Acknowledgement
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2013-2-00131, 휴먼 지식증강 서비스를 위한 지능진화형 Wise QA 플랫폼 기술 개발)
대명사 참조해결은 문서 내에 등장하는 대명사와 이에 대응되는 선행사를 찾는 자연어처리 태스크이다. 기계 독해는 문단과 질문을 입력 받아 질문에 해당하는 알맞은 정답을 문단 내에서 찾아내는 태스크이며, 최근에는 주로 BERT 기반의 모델이 가장 좋은 성능을 보이고 있다. 이러한 BERT 기반 모델의 성공에 따라, 최근 여러 연구에서 자연어처리 태스크를 기계 독해 문제로 변환하여 해결하는 연구들이 진행되고 있다. 본 논문에서는 최근 여러 자연어처리에서 뛰어난 성능을 보이고 있는 BERT 기반 기계 독해 모델을 이용하여 한국어 대명사 참조해결 연구를 진행하였다. 사전 학습 된 기계 독해 모델을 사용하여 한국어 대명사 참조해결 데이터로 fine-tuning하여 실험한 결과, 개발셋에서 EM 78.51%, F1 84.79%의 성능을 보였고, 평가셋에서 EM 70.78%, F1 80.19%의 성능을 보였다.
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2013-2-00131, 휴먼 지식증강 서비스를 위한 지능진화형 Wise QA 플랫폼 기술 개발)