A Pipeline Model for Korean Morphological Analysis and Part-of-Speech Tagging Using Sequence-to-Sequence and BERT-LSTM

Sequence-to-Sequence 와 BERT-LSTM을 활용한 한국어 형태소 분석 및 품사 태깅 파이프라인 모델

  • Published : 2020.10.14

Abstract

최근 한국어 형태소 분석 및 품사 태깅에 관한 연구는 주로 표층형에 대해 형태소 분리와 품사 태깅을 먼저하고, 추가 언어자원을 사용하여 후처리로 형태소 원형과 품사를 복원해왔다. 본 연구에서는 형태소 분석 및 품사 태깅을 두 단계로 나누어, Sequence-to-Sequence를 활용하여 형태소 원형 복원을 먼저 하고, 최근 자연어처리의 다양한 분야에서 우수한 성능을 보이는 BERT를 활용하여 형태소 분리 및 품사 태깅을 하였다. 본 논문에서는 두 단계를 파이프라인으로 연결하였고, 제안하는 형태소 분석 및 품사 태깅 파이프라인 모델은 음절 정확도가 98.39%, 형태소 정확도 98.27%, 어절 정확도 96.31%의 성능을 보였다.

Keywords

Acknowledgement

이 (성과물)은 중소벤처기업부 '산업전문인력역량강화사업'의 재원으로 한국산학연협회(AURI)의 지원을 받아 수행된 연구임. (2020년 기업연계형연구개발인력양성사업, 과제번호 : S2929950)