KoDialoGPT2 : Modeling Chit-Chat Dialog in Korean

KoDialoGPT2 : 한국어 일상 대화 생성 모델

  • Oh, Dongsuk (Department of Computer Science and Engineering, Korea University) ;
  • Park, Sungjin (Department of Computer Science and Engineering, Korea University) ;
  • Lee, Hanna (Department of Computer Science and Engineering, Korea University) ;
  • Jang, Yoonna (Department of Computer Science and Engineering, Korea University) ;
  • Lim, Heuiseok (Department of Computer Science and Engineering, Korea University)
  • 오동석 (고려대학교 컴퓨터학과) ;
  • 박성진 (고려대학교 컴퓨터학과) ;
  • 이한나 (고려대학교 컴퓨터학과) ;
  • 장윤나 (고려대학교 컴퓨터학과) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • Published : 2021.10.14

Abstract

대화 시스템은 인공지능과 사람이 자연어로 의사 소통을 하는 시스템으로 크게 목적 지향 대화와 일상대화 시스템으로 연구되고 있다. 목적 지향 대화 시스템의 경우 날씨 확인, 호텔 및 항공권 예약, 일정 관리 등의 사용자가 생활에 필요한 도메인들로 이루어져 있으며 각 도메인 별로 목적에 따른 시나리오들이 존재한다. 이러한 대화는 사용자에게 명확한 발화을 제공할 수 있으나 자연스러움은 떨어진다. 일상 대화의 경우 다양한 도메인이 존재하며, 시나리오가 존재하지 않기 때문에 사용자에게 자연스러운 발화를 제공할 수 있다. 또한 일상 대화의 경우 검색 기반이나 생성 기반으로 시스템이 개발되고 있다. 검색 기반의 경우 발화 쌍에 대한 데이터베이스가 필요하지만, 생성 기반의 경우 이러한 데이터베이스가 없이 모델의 Language Modeling (LM)으로 부터 생성된 발화에 의존한다. 따라서 모델의 성능에 따라 발화의 품질이 달라진다. 최근에는 사전학습 모델이 자연어처리 작업에서 높은 성능을 보이고 있으며, 일상 대화 도메인에서도 역시 높은 성능을 보이고 있다. 일상 대화에서 가장 높은 성능을 보이고 있는 사전학습 모델은 Auto Regressive 기반 생성모델이고, 한국어에서는 대표적으로 KoGPT2가 존재한다. 그러나, KoGPT2의 경우 문어체 데이터만 학습되어 있기 때문에 대화체에서는 낮은 성능을 보이고 있다. 본 논문에서는 대화체에서 높은 성능을 보이는 한국어 기반 KoDialoGPT2를 개발하였고, 기존의 KoGPT2보다 높은 성능을 보였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-00988, MRC(Machine Reading Comprehension) 기반 자동 질의응답시스템을 활용한 AI 컨택센터 개발). 또한, 이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1A6A1A03045425).