Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
- 2020.10a
- /
- Pages.211-214
- /
- 2020
- /
- 2005-3053(pISSN)
Korean AMR Parsing using Graph⇋Sequence Iterative Inference
그래프⇋시퀀스의 반복적 추론을 이용한 한국어 AMR 파싱
- Min, Jinwoo (Jeonbuk National University) ;
- Na, Seung-Hoon (Jeonbuk National University) ;
- Choe, Hyonsu (NCSOFT Corp.) ;
- Kim, Young-Kil (Yonsei University)
- Published : 2020.10.14
Abstract
Abstract Meaning Representation(AMR)은 문장의 의미를 그래프 구조로 인코딩하여 표현하는 의미 형식표현으로 문장의 각 노드는 사건이나 개체를 취급하는 개념으로 취급하며 간선들은 이러한 개념들의 관계를 표현한다. AMR 파싱은 주어진 문장으로부터 AMR 그래프를 생성하는 자연어 처리 태스크이다. AMR 그래프의 각 개념은 추상 표현으로 문장 내의 토큰과 명시적으로 정렬되지 않는 어려움이 존재한다. 이러한 문제를 해결하기 위해 별도의 사전 학습된 정렬기를 이용하여 해결하거나 별도의 정렬기 없이 Sequence-to-Sequence 계열의 모델로 입력 문장으로부터 그래프의 노드를 생성하는 방식으로 연구되어 왔다. 본 논문에서는 문장의 입력 시퀀스와 부분 생성 그래프 사이에서 반복 추론을 통해 새로운 노드와 기존 노드와의 관계를 구성하여 점진적으로 그래프를 구성하는 모델을 한국어 AMR 데이터 셋에 적용하여 Smatch 점수 39.8%의 실험 결과를 얻었다.