀴즈 질문에 대한 질의응답을 수행하는 기술에 대해서 소개한다. O/X 퀴즈를 기존의 질의응답 기술에 적용하기 위해서는 O/X 퀴즈 문장을 단답형 질문으로 재생성해야 한다. 질문재생성에서는 단답형 질문으로 변환하기 위해 특정 어휘(또는 개체나 구)를 <지시대명사>나 <지시관형사+명사>로 대체한다. 이때 대체된 어휘는 정답후보로 인식된다. 단답형질문과 정답후보의 쌍으로 구성된 정답가설은 근거검색과 유사도에 기반한 신뢰도 값 계산을 통해, O/X를 결정하게 된다. 실험을 통해, 신뢰도 임계값이 0.45일 때 정확률이 69.17%를 보였다.
-
본 연구는 한국어 정보처리를 위한 형태소 연구 중 선어말어미 분석과 합성을 위한 처리 모형을 제안한다. 이를 위해 (1) 어미를 정의하고 선정한 뒤 (2) 낱말 패러다임 형태 이론에 기반하여 동사 어간을 그 특징에 따라 적절하게 분류한다. (3) 또한 형태소 결합을 위해 필요한 조작들을 기술하고 (4) 마지막으로 어미의 결합 순서와 결합 제약을 만족시킬 규칙을 만들어 제시함으로써 각 조작과 규칙을 이용하여 기계 분석을 하기 위한 프로그램 모형을 내놓는다.
-
최근 온라인 텍스트 자료를 이용하여 대중의 의견을 분석하는 작업이 활발히 이루어지고 있다. 이러한 작업에는 주관적 방향성을 갖는 텍스트의 논증 구조와 중요 내용을 파악하는 과정이 필요하며, 자료의 양과 다양성이 급격히 증가하면서 그 과정의 자동화가 불가피해지고 있다. 본 연구에서는 정책에 대한 찬반 의견으로 구성된 한국어 텍스트 자료를 직접 구축하고, 글을 구성하는 기본 단위들 사이의 담화 관계를 정의하였다. 각 단위들 사이의 관계는 기계학습과 규칙 기반 방식을 이용하여 예측되고, 그 결과는 합성되어 하나의 글에 대응되는 트리 구조를 이룬다. 또한 텍스트의 구조상에서 주제문을 직접적으로 뒷받침하는 문장 혹은 절을 추출하여 글의 중요 내용을 얻고자 하였다.
-
우리 모두 소리의 표현력이 뛰어난 한글의 우수성은 너무나 잘 알고 있으며, 한글의 세계화를 외치고 있다. 그러나 그런 일을 해야할 국립국어원 등 국가기관은 외국어 표기법을 만들지 않고 있다. 외래어표기법으로 충분하다고 생각하고 있는 것이다. 외래어표기법은 현재의 한글을 유지하면서 외국어를 한글 단어로 만들 때 어떻게 만드느냐를 규정한 것이다. 한글세계화에 필요한 외국어 표기법은 한글로 외국어를 잘 표현함으로써 한글을 외국에 퍼트리는 것이 목표이다. 따라서 외국인이 쓰기에 편리해야하고 외국어 발음 왜곡을 최소화 하면서 잘 표현해 내기엔 현재 한글로는 부족한 면이 있음으로 표현력이 확장된 한글을 만들어야한다. 물론 확장된 한글이 현재의 한글과 동떨어지면 안될 것이다. 많은 분들이 여러 아이디어로 제안을 해 왔지만 대부분 자음을 추가하는 데에 집중되어 있다. 확장한글에서 다루어야할 것은 1) 추가되는 자음과 모음 2) 한글에 없는 성조나 강약 및 장단 등에 관한 규정 추가 등이면 된다고 생각하고 있다. 그러나 한글의 큰 특성인 음절이 외국어 표현 때에 왜곡되는 현상이 있는데, 어떻게 외국어와 한글의 음절개념을 일치시킬 수 있을지에 대해 관심을 가지고 방안을 제안하고자 한다. 그 방안으로는 1) 합용병서와 2) 풀어쓰기 활용법이 가능하나, 필자는 중간선으로 3) 촉진자 표기법을 제안한다. 또한, 크기조절법에 대응해 음절인 글자 위에 점을 표기하는 음절점표기법도 제안한다.
-
중국어(한어)를 라틴 알파벳으로 전사하는 음운표기 체계를 병음(Pinyin)이라고 하는데, 이에 비해 한국어 사용자를 위한 한글식의 중국어 전사 표기가 여러 가지가 연구되었다. 이는 한국어 및 한글 구사자에게 중국어를 학습하거나 중국문자를 컴퓨터에 입력하는 데 유용할 것이다. 이 논문은 중국어 한글전사 표준과 이 용도의 키보드를 만드는 원칙을 연구한 것이다. 핵심은 중국어의 한글전사를 현대 한국어맞춤법을 따르도록 하고, 기존 표준키보드에 정합되게 한다.
-
본고는 기존 연구에서 상정한 의미역에 기반하여 의미역 태깅 작업 중 실제 문장에 의미역을 태깅하는 데 나타난 문제점들에 대해 재고해보았다. 의미역을 태깅하는 데에 격틀 사전을 이용한 반자동의미역태깅프로그램의 정상적인 구동을 위한 사전의 재정비와 실제 문장에서는 드러나지만 사전에서는 나타나지 않는 문형 정보를 상세히 검토해야 함을 알게 되었다. 이를 해결하기 위해 격틀사전의 기본 사전이 표준국어대사전의 통사정보 제시를 문제삼아 이를 해결하기 위한 방안을 모색하고, 실제 문장에서 격교체에 의해 나타나고 있는 논항정보교체에 대처하기 위한 방안을 마련하고자 한다.
-
자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.
-
본 논문에서는 시퀀스 레이블링 문제에 적합하다고 알려진 Long Short Term Memory Recurrent Neural Network에 아웃풋간의 의존관계를 추가한 LSTM-CRF(Conditional Random Field)를 이용하여 생명과학분야 개체명 인식 시스템을 구축하였다. 학습 및 평가를 위해 BioNLP 2011-st REL data를 개체명 인식 실험에 사용하였으며, 실험결과 LSTM-CRF를 사용한 시스템은 81.83의 F1-score를 기록해, 기존의 시스템인 "BANNER"의 F1-score 81.96과 비슷한 성능을 보였다.
-
기계적 학습을 위해서는 일반적으로 많은 양의 수동 주석데이터(Manually Labeled Data)가 요구된다. 원격지도(Distant Supervision)는 현실적으로 부족한 주석데이터(Labeled Data)를 대신해 자동적으로 주석데이터를 수집하여 학습하는 접근 방식으로 관계 추출(Relation Extracion) 문제에 널리 활용되고 있다. 이때 필연적으로 많은 노이즈(Noise)가 발생되는데, 적합성 검증(Relevance Verification)을 통해 수집된 학습데이터를 정제함으로써 노이즈로 인한 변동성을 줄이고 결과적으로 향상된 성능을 보여주는 관계 추출 방법을 제시한다.
-
최근 딥러닝 기술의 발전에 힘입어 이미지로부터 자동으로 관련된 단어 혹은 문장을 생성하는 연구들이 진행되고 있는데, 많은 연구들은 이미지와 단어가 1:1로 대응된 잘 정련된 학습 집합을 필요로 한다. 한편 스마트폰 보급의 확산으로 인스타그램, 폴라 등의 이미지 기반 SNS가 급속하게 성장함에 따라 인터넷에는 한 이미지의 복수개의 단어(태그)가 부착되어있는 데이터들이 폭증하고 있는 것이 현실이다. 본 논문에서는 소규모의 잘 정련된 학습 집합뿐 아니라 이러한 대규모의 다중 레이블 데이터를 같이 활용하여 이미지로부터 태그를 생성하는 개선된 CNN구조 및 학습알고리즘을 제안한다. 기존의 분류 기반 모델에 은닉층을 추가하고 새로운 학습 방법을 도입한 결과, 어노테이션 성능이 기존 모델보다 11% 이상 향상되었다.
-
많은 양의 뉴스가 생성됨에 따라 이를 효과적으로 정리하는 기법이 최근 활발히 연구되어왔다. 그 중 뉴스클러스터링은 두 뉴스가 동일사건을 다루는지를 판정하는 분류기의 성능에 의존적인데, 대부분의 경우 BoW(Bag-of-Words)기반 벡터유사도를 사용하고 있다. 본 논문에서는 BoW기반의 벡터유사도 뿐 아니라 두 문서에 포함된 사진들의 유사성 및 주제의 관련성을 측정, 이를 분류기의 자질로 추가하여 두 뉴스가 동일사건을 다루는지 판정하는 분류기의 성능을 개선하는 방법을 제안한다. 사진들의 유사성 및 주제의 관련성은 최근 각광을 받는 딥러닝기반 CNN과 신경망기반 문서임베딩을 통해 측정하였다. 실험결과 기존의 BoW기반 벡터유사도에 의한 분류기의 성능에 비해 제안하는 두 자질을 사용하였을 경우 3.4%의 성능 향상을 보여주었다.
-
대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.
-
Neural Machine Translation (NMT) 모델은 단일 신경망 구조만을 사용하는 End-to-end 방식의 기계번역 모델로, 기존의 Statistical Machine Translation (SMT) 모델에 비해서 높은 성능을 보이고, Feature Engineering이 필요 없으며, 번역 모델 및 언어 모델의 역할을 단일 신경망에서 수행하여 디코더의 구조가 간단하다는 장점이 있다. 그러나 NMT 모델은 출력 언어 사전(Target Vocabulary)의 크기에 비례해서 학습 및 디코딩의 속도가 느려지기 때문에 출력 언어 사전의 크기에 제한을 갖는다는 단점이 있다. 본 논문에서는 NMT 모델의 출력 언어 사전의 크기 제한 문제를 해결하기 위해서, 입력 언어는 단어 단위로 읽고(Encoding) 출력 언어를 문자(Character) 단위로 생성(Decoding)하는 방법을 제안한다. 출력 언어를 문자 단위로 생성하게 되면 NMT 모델의 출력 언어 사전에 모든 문자를 포함할 수 있게 되어 출력 언어의 Out-of-vocabulary(OOV) 문제가 사라지고 출력 언어의 사전 크기가 줄어들어 학습 및 디코딩 속도가 빨라지게 된다. 실험 결과, 본 논문에서 제안한 방법이 영어-일본어 및 한국어-일본어 기계번역에서 기존의 단어 단위의 NMT 모델보다 우수한 성능을 보였다.
-
연어는 둘 이상의 단어로 구성된 표현으로 연어에 속하는 개개의 단어의 의미로써 연어의 의미를 유추할 수 없다. 따라서 연어의 의미를 분석하거나 번역할 경우 개개의 단어보다는 연어 그 자체를 하나의 분석 단위로 간주하는 것이 훨씬 더 효과적이다. 이를 위해 본 논문에서는 통계기법을 활용하여 세종 말뭉치로 부터 용언연어의 추출 방법을 제시하고 그 성능을 평가한다. 연어 패턴과 통계 정보를 이용해서 연어를 추출한다. 평가를 위해서 연어 사전과 전문가의 주관적 평가를 동시에 수행했다.
-
문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.
-
본 논문에서는 단어열 패턴과 리커런트 신경망을 이용한 하이브리드 음성 인식 오류 수정 방법을 제안한다. 음성 인식 결과 문장에서 음성 인식 오류 단어가 발견되었을 경우에 첫째로 단어열 패턴과 그 패턴의 발음열 점수를 통해 1차적 수정을 하고 적절한 패턴을 찾지 못하였을 경우 음절단위로 구성된 Recurrent Neural Network를 통해 단어를 음절단위로 생성하여 2차적으로 오류를 수정한다. 해당 방법론을 한국어로 된 음성 인식 오류와 그 정답 문장으로 구성된 TV 가이드 영역 말뭉치를 바탕으로 성능을 평가하였고, 기존의 단순 단어열 패턴 기반의 음성 인식 오류 수정보다 성능이 향상되었음을 볼 수 있었다. 이 방법론은 음성 인식 오류와 정답의 말뭉치가 필요 없이 옳은 문장으로만 구성된 일반 말뭉치만으로 훈련이 가능하여, 음성 인식 엔진에 의존적이지 않는 강점이 있다.
-
문서 교정기에서 문맥의존 철자오류를 교정하는 방법은 크게 규칙을 이용한 방법과 통계 정보를 이용한 방법으로 나뉜다. 한국어와 달리 영어는 오래전부터 통계 모형에 기반을 둔 문맥의존 철자오류 교정 연구가 활발히 이루어졌다. 그러나 대부분 연구가 문맥의존 철자오류 교정 문제를 특정 어휘 쌍을 이용한 분류 문제로 간주하기 때문에 실제 응용에는 한계가 있다. 또한, 대규모 말뭉치에서 추출한 통계 정보를 이용하지만, 통계 정보 자체에 오류가 있을 경우를 고려하지 않았다. 본 논문에서는 텍스트에 포함된 모든 단어에 대하여 문맥의존 철자오류 여부를 판단하고, 해당 단어가 오류일 경우 대치어를 제시하는 영어 문맥의존 철자오류 교정 기법을 제안한다. 또한, 통계 정보의 오류가 문맥의존 철자오류 교정에 미치는 영향과 오류 발생률의 변화가 철자오류 검색과 교정의 정확도와 재현율에 미치는 영향을 분석한다. 구글 웹데이터에서 추출한 통계 정보를 바탕으로 통계 모형을 구성하고 평가를 위해 브라운 말뭉치에서 무작위로 2,000문장을 추출하여 무작위로 문맥의존 철자오류를 생성하였다. 실험결과, 문맥의존 철자오류 검색의 정확도와 재현율은 각각 98.72%, 95.79%였으며, 문맥의존 철자오류 교정의 정확도와 재현률은 각각 71.94%, 69.81%였다.
-
본 논문은 커뮤니티 기반의 질의-응답 서비스에서 사용자 질의의 주제를 분류하는 시스템을 소개한다. 커뮤니티 기반의 질의-응답 서비스는 분야에 따라 다양한 주제를 가질 수 있으며 오늘 날 사용자 질의의 주제 분류에는 통계 기반의 분류 방법이 많이 이용되고 있다. 통계 기반의 분류 방법으로 사용자 질의를 분류하기 위해서는 주제에 적합한 대량의 학습 말뭉치가 필요하다. 주제에 적합한 대량의 학습 말뭉치를 사람이 직접 구축하는 것은 많은 시간과 비용이 든다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 위키피디아 문서를 Supervised K-means Clustering 기법으로 주제별로 분류함으로써 학습 말뭉치를 반자동으로 구축하는 방법을 제안한다. 그 다음, 생성된 학습 말뭉치로 지지 벡터 기계를 학습하여 사용자 질의의 주제를 분류하게 된다. 위키피디아 문서와 사용자 질의는 다른 도메인의 문서임에도 불구하고 본 논문의 시스템으로 사용자 질의의 주제를 분류한 결과 77.33%의 정확도를 보였다.
-
본 논문은 뜻풀이를 통해 한글단어를 맞추는 앱 어플리케이션인 '떴다 한글'의 구현에 대하여 논한다. 학습적인 요소와 게임적인 요소를 기반으로 만들어진 이 앱을 통하여 누구나 쉽게 이용하고 한글 단어를 학습할 수 있는 안드로이드 앱 어플리케이션이다. '떴다 한글'은 4가지 특징을 가진다. 첫 번째는 한글의 사전적인 의미를 제공하여 게임이 진행되기 때문에 사용자가 자신이 사용하는 언어의 정확한 뜻을 알 수 있게 하였다. 두 번째는 난이도를 선택할 수 있어 모든 연령대 사람들과 한글에 관심이 많은 외국인 사용자들이 쉽게 이용할 수 있다. 세 번째는 게임적 요소로 중요한 동적인 움직임과 함께 문제를 풀게 하여 사용자가 오랜 시간동안 지루하지 않게 하였다. 네 번째는 순위를 볼 수 있게 하여 자신의 점수를 등록하면 다른 사람들과 경쟁을 할 수 있도록 하여 더욱 이 앱에 관심을 갖도록 하였다. 이러한 특징들은 교육적 측면으로서 좋은 특징을 가지고 있다. 그 외에도 떴다 한글은 데이터베이스 파일을 중심으로 작동하기 때문에 파일의 구조와 입력 정보를 변경하여 여러 버전(헷갈리기 쉬운 단어, 순수우리말, 사자성어 등)의 게임으로 응용이 가능하다는 산업 및 기술적 측면의 모습도 볼 수 있다.
-
감성은 개인적인 생활경험을 통해 표현되며 동일한 감정상태와 정보자극을 주더라도 다른 감성이 발생될 뿐만 아니라 개인, 사회, 문화 요인에 따라서 크게 변한다. 따라서 다른 영역의 감성과 도서에 대한 감성이 같지 않기 때문에 별도의 감성 사전 구축이 필요하다. 구축된 감성사전은 비슷한 성향의 도서와 사람을 묶어 추천해 주는데 활용할 수 있다. 감성 사전 구축을 위한 원천 정보로 네티즌이 책을 읽고 호감도와 함께 짧은 문장으로 쓴 소감을 활용하였다. 감성분석에서 가장 기본이 되는 분류는 긍정과 부정으로 나누는 것이다. 하지만, 실제로 도서를 추천하기위해서 긍정과 부정으로만 구분하는 것은 충분하지 않다. 따라서 본 연구에서는 도서에 대해서 감성을 긍정과 부정의 호감정도와 감성의 활성도를 조합한 8개의 감성으로 분류하고 각각의 지수를 함께 산출하여 감성어 사전을 구축하고 활용하는 방안을 제시하였다.
-
실어증은 뇌손상으로 인해 발생하는 후천적 언어장애로서, 언어를 이해하고 표현하는 능력이 손상된 것이다. 이는 환자 개인의 어려움은 물론이고, 가족과 사회에도 문제를 초래할 수 있으므로 실어증 환자의 진단 및 치료는 중요하다. 그 중에서도 빠른 언어 치료는 발병 후 조기에 시작할수록 회복이 빠르다는 점에서 연구 결과들이 일치하고 있기 때문에 더욱 중요하다. 하지만 환자 대비 언어치료전문가의 수가 적어 치료시기를 놓칠 수 있기 때문에 가장 중요한 것은 빠른 실어증 진단과 전문가와의 접근성이다. 우리나라는 인터넷 보급률과 컴퓨터 보급률이 높기 때문에, 웹기반으로 시스템을 개발 한다면 우수한 접근성을 보장받을 수 있다. 본 연구에서는 개발된 '온라인 언어 재활 훈련 및 진단 시스템'을 제안하고 본 시스템을 통해 얻을 수 있는 데이터와, 이 데이터를 어떻게 가공하여 의미 있는 결과를 도출해 낼 수 있는지 소개한다. 본 시스템은 짧은 시간 안에 실어증 여부 확인과 언어 재활 훈련을 수행할 수 있고, 웹기반으로 개발되어 누구나 쉽게 치료와 관련된 콘텐츠, 정보, 그리고 재활 방법을 공유할 수 있다.
-
자연어처리의 여러 분야에서 기본요소로 사용되는 영어 품사 태거를 UMLS의 의학용어 어휘정보와 OANC(Open American National Corpus) 말뭉치를 이용해 의학용 문서도 분석 가능한 의학용 영어 품사 태거를 제안한다. TRIE구조를 이용한 단어 묶음 모델로 여러 어절의 의학용어를 하나로 묶고 HMM(Hiden Markov Model)을 이용한 품사 태거로 해당하는 품사를 부착한다.
-
자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.
-
본 연구는 특수목적영어분인 해사영어코퍼스의 구축을 목적으로 한다. 구축과정에서 코퍼스 구축에 필요한 대표성과 균형성을 고려하여 네 가지 장르인 학술, 뉴스, 법, 책으로 나누고 각 하위코퍼스를 백만 단어씩 구축하였다. 코퍼스 구축과정에서 웹사이트와 PDF형태의 자료에서 텍스트만을 수집하고 정제하기 위하여 파이썬(Python) 프로그래밍 코딩을 하였고 무료 공개 프로그램도 병행하였다. 앞으로 해사영어코퍼스는 해사영어어휘교육에 필요한 단어목록제공이나 예문 검색 등을 통한 자료중심학습법에 활용될 수 있을 것이다. 또한 본 연구의 코퍼스구축 과정은 다른 분야의 ESP코퍼스 구축에도 응용 될 수 있을 것이다.
-
기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.
-
Kim, Min-Ho;Kim, Doo-Hwan;Kim, Do-Kyeong;Park, Hyung-Soon;Park, So-Yeong;Choi, Yoon-Seung;Kang, Seung-Shik 169
현재 스마트폰이나 태블릿PC 등의 터치화면 상에서 사용되는 한글 입력 방식은 qwerty, 나랏글, 천지인 등 시각 정보를 기반으로 만들어진 가상 키보드들이 사용되고 있다. 이는 시각에 문제가 없는 일반인 사용자에게는 효율적인 방식이지만 시각 장애인(시력장애, 시야 결손장애)들에게는 불편한 점이 있다. 이 문제를 개선하기 위하여 터치화면 상에서 손동작을 기반으로 한 한글 입력 방식을 제안한다. 이 방식은 사용자가 직접 기준 위치를 정하여 사용하므로 시각 정보가 제한된 상황에서도 입력할 수 있다. 또한, 이 방식은 사용자가 쉽게 배울 수 있도록 설계되었다. 모음 입력은 사용자가 쉽게 연상 되는 동작에 할당하였고, 자음 입력은 빈도수를 고려하여 자주 사용되는 자음은 편하게 움직일 수 있는 검지와 중지의 움직임에 주로 할당하였다. -
자가 지식 학습 프레임워크는 자연어 텍스트에서 지식 트리플을 생성하기 위한 방법 중 하나로, 문장의 의존 관계 트리 상에서 주어 개체와 목적어 개체 사이의 관계를 패턴으로 학습해 이 패턴을 바탕으로 새로운 지식 트리플을 생성한다. 그러나 이 방법은 의존 관계 트리를 생성하는 도구의 성능에 영향을 받을 뿐만 아니라 생성된 지식 트리플을 반복적으로 사용하는 자가 지식 학습의 특성상 오류가 누적될 가능성이 있다. 이러한 문제점을 해결하기 위해서 본 논문에서는 자가 지식 학습 프레임워크에서 생성된 지식 트리플을 TransR 신뢰도 함수를 사용해 신뢰도 값을 측정하여 그 값에 따라 지식 트리플을 필터링하는 방법을 제안한다. 실험 결과에 따르면 필터링 된 지식 트리플들이 그렇지 않은 지식 트리플들에 비하여 더 높은 정확률을 보여주어, 제안한 방법이 자가 지식 학습 프레임워크의 정확률 향상에 효과적임을 증명하였다.
-
본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.
-
최근 자연어 처리 분야에서 딥 러닝이 많이 사용되고 있다. 자연어 처리에서 딥 러닝의 성능 향상을 위해 단어의 표현이 중요하다. 단어 임베딩은 단어 표현을 인공 신경망을 이용해 다차원 벡터로 표현한다. 본 논문에서는 word2vec의 Skip-gram과 negative-sampling을 이용하여 단어 임베딩 학습을 한다. 단어 임베딩 학습 데이터로 한국어 어휘지도 UWordMap의 용언의 필수논항 의미 제약 정보를 이용하여 구성했으며 250,183개의 단어 사전을 구축해 학습한다. 실험 결과로는 의미 제약 정보를 이용한 단어 임베딩이 유사성을 가진 단어들이 인접해 있음을 보인다.
-
의미역 결정은 주어진 술어와 의존 관계에 있는 여러 논항들과 그 술어간의 의미 관계를 결정하는 것이다. 의미역 결정은 보통 대량의 말뭉치를 이용하여 분류의 관점에서 문제를 해결하고자 한다. 본 논문에서는 한국어 구문 표지 부착된 말뭉치에 구축한 의미역 표지 부착 말뭉치 10,000 문장을 이용한 자동 의미역 결정 방법을 제안한다. 특히, 한국어는 그 특성상 조사와 어미가 문법 관계뿐만 아니라 의미 관계 설정에도 매우 중요한 역할을 하기 때문에 기존의 의미역 결정 연구에서 미비했던 부분인 조사와 어미 정보를 개선하여 새로운 자질 (features) 로 설계하여 의미역 결정을 시도하였다. 기존의 다른 언어에서의 의미역 결정 연구에서 사용된 자질에 본 논문에서 제시된 접사 정보에 기반한 자질을 추가하게 되면 약 77.9%의 F1 점수를 얻을 수 있었는데, 이는 기존 연구에 비하여 약 10% 포인트 향상된 결과이다.
-
최근 한국어 문서에서 공간 정보를 자동으로 추출하는 연구가 진행됨에 따라, 이를 응용한 다양한 소프트웨어 개발이 가능해 졌다. 본 논문에서는 문서에서 추출된 공간 정보 중 공간 관계 정보를 Google Maps API를 이용하여 시각화하는 방법에 대해 설명한다. 공간 관계 정보 중, 거리, 방향 등의 정적인 정보와 이동을 나타내는 동적 관계 정보를 표현하였으며, 이런 시각화는 문서에 나타난 공간 정보를 이해하는데 큰 도움을 줄 수 있을 것으로 기대한다.
-
이 논문에서는 한국의 수능 시험에 대응하는 일본 센터 시험의 세계사B 문제를 해결하는 시스템을 만들고 그 성능을 평가했다. 이 시스템은 문제의 각 보기의 신뢰도를 검증하여 어떤 보기가 참인지를 결정한다. 보기 검증을 위해 지식 베이스 기반, 정보 검색 기반, 시간적 제약 기반 검증을 사용하였다. 성능 평과 결과 6개년도 시험 중 5개 시험에서 통계적으로 의미 있는 결과를 얻었다. 이 시스템은 영어를 대상으로 하나, 한국어에도 존재하는 리소스를 사용했기 때문에 한국어에서도 같은 방법론을 적용할 수 있을 것으로 본다. 후속 연구로는 보기의 의미적 분석과 개체명 이외의 정보에 대한 검색이 필요하다.
-
Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.
-
의미역 결정은 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 문제이다. 본 논문에서는 UPropBank 격틀 사전과 UWordMap의 용언의 하위 범주 정보를 이용하여 의미역을 부착하였다. 실험 결과 80.125%의 정확률로 의미역을 부착하는 성능을 보였다.
-
개체명 인식은 문서에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 지도 학습 기법을 이용한 개체명 인식을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 말뭉치 구축은 인력과 시간이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하고 초기 학습 말뭉치의 노이즈를 제거하여 말뭉치의 품질을 향상시키는 방법을 제안한다. 제안 방법은 반자동 개체명 사전 구축 방법으로 구축한 개체명 사전과 원거리 감독법을 사용하여 초기 개체명 범주 부착 말뭉치를 구축한다. 그리고 휴리스틱을 이용하여 초기 말뭉치의 노이즈를 제거하여 학습 말뭉치의 품질을 향상시키고 개체명 인식의 성능을 향상시킨다. 실험 결과 휴리스틱 적용을 통해 개체명 인식의 F1-점수를 67.36%에서 73.17%로 향상시켰다.
-
온라인을 통해 접하게 되는 잘못된 우리말 표현과 외국어 중심 교육 등으로 인하여 학생들의 한국어 능력, 특히 글쓰기 능력에 우려가 높아지고 있다. 본 논문에서는 잘 작성된 말뭉치에서 얻어진 데이터에 기반한 한국어 글쓰기 도우미 시스템을 제안한다. 시스템은 작성 중인 문맥에 맞은 단어를 추천하는 용언/체언 추천과 입력 문장의 주요 단어가 포함된 말뭉치의 문장을 제시하는 유사 문장 추천, 문서의 단어가 문서의 문맥 단어와 조화로운지를 확인하는 어휘 응집성 검사, 단어 중복도를 확인하기 위한 단어 빈도 검사 기능을 제공한다. 시스템에서는 사용자가 말뭉치를 추가하면 색인을 구축할 수 있어 원하는 분야에 맞는 추천과 검사 기능을 제공할 수 있다.
-
본 논문에서는 지식베이스와 다중 소스 레이블 문서를 동시에 활용한 다중소스 기반 오픈 도메인 질의 응답 시스템에 대해 소개한다. 제안하는 질의 응답 시스템은 자연어처리를 기반으로 한 질의 분석 모듈, SPARQL (Simple protocol and RDF Query Language) query 생성 및 검색 부분, 다중 소스 레이블 문서 검색 부분으로 이루어져 있다. 정확도가 높은 지식베이스 기반의 질의 응답 시스템으로 정답을 우선 탐색한다. 지식베이스 기반 질의 응답 시스템으로 정답을 찾는 데 실패하거나, SPARQL query 생성에 실패하면, 다중 소스가 레이블된 문서 검색을 통해 정답을 찾는다. 제안하는 질의 응답 시스템은 지식베이스만 사용한 질의 응답 시스템보다 높은 성능을 보인다.
-
국립국어원 온라인가나다에서 제공되는 질의응답 문서를 이용한 국어정보에 대한 Q&A시스템은 언어 자체에 대한 질문과 답변의 특성으로 조사나 어미로 끝나는 표현이 주어로 등장하는 등의 특이한 문장이 자주 나타난다. 이러한 이유로 형태소 분석을 거쳐 명사를 키워드로 추출하는 일반적인 키워드 추출 방식은 좋은 성능을 얻기 어렵다. 본 논문에서는 국어정보 질의응답 문서의 특징에 맞는 키워드 추출 방법을 제안한다. 제안하는 방식에서는 문장 단위로 분할된 결과에서 연결어미로 문장을 추가로 분할한 뒤에 조사 앞에 나타나는 단어열을 키워드로 추출한다. 덧붙여 다자비교형 질의에서의 키워드 추출을 위해 편집거리를 이용한 키워드 추출 방법을 제안한다.
-
컴퓨터를 이용하여 명사와 용언의 의미를 자동으로 분별하는 것은 기계번역이나 검색 등의 기술에서 아주 중요한 기반 기술이다. 최근에 동형이의어 분별에 대한 연구 결과로 약 96%의 정확률을 보이는 시스템이 개발되었으나, 다의어 분별에 대한 연구는 아직 초기 단계로 일부 어휘만을 한정하여 연구되고 있다. 본 논문에서는 어휘지도를 이용하여 다의어를 분별하는 방법을 연구하였고, 어휘지도에 등록된 모든 일반 명사와 용언을 대상으로 실험하였다. 제안된 알고리즘은 문장에서 나타나는 명사와 용언의 관계를 어휘지도에서 찾고, 그 정보를 기반으로 다의어를 분별하였다. 아직은 그 정확률이 실용적인 수준이라고 볼 수는 없지만, 전체 다의어를 대상으로 실험하였고, 그 실험 결과를 분석함으로써 앞으로의 다의어 분별 연구 방향에 도움될 것으로 판단된다.
-
본 논문은 대화 시스템에서 사용되는 말뭉치의 구축을 위해 Object와 Action을 반자동으로 추출하는 도구에 대해 기술한다. 제안하는 추출 도구는 형태소 분석과 의존 구문 분석의 결과를 기반으로 적절한 Object와 Action을 추출하는 것에 목표를 두고 있다. 그러나 형태소 분석과 의존 구문 분석의 결과는 여러 가지 오류가 포함될 수 있다. 이러한 오류는 잘못된 Object와 Action의 추출로 이어질 수 있다. 그리고 Object의 추출에 있어 해당 명사의 격이 중요한 정보를 가진다. 하지만 한국어의 특성한 조사의 생략 등으로 인해 격 태깅의 모호성이 발생하게 된다. 따라서 본 논문에서 제안하는 반자동 추출기는 형태소 분석과 의존 구문 분석의 잘못된 결과를 사용자가 손쉽게 수정할 수 있도록 하고 모호성이 발생할 수 있는 Object를 사용자에게 알려주어 올바른 Object와 Action의 추출을 가능하게 한다. 추출기를 이용한 말뭉치의 구축은 1) 형태소 분석 2) 의존 구문 분석 3) Object-Action 추출의 단계로 진행된다. 실험에서 사용된 발화는 관광 회화용 대화 시스템의 숙박, 공항 영역의 500개의 발화이며, 이 중 259개의 발화가 태깅 시 모호성이 발생하는 발화이다. 반자동 추출기를 통해 모호성이 발생한 발화를 태깅한 결과 전체 발화 중 51.8%의 발화를 빠르고 정확하게 태깅할 수 있었다.
-
상호참조해결은 특정 개체에 대해 다르게 표현한 단어들을 서로 연관지어 주며, 이러한 개체에 대해 표현한 단어들을 멘션(mention)이라 하며, 이런 멘션을 찾아내는 것을 멘션탐지(mention detection)라 한다. 멘션은 명사나 명사구를 기반으로 정의되며, 명사구의 경우에는 수식어를 포함하기 때문에 멘션탐지를 순차 데이터 문제(sequence labeling problem)로 정의할 수 있다. 순차 데이터 문제에는 Recurrent Neural Network(RNN) 종류의 모델을 적용할 수 있으며, 모델들은 Long Short-Term Memory(LSTM) RNN, LSTM Recurrent CRF(LSTM-CRF), Bidirectional LSTM-CRF(Bi-LSTM-CRF) 등이 있다. LSTM-RNN은 기존 RNN의 그레디언트 소멸 문제(vanishing gradient problem)를 해결하였으며, LSTM-CRF는 출력 결과에 의존성을 부여하여 순차 데이터 문제에 더욱 최적화 하였다. Bi-LSTM-CRF는 과거입력자질과 미래입력자질을 함께 학습하는 방법으로 최근에 가장 좋은 성능을 보이고 있다. 이에 따라, 본 논문에서는 멘션탐지에 Bi-LSTM-CRF를 적용할 것을 제안하며, 각 딥 러닝 모델들에 대한 비교실험을 보인다.
-
방송 대본은 방송 콘텐츠에 대해 얻을 수 있는 가장 주요한 텍스트 데이터 중에 하나이다. 본 논문에서는 토픽 모델을 통해 방송 대본 분석을 수행하고 그 결과를 제시한다. 방송 대본을 토픽 모델로 학습하기 위해 대본의 장면 단위로 문서를 구성하여 학습하여 대본의 장면을 분석하고 등장인물 단위로 문서를 구성하여 등장인물을 분석하여 그 특징을 살펴본다. 토픽 모델을 사용하여 방송 대본을 분석하는 과정에서 방송 대본이 가지는 특징을 분석하고 그로부터 향후 연구방향에 대해 논의한다.
-
본 논문에서는 심층 신경망 기반의 내장형 음성 인식 시스템에서 음성 인식 속도를 개선하기 위한 최적화 방법에 대해 논한다. 심층 신경망 기반의 음성 인식은 기존의 Gaussian Mixture Model (GMM) 기반에 비해 좋은 인식 성능을 보이지만 높은 연산량으로 인해 리소스가 제약된 내장형 단말기에 적용하기에는 어려움이 따른다. 따라서, 본 연구에서는 심층 신경망의 계산량 문제를 해결하고자 ARM 코어에 내장된 병렬 명령어를 사용한 최적화 기법과 특이값 분해를 통해 심층 신경망 매트릭스 연산량 감소 방안에 대해 제안한다.
-
2000년대 중반 세종 구구조 구문분석 말뭉치가 배포된 이후 의존 구문분석이 구문분석 연구의 주요 흐름으로 자리 잡으면서 많은 연구자들이 구구조 구문분석 말뭉치를 개별적으로 의존구조로 변환하여 구문분석 연구를 수행하였다. 하지만 한국어 문장의 의존구조 표현에 대한 논의가 부족하여 서로 다른 의존구조로 변환 후 구문분석을 연구함으로써 연구 효율성이 저하되는 문제가 발생하였다 본 연구에서는 이와 같은 문제에 접근하기 위하여 한국어 문장에 대한 의존관계 가이드라인을 제안한다. 그리고 제안하는 가이드라인을 기반으로 구축한 엑소브레인 언어분석 말뭉치(725 문장)에 대해 소개한다.
-
일반영역 음성인식은 n-gram 희소성 문제로 인해 대용량의 언어모델이 필요하다. 대용량 언어모델은 분산형 모델로 구현될 수 있고, 사용자 입력에 대한 동적 언어모델 보간 기술을 통해 음성인식 성능을 개선할 수 있다. 본 논문은 동적 언어모델 보간 기술에 대한 새로운 접근방법을 시도한다. 텍스트 군집화를 통해 주제별 언어모델을 생성한다. 여기서 주제는 사용자 입력 영역에 대응한다. 본 논문은 사용자 입력에 대하여 실시간으로 주제별 언어모델의 보간 가중치 값을 계산하는 접근 방법을 제시한다. 또한 언어모델의 보간 가중치 값 계산의 부담을 감소하기 위해 언어모델 군집화를 통해 대용량 언어모델 보간 접근 방법의 연산 부담을 해소하기 위한 시도를 한다. 주제별 언어모델에 기반하고 언어모델 군집화를 통한 동적 언어모델 보간 기술의 실험 결과 음성인식 오류 감소율 6.89%를 달성했다. 또한 언어모델 군집화 기술은 음성인식 정확도를 0.09% 저하시켰을 때 실행 시간을 17.6% 개선시키는 실험결과를 보였다.
-
기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 10% 정도 성능 하락이 발생한다. 본 논문은 기존 도메인 적응 기술을 이용하여 도메인이 다르고, 문장의 형태도 다를 경우에 도메인 적응 알고리즘을 적용하여, 질의응답 시스템에서 필요한 질문 문장 의미역 인식을 위해, 소규모의 질문 문장에 대한 학습 데이터 구축만으로도 한국어 질문 문장에 대해 성능을 향상시키기 위한 방법을 제안한다. 한국어 의미역 인식 기술에 prior 모델을 제안한다. 제안하는 방법은 실험결과 소스 도메인 데이터만 사용한 실험보다 9.42, 소스와 타겟 도메인 데이터를 단순 합하여 학습한 경우보다 2.64의 성능향상을 보였다.
-
본 논문은 한국어 의미역을 정의하고, 기계학습에 기반하여 한국어 의미역 인식 기술을 개발할 때 필요한 학습 말뭉치를 구축할 때 지켜야할 가이드라인을 제시하고자 한다. 한국어 의미역 정의는 전세계적으로 널리 쓰이고 있는 Proposition Bank를 따르면서, 한국어의 특성을 반영하였다. 또한 정의된 의미역 및 태깅 가이드라인에 따라 반자동 태깅 툴을 이용하여 말뭉치를 구축하였다.