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Highly Manufacturable 65nm McFET (Multi-channel
Field Effect Transistor) SRAM Cell with Extremely
High Performance

Sung Min Kim, Eun Jung Yoon, Min Sang Kim, Ming Li, Chang Woo Oh,
Sung Young Lee, Kyoung Hwan Yeo, Sung Hwan Kim, Dong Uk Choe,
Sung Dae Suk, Dong-Won Kim, and Donggun Park

Abstract—We demonstrate highly manufacturable
Multi-channel Field Effect Transistor (McFET) on
bulk Si wafer. McFET shows excellent transistor
characteristics, such as 5-~6 times higher drive
current than planar MOSFET, ideal subthreshold
swing, low drain induced barrier lowering (DIBL)
without pocket implantation and negligible body bias
dependency, maintaining the same source/drain
resistance as that of a planar transistor due to the
unique feature of McFET. And suitable threshold
voltage (V1) for SRAM operation and high static
noise margin (SNM) are achieved by using TiN metal
gate electrode.

Index Terms—MCcFET, SRAM, TiN, workfunction

1. INTRODUCTION

Due to the high compatibility with conventional
device manufacturing process, FInFETs have been on
focus among the double-gate transistors[1]. Usually, as a
fin width trimming method, a combination of sacrificial
oxidation and chemical dry etch has been used. However,
these methods inevitably increase the source/drain series
resistance by narrowing the width of source/drain region
as well as the channel fin region[2]. Moreover, to enhance
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the drive current, sophisticated multi-fin layout is
required[3]. Due to the pitch limit of lithography tools, it
is hard to have narrower pitch than design rule that limits
the effective use of the active area for the devices using
FinFET. In this work, we introduce a novel process
architecture of McFET which can be fabricated without
lithographical limit of active patterning and propose a
method to achieve CMOS transistor characteristics that
are suitable to low voltage and high performance
operation using highly manufacturable TiN single metal
gate process.

100nm

Fig. 1. Schematic illustration and cross-sectional SEM images
of channel region of McFET.
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I1I. FABRICATION

Three-dimensional schematic diagrams of the McFET
fabrication process flow are shown in Figure 4[7~8].
As shown in Figure 2~35, the thickness of channel body
is 12nm and it is uniform in the whole wafer. The
nitrided oxide was grown as a gate dielectric. In order to
test the intrinsic strength of the McFET architecture to
resist short channel effect (SCE) and DIBL, no pocket
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Fig. 2. TEM image of the channel body of fabricated McFET.
The height and width of two symmetrical channel bodies are
98nm and 12nm, respectively.

implantations have been done. Figure 6 is the tilted-view
SEM images of McFET in the middle of fabrication after
gate spacer formation. To evaluate the threshold voltage
(V1) adjustment using gate workfunction engineering,
single metal gate McFET also fabricated using simple
replacement gate process. As a gate electrode, W/TiIN is
used as a gate material. TIN film of 10nm is inserted
between the W gate electrode and gate insulator for
threshold voltage adjustment. Figure 6 and Figure 7 show
SEM and TEM images of successfully fabricated 65nm
TiN single metal gate McFET SRAM cell transistors.

Fig. 5. TEM image of McFET SRAM cell along the ‘Cut line A-
A’ in Figure 3 and tilted SEM view of McFET SRAM cell right
after gate spacer formation with top view of 6T-SRAM cell.
Channel profiles are uniform and symmetrical in whole wafer.

(b) TiN/W gate

i 200nm
Fig. 6. SEM images of 65nm TiN gate McFET SRAM cell
array (a) after TIN/W gate formation by CMP (tilted view), and
(b) cross-sectional view cut along A to A’.
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Fig. 4. Process flow sequence and 3-dimentional brief schematic diagram for poly-Si gate McFET fabrication and additional
replacement gate process for TiN metal gate McFET.
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Fig. 7. Cross-sectional SEM and TEM images of 65nm TiN
gate McFET SRAM cell transistor. TiN gate electrode is
uniformly deposited on the gate oxide of 2nm.
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Fig. 8. Ip-Vg characteristics of McFETs and a planar transistor.
Thanks to the gate work function matching with thin Si body,
TiN gate McFETs show reasonably low threshold voltages
with excellent short channel immunities.

II1. ELECTRICAL CHARACTERISTICS

Figure 8 shows the Ip-Vg curves for McFETs with
TiN gate and poly-Si gate, and poly-Si gate planar
MOSFET for SRAM cell application.

Thanks to thin channel body of McFET, SCE is
effectively suppressed in spite of absence of pocket ion
implantation and on current is enhanced. Due to the mid-
gap workfunction of TiN, the V1 of TiN gate McFET
increases 450mV for n-channel and 200mV for p-
channel with respect to poly-Si gate McFET, which are
suitable for the stable CMOS operation below 1.0V.
Figure 9 shows no body bias dependency of McFET due
to the fully depleted thin channel body. In addition, as
shown in Figure 10, McFET shows 5~6 times larger
current drivability than planar transistors. Thanks to the
elimination of gate depletion using metal gate electrode,
the drive currents of TiN gate McFET SRAM cell
transistors with 2.0nm gate oxide are higher than that of
poly-Si gate McFET and several times larger than that of
poly-Si gate planar MOSFET with 1.4nm gate oxide.

Figure 11 shows the distribution data of McFET. Due
to the uniform thickness of channel body and unique
channel doping, McFET shows good in-wafer uniformity
of threshold voltage and nearly ideal sub-threshold
swing. Remarkably, thanks to nearly undoped channel
and threshold wvoltage controlled by only gate
workfunction engineering, TiN single metal gate McFET
shows excellent distribution with optimal electrical
characteristics for SRAM operation.
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Fig. 9. Body bias dependency of the McFET and the planar
transistor. No body bias dependency is observed in McFET.
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Fig. 10. Drive current of McFET SRAM cell PMOS is 5 times
larger than that of planar transistor. Drive current dramatically
increases using McFET scheme with TiN metal gate to
eliminate poly depletion and effective channel width increase
even with thicker gate oxide of 2.0nm.

As shown in Figure 12, the source/drain resistance of
McFET is similar to that of planar MOSFET and abo
ut 200 times lower than that of the other FinFET fab
ricated with active trimming method. This is mainly
due to the same source drain region with planar MOSFET,
because only the channel region is trimmed.

To investigate the functionality of 6-T McFET SRAM
cell array, SNM is evaluated. In case of poly-Si gate
MCcFET, due to the low threshold voltage induced from
thin body, static noise margin was not enough for SRAM
working.(Figure 13) But in the case of TiN single gate
McFET shown in Figures 14 and 15, having proper
threshold voltage by adapting TiN gate to thin Si-body
and large current drivability with channel width increase
of McFET, TiN gate McFET SRAM cell shows 2 times
larger SNM than poly-Si gate planar MOSFET. The
SNM is 310mV at 0.8V. Due to the inherent stability of
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TiN gate McFET structure and process, all the test chips
were operational with excellent SNM distribution in an 8

inch wafer.
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Fig. 11. Distribution of (a) threshold voltage (V1) (b) sub-
threshold swing of TiN gate McFET, poly-Si gate McFET and
planar MOSFET. Thanks to intrinsic structural uniformity,
MCcFET shows optimal uniform electrical characteristics for
sub 1.0V operation.
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Fig. 12. Source/drain resistance of McFET is similar to planar

MOSFET without any abnormal RSD increase of the other

FinFET fabricated with active trimming method.
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Fig. 13. ‘Butterfly’ curves for SRAM cell with poly-si gate
MCcFET. Due to the low threshold voltages induced from thin
body effect, static noise margin of poly-Si gate McFET was
not enough for SRAM operation.
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Fig. 14. TiN gate McFET 80nm 6-T SRAM cell shows large
static noise margin due to the suitable threshold voltage and
large driving current.
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Fig. 15. The SNM of TiN gate McFET SRAM cell is more than
350mV at Ve =1.0V and 310 mV at Ve =0.8V with better
distribution than poly-Si gate planar MOSFET in 8 inch wafer.

To examine the fine adjustment of Vp using ion
implantation, local counter ion doping on top of fin

channel was evaluated. The upper part of Si channel was
partially doped using unique counter ion implantation
process. Figure 16 shows threshold voltage shift of
70mV for n-channel McFET related to counter arsenic
ion implantation of 2x10"*/cm?” with slight degradation of
V7 uniformity. To examine the misalignment effect of
the gate electrode to the hole on the active region, Ip-Vg
characteristics were measured switching source and
drain. As shown in Figure 17, 70nm poly-Si gate McFET
misaligned by 20nm intentionally, did not induce any
serious change in threshold voltage and Ipgy.
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Fig. 16. For the fine tuning of threshold voltage (Vr), counter
ion doping is applied. Threshold voltage shifts 70mV by 2x1 o
(ion/em?) without off leakage current increase.
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Fig. 17. Misalignment of 20nm between gate electrode and the
hole on the active region does not induce any serious electrical
characteristic change to 70nm McFET.

IV. CONCLUSIONS

A novel SRAM cell array McFET was successfully
fabricated using highly manufacturable conventional
CMOS process. It is realized that the McFET is highly
effective to utilize the active area, overcoming the
lithographical patterning limit. Using McFET structure,
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drive current was increased 5~6 times with excellent
short channel immunity. Optimal n-channel and p-
channel threshold voltages for low voltage SRAM
operation was achieved using the combination of midgap
TiN metal gate and thin body double FinFET scheme of
MCcFET. Single metal gate McFET was easily fabricated
with simple replacement gate process.
transistor performance and high SNM of 310 mV at 0.8
V was achieved.

Excellent
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