User-specific Food Recommended System Using Data Cleaning

데이터 정제를 통한 딥러닝 기반의 유저 맞춤형 음식추천시스템

  • 김균엽 (가천대학교 소프트웨어학과) ;
  • 강상우 (가천대학교 소프트웨어학과)
  • Published : 2020.10.14

Abstract

제품을 추천하는 기능은 사용자의 콘텐츠 또는 제품 소비량에 직결되기에 다양한 인터넷 플랫폼에서 많은 관심을 받고 있다. 이러한 제품 추천 시스템의 성능은 다양한 머신러닝 알고리즘과 딥러닝의 발전에 의해 성능을 비약적으로 개선되어왔다. 하지만 여느 딥러닝과 머신러닝 알고리즘과 마찬가지로 추천 시스템들의 성능은 빅데이터의 품질에 따라 매우 민감한 영향을 받는다. 본 논문에서는 모바일 배달 플랫폼에서 사용자들의 리뷰 데이터들을 통해 딥러닝과 빅데이터를 사용하여 음식을 추천하는 방법을 제안한다. 또한 사용자들의 리뷰 데이터들을 정제하여 데이터의 품질을 높이는 과정을 추가하여 그 결과가 성능에 얼마만큼 영향을 미치는 지를 실험을 통하여 분석한다.

Keywords

Acknowledgement

이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2019R1C1C1006299)