• 제목/요약/키워드: gate charge

검색결과 341건 처리시간 0.027초

GaAs MESFET의 파괴특성 향상을 위한 recess게이트 구조 (The recess gate structure for the improvement of breakdown characteristics of GaAs MESFET)

  • 장윤영;송정근
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권5호
    • /
    • pp.376-382
    • /
    • 1994
  • In this study we developed a program(DEVSIM) to simulate the two dimensional distribution of the electrostatic potential and the electric field of the arbitrary structure consisting of GaAs/AlGaAs semiconductor and metal as well as dielectric. By the comparision of the electric field distribution of GaAs MESFETs with the various recess gates we proposed a suitable device structure to improve the breakdown characteristics of MESFET. According to the results of simulation the breakdown characteristics were improved as the thickness of the active epitaxial layer was decreased. And the planar structure, which had the highly doped layer under the drain for the ohmic contact, was the worst because the highly doped layer prevented the space charge layer below the gate from extending to the drain, which produced the narrow spaced distribution of the electrostatic potential contours resulting in the high electric field near the drain end. Instead of the planar structure with the highly doped drain the recess gate structure having the highly doped epitaxial drain layer show the better breakdown characteristics by allowing the extention of the space charge layer to the drain. Especially, the structure in which the part of the drain epitaxial layer near the gate show the more improvement of the breakdown characteristics.

  • PDF

Short Channel GaAs MESFET의 채널전하분포와 채널전하에 의한 전위장벽의 변화 (Potential Barrier Shift Caused by Channel Charge in Short Channel GaAs MESFET)

  • 원창섭;이명수;류세환;한득영;안형근
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.793-799
    • /
    • 2006
  • In this paper, the gate leakage current is first calculated using the experimental method between gate and drain by opening source electrode. the gate to drain current has been obtained with ground source. The difference between two currents has been tested and proves that the electric field generated by channel charge effect against the image force lowering.

Investigation of Junction-less Tunneling Field Effect Transistor (JL-TFET) with Floating Gate

  • Ali, Asif;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권1호
    • /
    • pp.156-161
    • /
    • 2017
  • This work presents a novel structure for junction-less tunneling field effect transistor (JL-TFET) with a floating gate over the source region. Introduction of floating gate instead of fixed metal gate removes the limitation of fabrication process suitability. The proposed device is based on a heavily n-type-doped Si-channel junction-less field effect transistor (JLFET). A floating gate over source region and a control-gate with optimized metal work-function over channel region is used to make device work like a tunnel field effect transistor (TFET). The proposed device has exhibited excellent ID-VGS characteristics, ION/IOFF ratio, a point subthreshold slope (SS), and average SS for optimized device parameters. Electron charge stored in floating gate, isolation oxide layer and body doping concentration are optimized. The proposed JL-TFET can be a promising candidate for switching performances.

증착시 도핑된 비정질 Si 게이트를 갖는 MOS 캐패시터와 트랜지스터의 전기적 특성 (Electrical Properties of MOS Capacitors and Transistors with in-situ doped Amorphous Si Gate)

  • 이상돈;이현창;김재성;김봉렬
    • 전자공학회논문지A
    • /
    • 제31A권6호
    • /
    • pp.107-116
    • /
    • 1994
  • In this paper, The electrical properties of MOS capacitors and transistoras with gate of in-situ doped amorphous Si and poly Si doped by POCI$_3$. Under constant current F-N stress, MOS capacitors with in-situ doped amorphous Si gate have shown the best resistance to degradation in reliabilty properties such as increase of leakage current, shift of gate voltage (V$_{g}$). shift of flat band voltage (V$_{fb}$) and charge to breakdown(Q$_{bd}$). Also, MOSFETs with in-situ doped amorphous Si gate have shown to have less degradation in transistor properties such as threshold voltage, transconductance and drain current. These improvements observed in MOS devices with in-situ doped amorphous Si gate is attributed to less local thinning spots at the gate/SiO$_2$ interface, caused by the large grain size and the smoothness of the surface at the gate/SiO$_2$ interface.

  • PDF

저전압 DRAM용 VPP Generator 설계 (A VPP Generator Design for a Low Voltage DRAM)

  • 김태훈;이재형;하판봉;김영희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.776-780
    • /
    • 2007
  • 본 논문에서는 저전압 DRAM용 VPP Generator의 전하펌프회로(Charge Pump Circuit)를 새롭게 제안하였다. 제안된 전하펌프회로는 2-Stage 크로스 커플 전하펌프회로(Cross-Coupled Charge Pump Circuit)이다. 4개의 비중첩 클럭신호들을 이용하여 전하전달 효율을 향상시켰고, 각 전하펌프단 마다 Oscillation 주기를 줄일 목적으로 Distributed Clock Driver인 Inverter 4개를 추가하여 펌핑전류(Pumping Current)를 증가시켰다. 그리고 전하전달 트랜지스터의 게이트단에 프리차지회로 (Precharge Circuit)를 두어 대기모드진입 시 펌핑된 전하를 방전하지 못하고 고전압을 유지하여 소자의 신뢰성을 떨어트리는 문제를 해결하였다. 모의실험결과 펌핑전류, 펌핑효율(Pumping Efficiency), 파워효율(Power Efficiency) 모두 향상된 것을 확인하였고, $0.18{\mu}m$ Triple-Well 공정을 이용하여 Layout 하였다.

  • PDF

Dickson Charge Pump with Gate Drive Enhancement and Area Saving

  • Lin, Hesheng;Chan, Wing Chun;Lee, Wai Kwong;Chen, Zhirong;Zhang, Min
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1209-1217
    • /
    • 2016
  • This paper presents a novel charge pump scheme that combines the advantages of Fibonacci and Dickson charge pumps to obtain 30 V voltage for display driver integrated circuit application. This design only requires four external capacitors, which is suitable for a small-package application, such as smart card displays. High-amplitude (<6.6 V) clocks are produced to enhance the gate drive of a Dickson charge pump and improve the system's current drivability by using a voltage-doubler charge pump with a pulse skip regulator. This regulation engages many middle-voltage devices, and approximately 30% of chip size is saved. Further optimization of flying capacitors tends to decrease the total chip size by 2.1%. A precise and simple model for a one-stage Fibonacci charge pump with current load is also proposed for further efficiency optimization. In a practical design, its voltage error is within 0.12% for 1 mA of current load, and it maintains a 2.83% error even for 10 mA of current load. This charge pump is fabricated through a 0.11 μm 1.5 V/6 V/32 V process, and two regulators, namely, a pulse skip one and a linear one, are operated to maintain the output of the charge pump at 30 V. The performances of the two regulators in terms of ripple, efficiency, line regulation, and load regulation are investigated.

실리콘 나노와이어 N-채널 GAA MOSFET의 항복특성 (Breakdown Characteristics of Silicon Nanowire N-channel GAA MOSFET)

  • 류인상;김보미;이예린;박종태
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1771-1777
    • /
    • 2016
  • 본 논문에서는 나노와이어 N-채널 GAA MOSFET의 항복전압 특성을 측정과 3 차원 소자 시뮬레이션을 통하여 분석하였다. 측정에 사용된 나노와이어 GAA MOSFET는 게이트 길이가 250nm이며 게이트 절연층 두께는 6nm이며 채널 폭은 400nm부터 3.2um이다. 측정 결과로부터 나노와이어 GAA MOSFET의 항복전압은 게이트 전압에 따라 감소하다가 높은 게이트 전압에서는 증가하였다. 나노와이어의 채널 폭이 증가할수록 항복전압이 감소한 것은 floating body 현상으로 채널의 포텐셜이 증가하여 기생 바이폴라 트랜지스터의 전류 이득이 증가한 것으로 사료된다. 게이트 스트레스로 게이트 절연층에 양의 전하가 포획되면 채널 포텐셜이 증가하여 항복전압이 감소하고 음의 전하가 포획되면 포텐셜이 감소하여 항복전압이 증가하는 것을 알 수 있었다. 항복전압의 측정결과는 소자 시뮬레이션의 포텐셜 분포와 일치하는 것을 알 수 있었다.

Electrical characteristics of SiC thin film charge trap memory with barrier engineered tunnel layer

  • Han, Dong-Seok;Lee, Dong-Uk;Lee, Hyo-Jun;Kim, Eun-Kyu;You, Hee-Wook;Cho, Won-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2010
  • Recently, nonvolatile memories (NVM) of various types have been researched to improve the electrical performance such as program/erase voltages, speed and retention times. Also, the charge trap memory is a strong candidate to realize the ultra dense 20-nm scale NVM. Furthermore, the high charge efficiency and the thermal stability of SiC nanocrystals NVM with single $SiO_2$ tunnel barrier have been reported. [1-2] In this study, the SiC charge trap NVM was fabricated and electrical properties were characterized. The 100-nm thick Poly-Si layer was deposited to confined source/drain region by using low-pressure chemical vapor deposition (LP-CVD). After etching and lithography process for fabricate the gate region, the $Si_3N_4/SiO_2/Si_3N_4$ (NON) and $SiO_2/Si_3N_4/SiO_2$ (ONO) barrier engineered tunnel layer were deposited by using LP-CVD. The equivalent oxide thickness of NON and ONO tunnel layer are 5.2 nm and 5.6 nm, respectively. By using ultra-high vacuum magnetron sputtering with base pressure 3x10-10 Torr, the 2-nm SiC and 20-nm $SiO_2$ were successively deposited on ONO and NON tunnel layers. Finally, after deposited 200-nm thick Al layer, the source, drain and gate areas were defined by using reactive-ion etching and photolithography. The lengths of squire gate are $2\;{\mu}m$, $5\;{\mu}m$ and $10\;{\mu}m$. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer, E4980A LCR capacitor meter and an Agilent 81104A pulse pattern generator system. The electrical characteristics such as the memory effect, program/erase speeds, operation voltages, and retention time of SiC charge trap memory device with barrier engineered tunnel layer will be discussed.

  • PDF

A New DC-DC Converter for Gate Driver Circuit Using Low Temperature Poly-Si TFT

  • Choi, Jin-Young;Cho, Byoung-Chul;Shim, Hyun-Sook;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1011-1014
    • /
    • 2004
  • In this paper, we present a new DC-DC converter for gate driver circuit in low temperature poly-Si TFT technology. It is composed of a newly developed charge pump circuit and a regulator circuit. When the input voltage is 5V, the efficiency of a positive charge pump used in the DC-DC converter and that of a negative charge pump is 69.0% and 57.1%, respectively. The output voltage of DC-DC converter varies 200mV when the target voltages of DC-DC converter are 9V, -6V and the threshold voltage of TFTs varies ${\pm}$ 0.5V.

  • PDF

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.