• Title/Summary/Keyword: DIBL

Search Result 89, Processing Time 0.03 seconds

Effects of Device Layout On The Performances of N-channel MuGFET (소자 레이아웃이 n-채널 MuGFET의 특성에 미치는 영향)

  • Lee, Sung-Min;Kim, Jin-Young;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The device performances of n-channel MuGFET with different fin numbers and fin widths but the total effective channel width is constant have been characterized. Two kinds of Pi-gate devices with fin number=16, fin width=55nm, and fin number=14, fin width=80nm have been used in characterization. The threshold voltage, effective electron mobility, threshold voltage roll-off, inverse subthreshold slope, PBTI, hot carrier degradation, and drain breakdown voltage have been characterized. From the measured results, the short channel effects have been reduced for narrow fin width and large fin numbers. PBTI degradation was more significant in devices with large fin number and narrow fin width but hot carrier degradation was similar for both devices. The drain breakdown voltage was higher for devices with narrow fin width and large fin numbers. With considering the short channel effects and device degradation, the devices with narrow fin width and large fin numbers are desirable in the device layout of MuGFETs.

Improved Breakdown Voltage Characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMT with an Oxidized GaAs Gate

  • I-H. Kang;Lee, J-W.;S-J. Kang;S-J. Jo;S-K. In;H-J. Song;Kim, J-H.;J-I. Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • The DC and RF characteristics of $In_{0.5}Ga_{0.5}P/In_{0.22}Ga_{0.78}As/GaAs$ p-HEMTs with a gate oxide layer of various thicknesses ($50{\;}{\AA},{\;}300{\;}{\AA}$) were investigated and compared with those of a Schottky-gate p-HEMT without the gate oxide layer. A prominent improvement in the breakdown voltage characteristics were observed for a p-HEMT having a gate oxide layer, which was implemented by using a liquid phase oxidation technique. The on-state breakdown voltage of the p-HEMT having the oxide layer of $50{\;}{\AA}$was ~2.3 times greater than that of a Schottky-gate p-HEMT. However, the p-HEMT having the gate oxide layer of $300{\;}{\AA}$ suffered from a poor gate-control capability due to the drain induced barrier lowering (DIBL) resulting from the thick gate oxide inspite of the lower gate leakage current and the higher on-state breakdown voltage. The results for a primitive p-HEMT having the gate oxide layer without any optimization of the structure and the process indicate the potential of p-HEMT having the gate oxide layer for high-power applications.

Highly Manufacturable 65nm McFET (Multi-channel Field Effect Transistor) SRAM Cell with Extremely High Performance

  • Kim, Sung-Min;Yoon, Eun-Jung;Kim, Min-Sang;Li, Ming;Oh, Chang-Woo;Lee, Sung-Young;Yeo, Kyoung-Hwan;Kim, Sung-Hwan;Choe, Dong-Uk;Suk, Sung-Dae;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • We demonstrate highly manufacturable Multi-channel Field Effect Transistor (McFET) on bulk Si wafer. McFET shows excellent transistor characteristics, such as $5{\sim}6 times higher drive current than planar MOSFET, ideal subthreshold swing, low drain induced barrier lowering (DIBL) without pocket implantation and negligible body bias dependency, maintaining the same source/drain resistance as that of a planar transistor due to the unique feature of McFET. And suitable threshold voltage ($V_T$) for SRAM operation and high static noise margin (SNM) are achieved by using TiN metal gate electrode.

Analysis of a Novel Elevated Source Drain MOSFET with Reduced Gate-Induced Drain Leakage and High Driving Capability (Gate-Induced Drain Leakage를 줄인 새로운 구조의 고성능 Elevated Source Drain MOSFET에 관한 분석)

  • Kim, Gyeong-Hwan;Choe, Chang-Sun;Kim, Jeong-Tae;Choe, U-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.390-397
    • /
    • 2001
  • A novel self-aligned ESD (Elevated Source Drain) MOSFET structure which can effectively reduce the GIDL (Gate-Induced Drain Leakage) current is proposed and analyzed. The proposed ESD structure is characterized by sidewall spacer and recessed-channel depth which are determined by dry-etching process. Elevation of the Source/Drain extension region is realized so that the low-activation effect caused by low-energy ion implantation can be avoided. Unlike the conventional LDD structures, it is shown that the GIDL current of the ESD structure is suppressed without sacrificing the maximum driving capability. The main reason for the reduction of GIDL current Is the decreased electric field at the point of the maximum band-to-band tunneling as the peak electric field is shifted toward the drain side.

  • PDF

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET (FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화)

  • Cho, Jaewoong;Kim, Taeyong;Choi, Jiwon;Cui, Ziyang;Xin, Dongxu;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

Switching and Leakage-Power Suppressed SRAM for Leakage-Dominant Deep-Submicron CMOS Technologies (초미세 CMOS 공정에서의 스위칭 및 누설전력 억제 SRAM 설계)

  • Choi Hoon-Dae;Min Kyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.21-32
    • /
    • 2006
  • A new SRAM circuit with row-by-row activation and low-swing write schemes is proposed to reduce switching power of active cells as well as leakage one of sleep cells in this paper. By driving source line of sleep cells by $V_{SSH}$ which is higher than $V_{SS}$, the leakage current can be reduced to 1/100 due to the cooperation of the reverse body-bias. Drain Induced Barrier Lowering (DIBL), and negative $V_{GS}$ effects. Moreover, the bit line leakage which may introduce a fault during the read operation can be eliminated in this new SRAM. Swing voltage on highly capacitive bit lines is reduced to $V_{DD}-to-V_{SSH}$ from the conventional $V_{DD}-to-V_{SS}$ during the write operation, greatly saving the bit line switching power. Combining the row-by-row activation scheme with the low-swing write does not require the additional area penalty. By the SPICE simulation with the Berkeley Predictive Technology Modes, 93% of leakage power and 43% of switching one are estimated to be saved in future leakage-dominant 70-un process. A test chip has been fabricated using $0.35-{\mu}m$ CMOS process to verify the effectiveness and feasibility of the new SRAM, where the switching power is measured to be 30% less than the conventional SRAM when the I/O bit width is only 8. The stored data is confirmed to be retained without loss until the retention voltage is reduced to 1.1V which is mainly due to the metal shield. The switching power will be expected to be more significant with increasing the I/O bit width.

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.

Influence on Short Channel Effects by Tunneling for Nano structure Double Gate MOSFET (나노구조 이중게이트 MOSFET에서 터널링이 단채널효과에 미치는 영향)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.479-485
    • /
    • 2006
  • The double gate(DG) MOSFET is a promising candidate to further extend the CMOS scaling and provide better control of short channel effect(SCE). DGMOSFETs, having ultra thin undoped Si channel for SCEs control, ale being validated for sub-20nm scaling. A novel analytical transport model for the subthreshold mode of DGMOSFETs is proposed in this paper. The model enables analysis of short channel effect such as the subthreshold swing(SS), the threshold voltage roil-off$({\Delta}V_{th})$ and the drain induced barrier lowering(DIBL). The proposed model includes the effects of thermionic emission and quantum tunneling of carriers through the source-drain barrier. An approximative solution of the 2D Poisson equation is used for the distribution of electric potential, and Wentzel-Kramers-Brillouin approximation is used for the tunneling probability. The new model is used to investigate the subthreshold characteristics of a double gate MOSFET having the gate length in the nanometer range $(5-20{\sim}nm)$ with ultra thin gate oxide and channel thickness. The model is verified by comparing the subthreshold swing and the threshold voltage roll-off with 2D numerical simulations. The proposed model is used to design contours for gate length, channel thickness, and gate oxide thickness.