Building Sentiment-Annotated Datasets for Training a FbSA model based on the SSP methodology

반자동 언어데이터 증강 방식에 기반한 FbSA 모델 학습을 위한 감성주석 데이터셋 FeSAD 구축

  • 윤정우 (한국외국어대학교, DICORA 연구센터/언어인지과학과) ;
  • 황창회 (한국외국어대학교, DICORA 연구센터/언어인지과학과) ;
  • 최수원 (한국외국어대학교, DICORA 연구센터/언어인지과학과) ;
  • 남지순 (한국외국어대학교, DICORA 연구센터/언어인지과학과)
  • Published : 2021.10.14

Abstract

본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.

Keywords