Learning Symbolic Constraints Using Rectifier Networks for Neural Natural Language Processing

Rectifier Network 기반 학습된 심볼릭 제약을 반영한 뉴럴 자연언어처리

  • Published : 2020.10.14

Abstract

자연언어처리 문제에서 딥러닝 모델이 좋은 성능을 보이고 있고 딥러닝 결과는 구조화된 결과를 내놓는 경우가 많다. 딥러닝 모델 결과가 구조적인 형태를 가지는 경우 후처리 통해 특정 구조에 맞는 제약을 가해주는 경우가 일반적이다. 본 논문에서는 이러한 제약을 규칙에 기반하지 않고 직접 학습을 통해 얻고자 하였다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (R7119-16-1001, 지식증강형 실시간 동시통역 원천기술 개발)