Alleviation of Overcorrection Problem in Neural Korean Spelling Correction

뉴럴 한국어 맞춤법 교정기에서 과교정(Overcorrection) 문제 완화

  • Park, Chanjun (Korea University, Department of Computer Science and Engineering) ;
  • Lee, Yeonsu (Sungkyunkwan University Department of Media Communication) ;
  • Yang, Kisu (Korea University, Department of Computer Science and Engineering) ;
  • Lim, Heuiseok (Korea University, Department of Computer Science and Engineering)
  • 박찬준 (고려대학교 컴퓨터학과) ;
  • 이연수 (성균관대학교 미디어커뮤니케이션학과) ;
  • 양기수 (고려대학교 컴퓨터학과) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • Published : 2020.10.14

Abstract

현재까지 한국어 맞춤법 교정 Task는 대부분 규칙기반 및 통계기반 방식의 연구가 진행되었으며 최근 딥러닝 기반의 한국어 맞춤법 교정에 대한 연구가 진행되고 있다. 맞춤법 교정에서 문법적 또는 철자적으로 틀린 부분을 교정하는 것도 중요하지만 올바른 문장이 입력으로 들어왔을 때 교정을 진행하지 않고 올바른 문장을 출력으로 내보내는 것 또한 중요하다. 규칙기반 맞춤법 교정기 같은 경우 문장의 구조를 흐트러트리지 않고 규칙에 부합하는 오류 부분만 고쳐낸다는 장점이 있으나 신경망 기반의 한국어 맞춤법 교정 같은 경우 Neural Machine Translation(NMT)의 고질적인 문제점인 반복 번역, 생략, UNK(Unknown) 때문에 문장의 구조를 흐트러트리거나 overcorrection(과교정) 하는 경우가 존재한다. 본 논문은 이러한 한계점을 극복하기 위하여 Correct to Correct Mechanism을 제안하며 이를 통해 올바른 문장이 입력으로 들어왔을 시 올바른 문장을 출력하는 성능을 높인다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기술기획평가원의 지원을 받아 수행된 연구이며 (No. 2020-0-00368, 뉴럴-심볼릭(neural-symbolic) 모델의 지식 학습 및 추론 기술 개발) 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 ICT명품인재양성 사업의 연구결과로 수행되었음 (IITP-2020-0-01819)