• Title/Summary/Keyword: nano-scale CMOSFETs

Search Result 13, Processing Time 0.03 seconds

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs

  • Shin, Hong-Sik;Oh, Se-Kyung;Kang, Min-Ho;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.260-264
    • /
    • 2010
  • In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.

PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology (PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰)

  • 나준희;최서윤;김용구;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.21-29
    • /
    • 2004
  • Hot carrier degradation characteristics of Nano-scale CMOSFETs with dual gate oxide have been analyzed in depth. It is shown that, PMOSFET lifetime dominate the device lifetime than NMOSFET In Nano-scale CMOSFETs, that is, PMOSFET lifetime under CHC (Channel Hot Carrier) stress is much lower than NMOSFET lifetime under DAHC (Dram Avalanche Hot Carrier) stress. (In case of thin MOSFET, CHC stress showed severe degradation than DAHC for PMOSFET and DAHC than CHC for NMOSFET as well known.) Therefore, the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor in upcoming Nano-scale CMOSFET technology. In case of PMOSFETs, CHC shows enhanced degradation than DAHC regardless of thin and thick PMOSFETs. However, what is important is that hot hole injection rather than hot electron injection play a important role in PMOSFET degradation i.e. threshold voltage increases and saturation drain current decreases due to the hot carrier stresses for both thin and thick PMOSFET. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method. Therefore, suppression of PMOSFET hot carrier degradation or hot hole injection is highly necessary to enhance overall device lifetime or circuit lifetime in Nano-scale CMOSFET technology

Improving the Thermal Stability of Ni-Silicide Using Ni-V On Boron Cluster Implantend Source/drain for Nano-Scale CMOSFETs

  • Li, Shi-Guang;Lee, Won-Jae;Zhang, Ying-Ying;Zhun, Zhong;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.3-4
    • /
    • 2006
  • 본 논문에서는 nano-scale CMOSFET을 위해 Boron Cluster ($B_{18}H_{22}$)가 이온주입된 SOI 와 Bulk 기판들 이용하였으며 실리사이드의 열 안정성 개선을 위해 Ni-V을 증착한 것과 순수 Ni을 증착한 것을 비교 분석 하였다. 결과 SOI위에 Ni-V을 증착한 것이 제일 낮은 면 저항을 보여주었고 반대로 Bulk위에는 제일 높은 면 저항을 보여 주었다. 단면을 측정한 결과 SOI 위에 Ni-V을 증착한 동일 조건의 Ni보다 Silicide의 두께가 두껍게 형성된 것을 확인하였다.

  • PDF

Improving the Thermal Stability of Ni-silicide using Ni-V on Boron Cluster Implanted Source/drain for Nano-scale CMOSFETs (나노급 CMOSFET을 위한 Boron Cluster(B18H22)가 이온 주입된(SOI 및 Bulk)기판에 Ni-V합금을 이용한 Ni-silicide의 열안정성 개선)

  • Li, Shu-Guang;Lee, Won-Jae;Zhang, Ying-Ying;Zhun, Zhong;Jung, Soon-Yen;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.487-490
    • /
    • 2007
  • In this paper, the formation and thermal stability characteristics of Ni silicide using Ni-V alloy on Boron cluster ($B_{18}H_{22}$) implanted bulk and SOI substrate were examined in comparison with pure Ni for nano-scale CMOSFET. The Ni silicide using Ni-V alloy on $B_{18}H_{22}$ implanted SOI substrate after high temperature post-silicidation annealing showed the lower sheet resistance, no agglomeration interface image and lower surface roughness than that using pure Ni. The thermal stability of Ni silicide was improved by using Ni-V alloy on $B_{18}H_{22}$ implanted SOI substrate.

A Stacked Polusilicon Structure by Nitridation in N2 Atmosphere for Nano-scale CMOSFETs (나노 CMOS 소자 적용을 위한 질소 분위기에서 형성된 질화막을 이용한 폴리실리콘 적층 구조)

  • Ho, Won-Joon;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1001-1006
    • /
    • 2005
  • A new fabrication method is proposed to form the stacked polysilicon gate by nitridation in $N_2$ atmosphere using conventional LP-CVD system. Two step stacked layers with an amorphous layer on top of a polycrystalline layer as well as three step stacked layers with polycrystalline films were fabricated using the proposed method. SIMS profile showed that the proposed method would successfully create the nitrogen-rich layers between the stacked polysilicon layers, thus resulting in effective retardation of dopant diffusion. It was observed that the dopants in stacked films were piled-up at the interface. TEM image also showed clear distinction of stacked layers, their plane grain size and grain mismatch at interface layers. Therefore, the number of stacked polysilicon layers with different crystalline structures, interface position and crystal phase can be easily controlled to improve the device performance and reliability without any negative effects in nano-scale CMOSFETs.

Thermal Stable Ni-silicide Utilizing Pd Stacked Layer for nano-scale CMOSFETs (나노급 CMOSFET을 위한 Pd 적층구조를 갖는 열안정 높은 Ni-silicide)

  • Yu, Ji-Won;Zhang, Ying-Ying;Park, Kee-Young;Li, Shi-Guang;Zhong, Zhun;Jung, Soon-Yen;Yim, Kyoung-Yean;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.10-10
    • /
    • 2008
  • Silicide is inevitable for CMOSFETs to reduce RC delay by reducing the sheet resistance of gate and source/drain regions. Ni-silicide is a promising material which can be used for the 65nm CMOS technologies. Ni-silicide was proposed in order to make up for the weak points of Co-silicide and Ti-silicide, such as the high consumption of silicon and the line width limitation. Low resistivity NiSi can be formed at low temperature ($\sim500^{\circ}C$) with only one-step heat treat. Ni silicide also has less dependence of sheet resistance on line width and less consumption of silicon because of low resistivity NiSi phase. However, the low thermal stability of the Ni-silicide is a major problem for the post process implementation, such as metalization or ILD(inter layer dielectric) process, that is, it is crucial to prevent both the agglomeration of mono-silicide and its transformation into $NiSi_2$. To solve the thermal immune problem of Ni-silicide, various studies, such as capping layer and inter layer, have been worked. In this paper, the Ni-silicide utilizing Pd stacked layer (Pd/Ni/TiN) was studied for highly thermal immune nano-scale CMOSFETs technology. The proposed structure was compared with NiITiN structure and showed much better thermal stability than Ni/TiN.

  • PDF

Effect of Vacuum Annealing on Thin Film Nickel Silicide for Nano Scale CMOSFETs

  • Zhang, Ying-Ying;Oh, Soon-Young;Kim, Yong-Jin;Lee, Won-Jae;Zhong, Zhun;Jung, Soon-Yen;Li, Shi-Guang;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.10-11
    • /
    • 2006
  • In this study, the Ni/Co/TiN (6/2/25 nm) structure was deposited for thermal stability estimation. Vacuum (30 mTorrs) annealing was carried out to compare with furnace annealing in nitrogen ambient. The proposed Ni/Co/TiN structure exhibited low temperature silicidation and wide range of rapid thermal process (RTP) windows. The sheet resistance was too high to measure after furnace annealing at $600^{\circ}C$ due to the thin thickness (15 nm) of the nickel silicide. However, the sheet resistance maintained stable characteristics up to $600^{\circ}C$ for 30 min after vacuum annealing. Therefore, the low resistance of thin film nickel silicide was obtained by vacuum annealing at $600^{\circ}C$.

  • PDF

Thermal Stability Improvement of Ni-Silicide using Ni-Co alloy for Nano-scale CMOSFET (나노급 CMOSFET을 위한 니켈-코발트 합금을 이용한 니켈-실리사이드의 열안정성 개선)

  • Park, Kee-Young;Jung, Soon-Yen;Han, In-Shik;Zhang, Ying-Ying;Zhong, Zhun;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • In this paper, the Ni-Co alloy was used for thermal stability estimation comparison with Ni structure. The proposed Ni/Ni-Co structure exhibited wider range of rapid thermal process windows, lower sheet resistance in spite of high temperature annealing up to $700^{\circ}C$ for 30 min, more uniform interface via FE-SEM analysis, NiSi phase peak. Therefore, The proposed Ni/Ni-Co structure is highly promising for highly thermal immune Ni-silicide for nano-scale MOSFET technology.

Characterization of Hot Carrier Mechanism of Nano-Scale CMOSFETs (나노급 소자의 핫캐리어 특성 분석)

  • Na Jun-Hee;Choi Seo-Yun;Kim Yong-Goo;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.327-330
    • /
    • 2004
  • It is shown that the hot carrier degradation due to enhanced hot holes trapping dominates PMOSFETs lifetime both in thin and thick devices. Moreover, it is found that in 0.13 ${\mu}m$ CMOSFET the PMOS lifetime under CHC (Channel Hot Carrier) stress is lower than the NMOSFET lifetime under DAHC (Drain Avalanche Hot Carrier) stress. Therefore. the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method and highly necessary to enhance overall device lifetime or circuit lifetime in upcoming nano-scale CMOS technology.

  • PDF

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.