자연어 이해는 대화 인터페이스나 정보 추출 등에 활용되는 핵심 기술 중 하나이다. 최근 딥러닝을 활용한 데이터 기반 자연어 이해 연구가 많이 이루어지고 있으며, 이러한 연구에 있어서 데이터 확장은 매우 중요한 역할을 하게 된다. 본 연구는 자연어 이해영역에서의 말뭉치 혹은 데이터 확장에 있어서, 입력으로 주어진 문장과 문법구조 및 의미가 유사한 문장을 생성하는 새로운 방법을 제시한다. 이를 위해, 우리는 GPT를 이용하여 대량의 문장을 생성하고, 문장과 문장 사이의 문법구조 및 의미 거리 계산법을 제시하여, 이를 이용해 가장 유사하지만 새로운 문장을 생성하는 방법을 취한다. 한국어 말뭉치 Weather와 영어 말뭉치 Atis, Snips, M2M-Movie M2M-Reservation을 이용하여 제안방법이 효과적임을 확인하였다.
이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.2020-0-01441) 이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(2019-0-00004, 준지도학습형 언어지능 원천기술 및 이에 기반한 외국인 지원용 한국어 튜터링 서비스 개발) 이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2019R1F1A1060601)