Browse > Article
http://dx.doi.org/10.5573/JSTS.2010.10.4.260

Improvement of Thermal Stability of Ni-Silicide Using Vacuum Annealing on Boron Cluster Implanted Ultra Shallow Source/Drain for Nano-Scale CMOSFETs  

Shin, Hong-Sik (Dep. EE., Chungnam National University)
Oh, Se-Kyung (Dep. EE., Chungnam National University)
Kang, Min-Ho (Dep. EE., Chungnam National University)
Lee, Ga-Won (Dep. EE., Chungnam National University)
Lee, Hi-Deok (Dep. EE., Chungnam National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.10, no.4, 2010 , pp. 260-264 More about this Journal
Abstract
In this paper, Ni silicide is formed on boron cluster ($B_{18}H_{22}$) implanted source/drains for shallow junctions of nano-scale CMOSFETs and its thermal stability is improved, using vacuum annealing. Although Ni silicide on $B_{18}H_{22}$ implanted Si substrate exhibited greater sheet resistance than on the $BF_2$ implanted one, its thermal stability was greatly improved using vacuum annealing. Moreover, the boron depth profile, using vacuum post-silicidation annealing, showed a shallower junction than that using $N_2$ annealing.
Keywords
Boron Cluster ($B_{18}H_{22}$); shallow junction; Ni silicide; nano-scale CMOSFETs; vacuum annealing;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W.J. Lee, S.Y. Oh, Y.J. Kim, Y.Y. Zhang, Z. Zhong, S.Y. Jung, H.H. Ji, K.J. Hwang, Y.C. Kim, H.T. Cho, W.A. Knull, J.S. Wang, and H.D. Lee, “Formation and Thermal Stability Characteristics of Ni Silicide on Boron Cluster ($B_{18}H_{22}$) Implanted Source/Drain,” International Workshop on Junction Technology’06, p.184, 2006.
2 A. Agarwal, H.-J. Gossmann, D. C. Jacobson, D. J. Eaglesham, M.Sosnowski, J. M. Poate, I. Yamada, J. Matsuo, and T. E. Haynes, “Transient enhanced diffusion from decaborane molecular ion implantation,” Appl.Phys. Lett. 73, 2015, 1998.   DOI   ScienceOn
3 H.I. Iwai, T.Ohguro, and S.I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectron. Eng., Vol.60, p.157, 2000.
4 T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys. 77, p.417, 1995.   DOI   ScienceOn
5 C.Y. Lu, J.M. Sung, “Reverse short-channel effects on threshold voltage in submicrometer salicide devices,” Electron Device Lett., IEEE Vol.10, p.446, 1989.   DOI   ScienceOn
6 D.-X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, “Material aspects of nickel silicide for ULSI applications,” Thin Solid Films 326, p.143, 1998.   DOI   ScienceOn
7 X. Lu, L. Shao, X. Wang, J. Liu, W. Chu, J. Bennet, L. Larson, and P.Ling, “Cluster-ion implantation: An approach to fabricate ultrashallow junctions in silicon,” J. Vac. Sci. Technol. B 20, 992, 2002.   DOI   ScienceOn
8 C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral Jr., “Towards implementation of a nickel silicide process for CMOS technologies,” Microelectron. Eng. 70, p.144, 2003.   DOI   ScienceOn
9 Y. Kawasaki, T. Kuroi, T. Yamashita, K. Horita, T. Hayashi, M. Ishibashi, M. Togawa, Y. Ohno, M. Yoneda, T. Horsky, D. Jacobson, and W. Krull, “Ultra-shallow junction formation by B18H22 ion implantation,” Nucl. Instrum. Methods Phys. Res. B 237, 25, 2005.   DOI   ScienceOn
10 M. Ishibashi, Y. Kawasaki, K. Horita, T. Kuroi, T. Yamashita, K. Shiga, T. Hayashi, and M. Togawa, “Advantages of B18H22 Ion Implantation and Influence on PMOS Reliability,” International Workshop on Junction Technology’05, p.31, 2005.