Generation Paraphrase using Pointer Generation Network

포인터 생성 네트워크를 이용한 패러프레이즈 생성

  • Published : 2020.10.14

Abstract

다양한 발화를 모델링하는 요구는 자연어 처리 분야에서 꾸준히 있었으며 단어, 구 또는 문장과 동등한 의미 콘텐츠를 자동으로 식별하고 생성하는 것은 자연어 처리의 중요한 부분이다. 본 논문에서는 포인터 생성 네트워크(Pointer Generate Nework)를 이용하여 패러프레이즈 생성 모델을 제안한다. 제안한 모델의 성능을 측정하기 위해 사람이 직접 구축한 유사 문장 코퍼스를 이용하였으며, 토큰 단위의 BLEU-4 0.250, ROUGE_L 0.455, CIDEr 2.190의 성능을 보였다. 하지만 입력 문장과 동일한 문장을 출력하는 문제점이 존재하여 빔서치(beam search)를 적용하여 입력 문장과 비교하여 생성 문장을 선택하는 방식을 적용하였다. 입력 문장과 동일한 문장을 제외한 문장으로 평가를 진행했으며, 토큰 단위의 BLEU-4 0.234, ROUGE_L 0.459, CIDEr 2.041의 성능을 보였으나, 패러프레이즈 생성 데이터 양이 크게 증가하였다. 본 연구는 문장 간의 의미적으로 동일한 정보를 정확하게 추출할 수 있게 됨으로써 정보 추출, 온톨로지 생성에 도움이 될 것이다. 또한 이러한 기법이 챗봇에서 사용자의 의도 탐지 및 MRC와 같은 자연어 처리의 여러 분야에 유용한 자원으로 사용될 것이다.

Keywords

Acknowledgement

이 논문은 2020 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2018-0-00440, 위험 상황 초기 인지를 위한 ICT 기반의 범죄 위험도 예측 및 대응 기술 개발)